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ABSTRACT

Presented is a second quantized technology for representing fermionic and bosonic entanglement in terms of
generalized joint ladder operators, joint number operators, interchangers, and pairwise entanglement operators.
The joint number operators generate conservative quantum logic gates that are used for pairwise entanglement
in quantum dynamical systems. These are most useful for quantum computational physics. The generalized joint
operator approach provides a pathway to represent the Temperley-Lieb algebra and to represent braid group
operators for either fermionic or bosonic many-body quantum systems. Moreover, the entanglement operators
allow for a representation of quantum measurement, quantum maps (associated with quantum Boltzmann equa-
tion dynamics), and for a way to completely and efficiently extract all accessible bits of joint information from
entangled quantum systems in terms of quantum propositions.

Keywords: joint quantum logic, joint ladder operators, joint number operators, entanglement operators,
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1. INTRODUCTION

A prerequisite to comprehend the richness of quantum dynamics, first for theoretical and then for practical algo-
rithmic engineering reasons, is a capacity to identify and quantitatively account for quantum state information
of entangled particles in many-body nonlinear quantum systems. Furthermore, in any future practical quantum
computer, measurement is also a prerequisite step, which itself may be integral to and intertwined with the
operation of the quantum computational algorithm. That is, measurement provides a pathway for exploiting
for practical purposes the nonlinearities associated with wave function collapse. So it is useful to quantify how
information, particularly joint information, is generated, transfered, and extracted during engineered quantum
dynamical evolution and measurement processes, respectively. The relationships between nonlocal quantum en-
tanglement and nonlocal quantum measurement are somewhat mysterious,1 so it is useful to have a toolset to
explore these relationships. Presented here is a prescription for doing precisely this, with a focus on pairwise
entanglement. A technology is introduced for a quantitative entanglement analysis based on joint number oper-
ators that in turn are constructed using second quantization technology, viz., joint fermionic and bosonic ladder
operators.

Joint ladder operators create and destroy entangled particle pairs. So a joint number operator counts such
entangled pairs. Moreover, these joint number operators are the generators of conservative quantum logic
gates that are used to represent the most basic physical operations underlying quantum gas dynamics, particle
motion and particle-particle interaction. Hence, they serve as building blocks for quantum lattice-gas algorithms
for accurately modeling quantum gases. It is possible to harness quantum entanglement and measurment to
simulate the local dynamics of quantum systems that are otherwise notoriously difficult to efficiently simulate.
Remarkably, this type of quantum logic technology handles fermions and bosons equally well, without any
additional complexity or computational overhead for anti-commuting algebras versus commuting algebras. So
an important future application, and an outstanding experimental goal for a number of years now, is to model
strongly-coupled fermionic quantum systems on a quantum computer using this kind of quantum algorithmic
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representation. Yet the primary issue here is to consider, from an analytical perspective, how these joint operators
can themselves be generalized, how they are interrelated to other known algebras and group constructs, and how
we may use joint operators to identify how entanglement is embedded in a many-body quantum system, and how
we might identify entangled state invariants modulo topological changes. Entangled pathways between particle
pairs caused by particle motion and 2-body particle-particle interactions in a quantum gas can be represented as
the closure of braided strands, where the qubits take the place of the strands in a braid. In this regard, an overall
agenda is to categorize types of quantum entanglement as geometrical objects with the invariants for knots and
tangles.

This article is divided into three sections. First, I give a derivation of joint ladder operators and generalized
joint ladder operators. These naturally lead to the construction of entanglement operators, either perpendicular
and parallel ones with respect to the Bell states as described below. Second, I discuss interchangers, respectively
for both fermions and bosons, that swap the quantum state between two qubits in the system in a tunable
fashion. A unitary quantum (bosonic) representation of the braid group has been used to efficiently compute
the Jones Polynomial.2, 3 So it should not be surprising that the bosonic joint number operators can satisfy the
Temperley-Lieb algebra. Yet both fermionic and bosonic interchangers can represent the braid group. An Hilbert
space representation of these using second quantized many-body ladder operators is provided here. Third, I apply
the perpendicular and parallel entanglement operators to quantum measurement and attempt to show how these
are natural choices for representing quantum maps and quantum propositions. Two features are highlighted: (1)
preservation of information in quantum measurement intrinsic to quantum maps, and (2) quantum propositional
representations of all accessible information in a quantum system for efficient retrieval in accord with Zielinger’s
principle.4

2. GENERALIZED JOINT QUANTUM LOGIC

2.1. Joint ladder operators

Let us consider entangling two quantum bits, say |qα〉 and |qβ〉, in a system comprised of Q ≥ 2 qubits and where
the integers α and β ∈ [1, Q] are not equal, α 6= β. Joint pair creation and annihilation operators,5 act on a
qubit pair

a†αβ ≡
1√
2

(
a†α − e−iξa

†
β

)
, aαβ ≡

1√
2

(
aα − eiξaβ

)
, (1)

and are defined in terms of the fermionic ladder operators a†α and aα. In turn, these may be represented
as the tensor product of Pauli matrices: α − 1 number of σz matrices, one singleton a = 1

2

(
σx + iσy

)
or

a† = 1
2

(
σx − iσy

)
, followed by Q− α number of ones:

aα =

(
α−1⊗
k=1

σz

)
⊗ a⊗

(
Q⊗

k′=α+1

12

)
, a†α =

(
α−1⊗
k=1

σz

)
⊗ a†⊗

(
Q⊗

k′=α+1

12

)
. (2)

(2) satisfy the anti-commutation relations

{aα, a†β} = δαβ , {aα, aβ} = 0, {a†α, a
†
β} = 0. (3)

The joint number operator corresponding to (1) is

nαβ ≡ a†αβaαβ =
1
2

(
nα + nβ − eiξa†αaβ − e−iξa

†
βaα

)
, (4)

where the usual qubit number operator is nα ≡ a†αaα. Finally, I introduce an entanglement number operator
(Hamiltonian) with a simple idempotent form

εδαβ ≡ nαβ + (δ − 1)nαnβ , (5)

where δ is a boolean variable (0 for the bosonic case and 1 for the fermionic case). (5) acts on some state
| . . . qα . . . q′β . . . 〉, with a qubit of interest located at α and another at β.



2.2. Perpendicular and parallel entanglement operators
For convenience, I will use shorthand for writing a state specifying only two qubit locations as subscripts

|qq′〉αβ ≡ | . . . qα . . . q′β . . . 〉,

since the operators act on a qubit pair, regardless of the respective pair’s location within the system of Q qubits.
Then, the entangled “singlet” sub-state is

1√
2

(
|01〉 − |10〉

)
αβ

and the entangled “triplet” sub-states are

1√
2

(
|01〉+ |10〉

)
αβ

and
1√
2

(
|11〉 ± |00〉

)
αβ

.

I will refer to the ket |qq′〉αβ as perpendicular with respect to its constituent qubits |q〉α and |q′〉β when q 6= q′

and as parallel when q = q′. Example or perpendicular and parallel 2-qubit (Fock) states are depicted in Fig. 1.

|10〉αβ : q��
��

6
|1〉

|0〉 q��
��

-

|1〉

|0〉

|00〉αβ : q��
��

-

|1〉

|0〉 q��
��

-

|1〉

|0〉

αth qubit βth qubit

⊥

‖

Figure 1. Example of perpendicular and parallel 2-qubit sub-states. The perpendicular sub-state |10〉 (top pair) and the
parallel sub-state |00〉 (bottom pair) are depicted with qubits as unit vectors on the complex circle.

Neglecting normalization factors, the action of (5) on the entangled αβ sub-states is

εδ (|01〉 ± |10〉)αβ =
1
2

(1∓ e−iξ)|01〉 − 1
2
(
1± eiξ

)
|10〉

εδ(|11〉 ± |00〉)αβ = δ|11〉. (6)

As a matter of convention, the αβ indices are moved from εδ to the state ket upon which the entanglement number
operator acts and also the αβ indices are not repeated on the R.H.S. of an equation if avoiding redundancy does
not introduce any ambiguity.

ξ = π and ξ = 0 are two special cases of interest. For convenience, let us denote these particular angles with
plus and minus symbols (+ = π and − = 0):

n±αβ ≡
1
2

(
a†α ± a

†
β

)(
aα ± aβ

)
, ε±δαβ = n±αβ + (δ − 1)nαnβ . (3’)

(3’) measures entanglement between qubits that are perpendicularly oriented in the 4-dimensional αβ subspace
of the 2Q-dimensional Hilbert space.

The sum of these perpendicular joint number operators is related to the qubit number operators as follows:

ε+δαβ + ε−δαβ = nα + nβ + 2(δ − 1)nαnβ . (7)

Suppressing indices, ε−δ has unity eigenvalue for the singlet state:

ε−δ (|01〉 − |10〉)αβ = |01〉 − |10〉
ε−δ (|01〉+ |10〉)αβ = 0

(8a)

ε−δ (|11〉 ± |00〉)αβ = δ|11〉, (8b)



but it has eigenvalue 0 for the triplet state, |01〉+ |10〉. Conversely, ε+δ has a zero eigenvalue for the singlet state:

ε+δ (|01〉 − |10〉)αβ = 0

ε+δ (|01〉+ |10〉)αβ = |01〉+ |10〉
(9a)

ε+δ (|11〉 ± |00〉)αβ = δ|11〉, (9b)

but it has eigenvalue 1 for the first triplet state.

To avoid any contribution arising from parallel entanglement from the triplet states in (8b) and (9b), we
must take δ = 0 in the hermitian operator (3’) to ensure we count only one bit of perpendicular pairwise
entanglement. Hence, denoting the pairwise entangled states with qubits of interest at locations α and β as
ψ±⊥ ≡ | . . . 0 . . . 1 . . . 〉 ± | . . . 1 . . . 0 . . . 〉, then these entangled states are eigenvectors of the δ = 0 joint number
operators (with unit eigenvalue): ε±0 ψ

±
⊥ = ψ±⊥ . The parallel joint operators can be defined in terms of the

perpendicular joint operators as

ε±0 ≡
1
2

(
1∓ ε+0 ± ε

−
0 ± {σxσx, ε

∓
1 }
)
, (10a)

suppressing qubit indices and σxσx ≡ σ(α)
x ⊗ σ(β)

x is short-hand for a tensor product. The sum

ε+0 + ε−0 + ε+
0 + ε−0 = 1 (11)

is as fundamental to two-qubit sub-states as the singleton number operator identity n + n̄ = 1 is to one qubit
states.

If the other pairwise entangled states with qubits at α and β are ψ±‖ ≡ | . . . 0 . . . 0 . . . 〉 ± | . . . 1 . . . 1 . . . 〉, then
these entangled states are eigenvectors of the joint number operators (with unit eigenvalue): ε±0 ψ

±
‖ = ψ±‖ . In

summary, the operators ε±0 and ε±0 are number operators for the Bell states.

2.3. Quantum gates

A consistent framework for dealing with quantum logic gates using the quantum circuit model of quantum
computation was introduced over a dozen years ago by DiVincenzo et al.6 Here we consider an analytical
approach to quantum computation based on generalized second quantized operators which is also practical for
numerical implementations. Let us now consider quantum gates that induce entangled states from previously
independent qubits. The basic approach employs a conservative quantum logic gate generated by (5)

eiϑ εδ = 1 + (eiϑ − 1)εδ. (12)

Thus, a similarity transformation of the number operators nα and nβ yields generalized joint number operators

n′α(ϑ, ξ) ≡ eiϑ εδαβnαe
−iϑ εδαβ = cos2

(
ϑ

2

)
nα + sin2

(
ϑ

2

)
nβ +

i sinϑ
2

(
eiξa†αaβ − e−iξa

†
βaα

)
(13a)

n′β(ϑ, ξ) ≡ eiϑ εδαβnβe
−iϑ εδαβ = sin2

(
ϑ

2

)
nα + cos2

(
ϑ

2

)
nβ −

i sinϑ
2

(
eiξa†αaβ − e−iξa

†
βaα

)
. (13b)

Thus the generalized joint number operators rotate continuously from nα(0, ξ) = nα and nβ(0, ξ) = nβ as ϑ
ranges from 0 to π to the number operators nα(π, ξ) = nβ and nβ(π, ξ) = nα. That information is conserved by
this similarity transformation is readily expressed by the number conservation identity obtained by adding (13a)
and (13b)

n′α(ϑ, ξ) + n′β(ϑ, ξ) = nα + nβ . (14)

The L.H.S. counts the information in its quantum mechanical (entangled) form whereas the R.H.S. counts
information in its classical form (separable) form. In any case, the total information content in the αβ sub-space
is conserved.



Comparing the generalized joint number operator (13a) to the joint number operator (4), we obtain the useful
identity in the special case of maximal entanglement

nα

(π
2
, ξ +

π

2

)
= nβ

(π
2
, ξ − π

2

)
=

1
2

(
nα + nβ − eiξa†αaβ − e−iξa

†
βaα

)
= nαβ . (15)

The tensor product nαnβ is invariant under similarity transformation

nαnβ = eiϑ εδαβ nαnβ e
−iϑ εδαβ . (16)

Let us also construct generalized joint ladder operators

c′α = eiϑ εδαβ cα e
−iϑ εδαβ c′†α = eiϑ εδαβ c†α e

−iϑ εδαβ . (17)

After some algebraic manipulation these can be expressed explicitly just in terms of the original ladder operators

c′α = e−i
ϑ
2

[
cos
(
ϑ

2

)
aα + ieiξ sin

(
ϑ

2

)
aβ

]
, c′†α = ei

θ
2

[
cos
(
ϑ

2

)
a†α − ie−iξ sin

(
ϑ

2

)
a†β

]
. (18)

The product of the generalized joint ladder operators (2.3)

n′α = c′†αc
′
α (19)

yields the generalized joint number operator (13a) as expected.

2.4. Special case
An important special case of (12) for half angles ξ = π

2 and ϑ = π
2 is an anti-symmetric square root of swap gate

Uδ ≡ ei
π
2 εδ,π/2 . (20)

Using (20) as a similarity transformation, we find the identities

ε+δαβ = Uδ
†nβ Uδ and ε−δαβ = Uδ

†nα Uδ. (21)

ε1+
αβ = Uδ

†nβ Uδ and ε1−αβ = Uδ
†nα Uδ. (22)

(22) precisely shows the type of perpendicular pairwise entanglement induced by (20).

2.5. Generalized interchanger
Noting that the joint number operator is related to the generalized joint number operator according to (15) and
also noting that nαnβ is invariant under the similarity transformation (16), we can also write a generalization of
(5) as follows

ε′δαβ ≡ eiϑ εδαβ [nα + (δ − 1)nαnβ ] e−iϑ εδαβ (23a)

(13a)
= cos2

(
ϑ

2

)
nα + sin2

(
ϑ

2

)
nβ +

i sinϑ
2

(
eiξa†αaβ − e−iξa

†
βaα

)
+ (δ − 1)nαnβ . (23b)

Now as a last step consider the special case when ξ = 0 so that (23) reduces to a generator of the generalized
interchanger

n′δαβ ≡
[
ε′δαβ

]
ξ=0

= cos2

(
ϑ

2

)
nα + sin2

(
ϑ

2

)
nβ +

i sinϑ
2

(
a†αaβ − a

†
βaα

)
+ (δ − 1)nαnβ . (24)

The generalized interchanger is then∗

χ′δαβ = (−1)n
′
δαβ = 1− 2n′δαβ . (25)

In the next section the generalized interchanger is related to quite well known operators from knot theory.

∗I first found this particular interchanger gate, with ϑ = π, in the context of Hubbard model simulation (δ = 1 fermionic
case) with Hugh Pendleton at Brandeis in 1991 and then multiphase condensed matter simulation7 (δ = 0 bosonic case)
with Norman Margolus at MIT in 1994.



3. RELATION TO KNOT THEORY

3.1. Temperley-Lieb algebra

Scaling the idempotent generators, the generalized joint number operators (24), derived in the last section by a
real number d, we define Q− 1 bosonic number operators with the following form (i.e. for the case δ = 0)

U1 = dn′012, U2 = dn′023, · · · (26)

over a system of Q qubits (each qubit is like a strand). After some algebraic manipulations, one finds that

Uα Uα±1 Uα =
d2

4
sin2ϑ Uα, (27)

for α = 1, 2, . . . , Q− 1. The Temperley-Lieb algebra is defined by

[Uα, Uβ ] = 0, for |α− β| > 1 (28a)
Uα Uα±1 Uα = Uα, for 1 ≤ α < Q (28b)

U2
α = dUα. (28c)

(28a) stating that Uα and Uβ are commuting operators, when the separation distance |α−β| is greater than one,
follows directly from their definition (26) because the pair of qubits affected by Uα are an entirely different pair
of qubits from the pair affected by Uβ in this case. (28b) follows immediately from (27) provided the scaling
constant is chosen to be

d = ± 2 cscϑ, (29)

which implies that 2 ≤ |d| < ∞. Finally, (28c) follows directly from (26) since the n′δαβ that appears in (24) is
idempotent: (n′δαβ)2 = n′δαβ , for all values of δ, α, and β. Therefore, we see that the Temperley-Lieb algebra
can be straightforwardly represented by generalized joint number operators that generate in a tunable fashion,
parameterized by the angle ϑ, perpendicular pairwise entanglement within a quantum state.

Now if one takes
d = −A2 −A−2. (30)

and does a calculation akin to (27), but strictly in terms of the variable A, then one finds that

Uα Uα±1 Uα − Uα =
A2 +A−2

8

[
6−A4 −A−4 + (A2 +A−2)2 cos 2ϑ

]
Uα. (31)

The R.H.S. must vanish for this to be equivalent to (28b). Thus, one must solve

6−A4 −A−4 + (A2 +A−2)2 cos 2ϑ = 0. (32)

This 8th order polynomial equation has the following 4 real and 4 imaginary solutions, respectively

A = ±
[
cot2

(
ϑ

2

)]± 1
4

, A = ± i
[
cot2

(
ϑ

2

)]± 1
4

. (33)

Inserting these solutions into (30), d = −2 cscϑ for the real solutions and d = 2 cscϑ for the imaginary ones, so
this set of solutions is consistent with (29). Thus, in our case, we see that Jones t parameter can be parameterized
by ϑ as follows

t ≡ A−4 = tan±2

(
ϑ

2

)
. (34)

The Uα satisfying the Temperley-Lieb algebra are used for representing the Kauffman diagrammatic decompo-
sitions of braids.



3.2. Braid group

A representation of the braid group BQ can be formed from the generalized joint number operators as we did
for the Temperley-Lieb algebra representation in the previous section

bα = A1Q +A−1 dn′δα,α+1, (35)

for α = 1, 2, . . . , Q − 1 where the real number A is related to the scaling parameter d by (30). Notice that in
(35) it is not necessary to restrict the value of the variable δ and, therefore, for the special case of A = 1, (35) is
a conservative quantum gate, exactly the generalized interchanger (25). Furthermore, one finds that

bαbα+1bα − bα+1bαbα+1 = (1− δ)δ cosϑ csc6

(
ϑ

2

)
tan

3
2

(
ϑ

2

)
. (36)

Since δ is boolean, the R.H.S. vanishes for both fermionic and bosonic braid operators. Thus, we have the
following defining algebra for the braid group

[ bα, bβ ] = 0, for |α− β| > 1 (37a)
bα bα+1 bα = bα+1bαbα+1, for 1 ≤ α < Q. (37b)

In general the braid operators (35) are not unitary; they are unitary only for special values of A. However,
scaled by the variable A they can be formally related to conservative quantum logic gates generated by n′δα,α+1

Υδα,α+1(z) = ez n
′
δα,α+1 = 1Q + (ez − 1)n′δα,α+1. (38a)

From (35) we see that
bα
A

(30)
= 1Q + (−A−4 − 1)n′δα,α+1. (38b)

Thus, equating these expressions, we find
bα = AΥδα,α+1(z) (39)

provided ez = −A−4, or

z
(34)
= iπ + ln t. (40)

Inserting this value of z back into (39), we see that in general the braid operator can be expressed as

bα
(38a)
= Ae(iπ+ln t)n′δα,α+1 = A (−t)n

′
δα,α+1 . (41)

Comparing this expression with the form of the generalized interchanger (25), one sees how the braid operator
is similar to an interchanger gate.

3.3. Reparameterization

Starting with the form of the generalized joint interchanger with the form (24), mapping between the Temperley-
Lieb algebra and the braid group requires one to restrict the possible values of d according to (29), and in turn
the possible values of A according to (33).

In this section, we will consider an alternate parameterization of the generalized joint interchanger by mapping
the angle ϑ as follows

ϑ→ arccos(sec 2ϑ). (42)

With this parameterization n′δα,α+1 maps over to a new interchanger that I will denote here by Eδα. That is,
(24) takes the following form

Eδα =
1
2

[
1 + i tan(2ϑ)

]
nα +

1
2

[
1− i tan(2ϑ)

]
nα+1 +

i sec(2ϑ)
2

(
a†αaα+1 − a†α+1aα

)
+ (δ − 1)nαnα+1.

(43)



The new interchanger retains the property of idempotency and, for δ = 0, interleavency as well

E2
δα = Eδα (44a)

E0αE0α±1E0α =
1

4 cos2(2ϑ)
E0α. (44b)

In the new parameterization, the scaling parameter (29) is now

d = ∓ 2 cos(2ϑ). (45)

One may consider a reparameterized version of (35) too,

bα = A1Q +A−1 d Eδα, (46)

as the starting operational definition of the braid operators. There are two possible constraints that we can
impose on the inverse braid operator (35), and they are not necessarily complementary. In the first case, if we
require bα to be unitary, then we have the constraint that the inverse is the adjoint (transpose conjugate)

b−1
α = b†α. (47)

In the second case, as is typically done in the literature on the braid group, one imposes the following constraint

b−1
α = A−1 1Q +Ad Eδα. (48)

One the one hand, considering the latter constraint (48) first, we have

bα bα
−1 (46)

= 1Q + (d Eδα)2 +
(
A−2 +A2

)
d Eδα

(44a)
= 1Q, (49)

provided
d = −A2 −A−2. (50)

This implies the value of A. To be consistent with (45), one chooses A to be complex, A =
√
±1 eiϑ. Inserting

this value into (41), we see that the braid operator takes the form

bα = (±1)
1
2 eiϑei(π−4ϑ)Eδα . (51)

The reason for choosing the reparametrization (42) is to cast the braid operator in what appears to be strictly
unitary form. Yet, on the other hand, considering the former case (47), the unitarity of bα depends on the
hermiticity of Eδα. Note that (43) is hermitian with respect to conjugation i→ −i, aα → a†α, and a†α → aα, and
transposition of indices α↔ α+ 1. However, the transpose of the braid group operator, bTα, does not follow from
the transposition of its α indices. If we choose a complete set of basis states, and represents bα in this basis,
then the resulting matrix transpose (exchanging rows and columns) is an operation that is different than the
transposition of its α indices. Thus, bα is not manifestly unitary as one would hope.

Unfortunately, the change of variables (42) causes Eδα not to be hermitian for arbitrary ϑ even while the
generalized interchanger (24) from which it derives is strictly hermitian. It is only in the special case of ϑ = π,
and multiples thereof, that Eδα both satisfies the Temperley-Lieb algebra (for d = −2) and is hermitian. And in
this special case Eδα reduces to the original interchanger.† We arrive back to where we started.
†As quick algebraic check, expanding (51) using the exponential series, making use of (44a), and collecting terms gives

bα = (±1)
1
2

h
eiϑ 1Q − 2 e−iϑ cos(2ϑ) Eδα

i
(52a)

(45)
= (±1)

1
2

h
eiϑ 1Q ± e−iϑd Eδα

i
, (52b)

which is just our starting point expression (46), with A−1 = ±(±1)
1
2 e−iϑ as expected. Modulo the phase factor (±1)

1
2 ,

(52a) has a form similar to the elementary unitary gates generated by the degree 2 representation of the Temperley-Lieb
algebra given by Kauffman et al. in the 3-stranded quantum algorithm for the Jones Polynomial.3



Remarkably, however, a hermitian joint number operators satisfying TLQ over a system of Q qubits, for a set
of angles ϑ ∈ (0, π2 ), does exist for a map such as: ϑ→ 2 arccos

(
− tan ϑ

2

)
. A complementary pair of interchanger

generators which are hermitian for the range of angles 0 < ϑ < π
2 are the following

Eδα = tan2ϑ

2
nα + cosϑ sec2ϑ

2
nβ + i d−1

(
a†αaβ − a

†
βaα

)
+ (δ − 1)nαnβ (53a)

Eδβ = cosϑ sec2ϑ

2
nα + tan2ϑ

2
nβ − i d−1

(
a†αaβ − a

†
βaα

)
+ (δ − 1)nαnβ , (53b)

where A = i
(

secϑ−1
2

) 1
4 and d = −A2−A−2 = secϑ+1√

2
√

secϑ−1
, for 2 ≤ d <∞. The resulting Temperley-Lieb algebra,

that is also hermitian, is the following

E2
δα = Eδα, α = 1, 2, . . . , Q− 1 (54a)

E0αE0α±1E0α = d−2E0α (54b)
E0αE0β = E0βE0α, |α− β| ≥ 2 (54c)

E†δα = Eδα, 0 < ϑ <
π

2
. (54d)

Other parameterizations are possible. Information conservation in this case is Eδα+Eδβ = nα+nβ+2(δ−1)nα nβ .

4. QUANTUM MEASUREMENT

4.1. Occupation probabilities
Suppose |qα〉 and |qβ〉 in a many-body quantum system are initialized such that

a ≡ 〈ψ|nα|ψ〉 and b ≡ 〈ψ|nβ |ψ〉, (55)

with the separable state |ψ〉 ≡ |qαqβ〉. Following unitary evolution

|ψ′〉 = Uδ|ψ〉, (56)

let us denote the measurement outputs as a′ ≡ 〈ψ′|nα|ψ′〉 and b′ ≡ 〈ψ′|nβ |ψ′〉. Since the |ψ′〉 is entangled,
a measurement that determines the value of a′ (yielding one classical bit) likewise determines b′. Also, the
conservation of the probabilities a and b is ensured because (20) is a conservative quantum logic gate. Let us
now consider a process of extracting a single bit upon measurement, such that

a′ + b′ = a+ b. (57)

This is a statement about quantum measurement that is the mesoscopic representation of (14).

4.2. Quantum maps
A projective map, associated with quantum measurement of qubits α and β, going from Hilbert space to kinetic
space is

P : |ψ〉 −→
(
〈ψ|nβ |ψ〉
〈ψ|nα|ψ〉

)
. (58)

Oppositely, a tensor product operation is an injective map from kinetic space to Hilbert space, associated with
the initial preparation of independent qubits:

I :
(
a
b

)
−→

(√
1− a√
a

)
⊗
(√

1− b√
b

)
. (59)

The quantum evolution that entails state preparation, an entangling operation, and quantum measurement can

be seen as a kinetic space transformation of probabilities8

(
a′

b′

)
= P Uδ I

(
a
b

)
, which can be written as the map

C̃: (
a
b

)
→
(
a′

b′

)
(22)
=
(
〈qαqβ |ε1+

αβ |qαqβ〉
〈qαqβ |ε1−αβ |qαqβ〉

)
. (60)



Entanglement drives the mesoscopic quantum dynamics, leading to a governing quantum Boltzmann equation.
Can we invert this map to retrieve the incoming probabilities (a, b) only from the outgoing ones (a′, b′)? Inverting
(60) is not possible, because the map (i.e. unitary gate (20) plus one measurement) induces an irreversible
transition between kinetic space points. Yet, it is informative to see exactly where the inversion breaks down.

The first step towards this end is to write (60) explicitly in terms of the kinetic space variables.9 The map
C̃ is: (

a
b

)
→
(
a′

b′

)
=
(
ρ
2 +

√
(a− a2)(b− b2)

ρ
2 −

√
(a− a2)(b− b2)

)
, (61)

where ρ ≡ a+ b is the number density. We will define the number velocity as follows:

v ≡ a′ − b′ = 2
√

(a− a2)(b− b2). (62)

The number density and number velocity are joint conjugate variables to the output variables. Squaring (62)
gives v2

4 = (a−a2)(b−b2) = ab(1−ρ)+(ab)2. The quantity ab satisfies the quadratic eq. (ab)2−(ρ−1)ab− v2

4 = 0,
with the single physical solution

ab =
ρ− 1 +

√
(ρ− 1)2 + v2

2
. (63)

We had to take the positive root because ab ≥ 0. Finally, writing the number density as ρ = a + (ab)
a , we can

solve for the input value a in terms of the known output quantities ρ and (ab). We have another quadratic
equation a2 − ρ a+ (ab) = 0, which has solution pairs

a, b =
ρ±

√
ρ2 − 4(ab)

2
or b, a =

ρ∓
√
ρ2 − 4(ab)

2
. (64)

To disambiguate the possible orderings, we need one additional classical bit. Remarkably, we have found the bit
that was lost upon measurement. It is associated with the ordering of (a, b). Thus, the map (61) is irreversible,
as we had anticipated.

C−1[S2] C[S2]

Figure 2. Information preserving map C and C−1, both acting on a Riemann sphere S2 of configurations. (Left) The
incoming preimage C−1[{a′, b′}] = {a, b} and c = c′, with {a′, b′, c′} ∈ S2, is topologically a torus with four cusps. (Right)
The outgoing image {a′, b′} = C[{a, b}] and c′ = c, with {a, b, c} ∈ S2, is topologically a doubly pinched sphere.

It is possible to generalize (61) so this bit of ordering is not lost. Just encode the ordering of the input (a, b)
in the output (a′, b′). This is accomplished generalizing (61) with the following nonlinear reversible map C:(

a
b

)
→
(
a′

b′

)
= σΘ(b−a)

x

(
ρ
2 −

√
(a− a2)(b− b2)

ρ
2 +

√
(a− a2)(b− b2)

)
, (65)

where the unit step function is Θ(x) = 1, for x ≥ 0, and Θ(x) = 0, for x < 0. Here is the inverse map C−1:(
a′

b′

)
→
(
a
b

)
=
σ

Θ(b′−a′)
x

2

(
ρ+

√
ρ2 − 4(ab)

ρ−
√
ρ2 − 4(ab)

)
, (66)



which has the property C−1C = 1. The quantity (ab) is computed from (a′, b′) according to (63), since ρ = a′+ b′

and v = a′ − b′. The maps C and C−1 are topologically expressed in Fig. 2 as a one-to-one mapping between
distinct Riemann surfaces

torus with cusps C
−1

←− sphere C−→ doubly pinched sphere.

The unit step Θ(b − a) = 0, 1 encodes a single bit. (65) is a type II quantum map8 that conserves and
localizes information, but otherwise indistinguishable from coherent evolution followed by state demolition. The
term localize denotes an intrinsic information-conserving class of wave function collapse without uncertainty in
the ordering of the kinetic variables. The distinction between ordinary projective measurement and extraordinary
reversible localization is quantified by the transference of one bit—a rather peculiar nonlinear quantum operation
that induces state demolition while conserving all kinetic-space information in the quantum state.

4.3. Quantum propositions

It is possible to identify entangled states using either classical propositions or quantum propositions.4 Here we
consider the latter. The eigenvalues of the sum of two joint operators are equivalent to the true (1) or false (0)
value of a proposition. Consider Q = 3 an as example

ε+12 + ε−12 → (q1q2 6= q1q2) or (q2q3 6= q2q3),

ε+
12 + ε−12 → (q1 = q2), ε+

23 + ε−23 → (q2 = q3),
(67)

worked out in Table 1 for maximally entangled states. Casting propositions such as those in (67) with joint
operators determines (classically multivalued) properties in one measurement. In a system of size Q, there are
only Q classical number operators while there are 2Q(Q − 1) joint operators. In general, using entanglement
number operators in lieu of usual number operators offer more ways to express a particular propositional value.
This is the basis of the remarkable efficiency of quantum versus classical computation.10 Pathways faster than
the classical pathways are the interesting ones of course.

Entangled state Propositions Values
(ε+12 + ε−12) (ε+12 + ε−12) (ε+23 + ε−23)

(q1q2 6= q1q2) (q1 = q2) (q2 = q3)
|+ ++〉+ | − −−〉 0 1 1 011 = 3
|+ +−〉+ | − −+〉 0 1 0 010 = 2
|+−+〉+ | −+−〉 0 0 0 000 = 0
|+−−〉+ | −++〉 0 0 1 001 = 1
|+ ++〉 − | − −−〉 1 1 1 111 = 7
|+ +−〉 − | − −+〉 1 1 0 110 = 6
|+−+〉 − | −+−〉 1 0 0 100 = 4
|+−−〉 − | −++〉 1 0 1 101 = 5

Table 1. Eight maximally entangled states in a Q = 3 system. Fock state ordering is |q1q2q3〉, with the 1st qubit is on
the left and the last on the right. The propositions are cast in terms of joint operators to identify each entangled state.

5. CONCLUSION

In the late 1940’s second quantized ladder operators (quantum particle creation and operators) were originally
developed to quantize field theories in momentum space. Their uses quickly expanded within the physics com-
munity, with a primary application to condensed matter systems, where there are a plethora of applications.
Quantum information theory is a relatively new entrant in theoretical physics with an entirely new lexicon for
understanding how information is created, transferred, and retrieved from quantum system. The application of
second quantized ladder operators in quantum information theory is a relatively recent development—the new



informational paradigm provides impetus to retool second quantized ladder technology. So, quantum information
not only provides a new application for this tried and true toolset but provides a motivation to upgrade it as
well. Therefore, I have introduced various generalized second quantized operators, including generalized joint
ladder operators, a generalized joint number operator, and entanglement operators. Some applications include,
inter alia, representing the Temperley-Lieb algebra and related braid group in terms of these generalized second
quantized operators. The application to knot theory is manifest. And the application to quantum computational
physics is also manifest. Some aspects associated with quantum measurement were briefly treated.

Now a final remark on quantum dynamics: decoherence is sufficient to explain macroscopic dissipation. Yet,
in its purest form, quantum dynamics conserve information: decoherence can be modeled as a succession of
projections of the state of pairs of entangled particles whereby the lost degrees of freedom in the Hilbert space
amplitudes are precisely gained in the orderings of the degrees of freedom in the affected values of the kinetic
variables (probabilities) following the projection. Joint information is transfered, not absolutely lost. A simple
measurement archetype was offered: one joint bit extracted from the destruction of pairwise entanglement is
inserted in the ordering of two affected kinetic variables. This has direct application to reversible simulations
of quantum processes driven by the quantum Boltzmann equation, even when the collision hierachy is cutoff to
only handle local entanglement. The relevant application is to the quantum computation of nonlinear physical
dynamics, viz., mesoscopic quantum simulation that respects detailed-balance and Onsager reciprocity relations.
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