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The kinetic lattice gas is an optimal model of a vast many-particle system (such as a fluid) with
complicated particle-particle interactions and irregular boundary conditions. With it the fluid dy-
namicist can achieve higher nonlinearity (measured by Reynolds number), unconditional stability
and accuracy, with less memory and processor time than with other models of turbulence for sit-
uations with tortuous boundaries. For an engineer, it is simple to code, runs perfectly on parallel
supercomputers, and is suited to a plethora of computational physics applications. As demonstrated
here, it is a competitive alternative to large eddy simulations with Smagorinsky sub-grid closure.
To theorists and experimentalist in quantum information science, its kinetic transport equation is
a special case of the quantum dynamics, particularly governing a parallel array of quantum pro-
cessors, a type-II quantum computer architecture. Presented are turbulent fluid simulations using
the kinetic lattice gas model carried out on the supercomputer Babbage. As an illustration of the
efficiency of the lattice model, presented is a discovery of a universal range in the morphological
evolution of the laminar-to-turbulent flow transition: the breaking subrange.
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I. INTRODUCTION

In the defense community there are a plethora of
neutral-fluid flows problems, particularly flows by regions
with non-trivial spatial boundaries, such around an air-
craft fuselage or a ship hull, through a jet engine com-
partment, or over the Earth’s surface. While analyti-
cal solutions to such problems remain elusive and gen-
erally intractable, today they are within the reach of
the computational physicist. To tackle such problems,
practitioners usually resort to direct numerical simula-
tion methods, yet here the amount of computer memory
and processing time grows faster that the number of de-
sired computed field points. Even in cases with simple
or periodic boundaries, where more efficient numerical
representations are available (such as a psuedo spectral
approach pioneered by G.I. Taylor in the 1930’s and S.A.
Orszag et al. in the 1970’s [1]), the scaling of computer
resources with grid size is daunting. This computational
complexity has translated into significant annual costs to
defense department high performance computing offices
purchasing large numbers of processing elements (typi-
cally thousands or ten of thousands), configured in mas-
sive parallel computing arrays. But this cost, increasing
year after year, has been borne so engineers can solve mis-
sion critical fluid problems, perpetually requiring higher
resolution grids and more accurate and faithful simula-
tions. For example, high resolution flow simulations are
vital to aeronautical engineers designing the shape of ad-
vanced fighter jets or unmanned aerial vehicles or sub-
marines to economize on fuel consumption and minimize
maneuvering instabilities and wakes, to propulsion engi-
neers designing nozzle and flow control orifices to max-
imize thrust, or to meteorologists trying to understand

intermittent turbulence induced in the upper atmosphere
under the jet stream to maximize laser propagation from
airborne platforms. Yet to the theoretical physicist, the
situation is even more dire: the prediction of any aspects
of turbulence (beyond Kolmogorov’s 1941 universality
hypothesis), using advanced statistical methods and per-
turbation methods, borrowed from triumphant quantum
field theory and statistical mechanics, remains the oldest
and most prominent of classical grand challenge prob-
lems, open now for over 150 years.

This dire situation arises because, even in the macro-
scopic limit, strong correlations and feedback mecha-
nisms between large scale and small scale flow struc-
tures, over many decades of spatial separation, dominate
the overall flow evolution. The clearest high level pic-
ture capturing the essential physics of this problem, with
restrictioned attention to divergence free and low Mach
number flows, are the incompressible Navier-Stokes equa-
tions. The strong correlation between disparate scales is
captured by the extremely simple non-local convective
derivative (the second order nonlinearity in the velocity
field).

II. LAMINAR TO TURBULENT FLOW
TRANSITION

The lattice model now affords a deep insight into the
origin and essential inner workings of free shear turbu-
lence. This is a kinetic lattice gas model, the clearest
low level picture correctly capturing the essential physics
and hydrodynamics of the problem. As the well known
Ising lattice gas model is fundamental to a statistical me-
chanics understanding of the essential physics of ferro-
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FIG. 1: Supercomputer simulation of Navier-Stokes turbulence.
Surface of constant vorticity in turbulent flow, showing entangled
vortex tubes (top) and anisotropic flow in the breaking subrange
(bottom). The dot product of the velocity and vorticity fields are
displayed in the red-blue color coding. The bottom image is a
zoomed view of at t = 5K∆t time step shown if Fig. 2, where the
vertical white line is one edge of the cubical simulation grid. Long
vortex tendrils are easily seen. Fig. 1 shows the fastest executing
code for computational fluid dynamics simulations of turbulence
to date. This was computed on the newest defense department
supercomputer, Babbage, located at the Naval Oceanographic Of-
fice MSRC at the Stennis Space Center in Mississippi, through a
Capability Application Program (CAP) II grant. Also tested were
new sub-grid models of turbulence, using lattice Boltzmann equa-
tion techniques, an entropic method and a Smagorinsky closure
method. These codes are close cousins to quantum algorithms for
aerodynamics. Our CAP II simulations used over one million hours,
using a dedicated block of thousands of high performance proces-
sors over the period of four weeks, generating terabytes of data per
day. These large-scale simulations offer a better understanding of
the morphological evolution and structural development of turbu-
lence in fluids, but they also give a preview of the kind of numerical
output to be available from future quantum computers.

FIG. 2: Surfaces of constant enstrophy (E = 1
2

R
dV |!ω|2 where

!ω = ∇ × !u) illustrating an incompressible fluid’s morphological
evolution from t = 0 up to t = 7, 000∆t iterations, in time steps
of 1, 000∆t on a cubical cartesian grid of size L = 512∆x. Surface
coloring uses !u · !ω (red equals -1 and blue 1). This 3+1 dimen-
sional turbulent neutral fluid simulation run was on the newest
defense department supercomputer, Babbage, using the entropic
lattice Boltzmann equation with 15-body particle-particle collisions
(ELB-Q15 model) computed at every lattice site at each time step.
At each site, local relaxation of the single-particle probability dis-
tribution a desired equilibrium function, represented as a low Mach
number polynomial expansion. The initial flow is a Kida and
Murakami profile [2] with a super cell size set to L◦ = 512∆x,
the total grid size. So the flow configurations within all 8 oc-
tants of the large grid are initially identical. The characteristic
flow speed is u◦ = 0.07071∆x

∆t . The collisional inversion parame-
ter is set to β = 0.99592, corresponding to a kinematic viscosity

of ν◦ = 6.8 × 10−4 ∆x2

∆t , for α = 2. The Reynolds number is

Re = L◦u◦
ν◦

= 53, 024. The resulting turbulence is not fully re-

solved down to the dissipation scale, which in the model is the cell

size ∆x. Do do this, set L = Re
3
4 ∼ 2, 078∆x. So the flow is under

resolved by about a factor of 4.
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magnetism and the order-disorder phase transition, the
kinetic lattice gas model is fundamental to a dynamical
mechanics understanding of fluids and the laminar-to-
turbulent flow transition. See Appendix A for a brief
mathematical overview of the model.
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FIG. 3: Plot of enstrophy versus time (smooth black curve) show-
ing three stages in the morphological evolution: (1) vortex stretch-
ing range (t < 3, 200∆t), (2) breaking subrange (3, 200 < t <
9, 000∆t), and (3) inertial subrange (t > 9, 000∆t). The enstrophy
is normalized so that at t = 0 it is unity. The isovalues used to
visualize the 8 images in Fig. 2 are shown (black squares). Stage
1: The initial exponential increase (blue curve) of enstrophy des-
ignates the initial vortex stretching range with characteristic lam-
inar flow. There is excellent agreement between the analytical fit
(blue curve) and the enstrophy data (black curve). Stage 2: The
time derivative of the enstrophy curve (jagged black curve) is also
plotted. The time period of generally negative slope of the enstro-
phy derivative (gray shaded region) is here termed the breaking
subrange, where large scale anisotropic ordering of turbulence oc-
curs and intermittently breaks down over time. The first major
breaking point occurs at about t = 3, 200∆t (vertical red line) and
subsequent intermediate avalanches occur at about t = 5, 100∆t
and t = 6, 750∆t (thin vertical red lines), respectively. Stage
3: The final exponential decrease of enstrophy (red curve) desig-
nates the inertial subrange where the homogeneous and isotropic
“small scale” turbulent flow morphology, with characteristic entan-
gled vortex tubes, is organized in a spatially self-similar way. Here
the energy spectral density obeys the Kolmogorov universality hy-

pothesis, the famous k−
5
3 power law for energy cascade downward

to smaller scales. The onset of the inertial subrange occurs close to
t = 9, 000∆t (vertical blue line). Here the velocity probability dis-
tribution functions, for each component, are Gaussian (top inset)
and the vorticity probability distribution function approaches an
exponential (bottom inset). There is excellent agreement between
the analytical fit (blue curve) and the enstrophy data (black curve).
There exists a fourth stage of the morphology of turbulence at late
times (t > 14, 000∆t), not shown here, called the viscous subrange.

A new universal feature of the laminar-to-turbulent
transition becomes clear in high Reynolds number simu-
lations. Following an initial period of laminar flow with
vortex sheet stretching, and preceding the final inertial
subrange period of isotropic and homogeneous turbulent
flow with self-similar vortex tubes, there exists a well-
defined interim period, here termed the breaking sub-
range. The hypothesis is that this subrange manifests
self-organized criticality. The breaking subrange is dom-

inated by anisotropic and non-homogeneous turbulent
flow. Avalanches occur intermittently, where large coher-
ent spatial structures grow, become unstable under max-
imal shear, and subsequently break into isotropic and
homogeneous turbulence. These avalanches occur pro-
gressively in time across the entire space. See the bottom
image of Fig. 1 showing the kind of anisotropic turbulent
flow that occurs during an avalanche event, with young
vortex tendrils. The time rate of change of the enstrophy,
∂E
∂t , has a generally negatively sloped avalanche cascade,
with marked peaks, indicating the successive breaking
points, as shown in Fig. 3.

By carefully comparing the renderings in Fig. 2 to the
enstrophy plots in in Fig. 3, it is possible to see three dis-
tinct morphological stages of the flow: vortex stretching
range, breaking subrange, and the inertial subrange. The
morphological evolution transitions from (1) large vortex
sheets to (2) convoluted vortex sheets with virgin vortex
tendrils to (3) small entangled vortex tubes.

III. Q VERSUS S MODELS: CLOSURE OF
SUB-GRID EFFECTS

The continuum hydrodynamical equations are projec-
tions of the entropic lattice Boltzmann (ELB) equation,
a projection down from the Q× LD-dimensional kinetic
phase space on to a 4 × LD-dimensional hydrodynamic
null space 1. This projection recovers the Navier-Stokes
equations in the Chapman-Enskog limit. This has an
important consequence: there exist many “qubit” mod-
els (or Q models for short) with a different local sten-
cils (i.e. lattice vectors sets with different finite point
group symmetries and coordination number), which will
also recover the Navier-Stokes equations asymptotically
(continuous rotational symmetry).

ELB is ideal for large eddy simulation (LES) closures
since in LES one typically deals with mean strain rates
for modeling the eddy viscosity. These nonlocal fluid
calculations are immediately recovered from simple local
moments in ELB.

At this stage, the ELB runs are a validation of the
method and this is important because ELB is a crucial
precursor to a viable quantum lattice Boltzmann method
[3]. The good numerical agreement between the LES-LB
(lattice Boltzmann equation with sub-grid Smagorinsky
closure here referred to as an S model) and the basic ELB
Q models is encouraging. Now fully convinced of the va-
lidity of ELB, work to speed it up for present day super-
computer implementations is underway. But the most

1 A subset of all the eigenvectors in the Q-dimensional kinetic
space, have zero eigenvalues. These eigenvectors span the hy-
drodynamic null space. It is 4 dimensional because the kinetic
lattice gas model conserves probability (mass) and probability
flux along the spatially orthogonal directions (three components
of the momentum vector).



4

promising opportunity is to simply build a type-II quan-
tum computer [4, 5], which could far outstrip any classi-
cal supercomputers, for turbulence fluid simulations. In
the fullness of time, the ELB will outpace the LES-LB,
even without quantum computers.

There are a few reasons for this view. First, the kinetic
lattice gases obey detail balance while sub-grid closure
methods, such as the LES-LB, do not. And another ad-
vantage of the ELB over LES-LB is that ELB obeys the
second law of thermodynamics while LES-LB and other
LES methods do not necessarily obey the second law.
Third, in the LES-LB the strain tensor must be com-
puted at every site. With no-slip boundaries, computing
the strain tensor becomes problematic. In contrast, ELB
is purely local, so grid sites near boundaries are handled
as easily as sites far away from boundaries. All these are
important differences when the model is used for practi-
cal engineering grade applications.

IV. TIMINGS AND SCALING

Turbulent dynamics are easily solved since the under-
lying kinetic equation (A1) has only local algebraic non-
linearities in the macroscopic variables and simple linear
advection. At this mesoscopic level there are various ki-
netic lattices (Q=15, 19, or 27) with different lattice vec-
tors on a cubic lattice, which model the Navier-Stokes
equation to leading order in the Chapman-Enskog per-
turbative asymptotics.

With the CAP data obtained on Babbage, the effects
of the underlying lattice symmetry on the fluid turbu-
lence statistics (through autocorrelation tensors of veloc-
ity, vorticity, pdfs of vorticity, and the like) can be deter-
mined, but there is not have sufficient space to present
details here. The Q15 model seems to be the most effi-
cient model. An example output of this model is shown
in Fig. 2. Even on a relatively modest size 5123 grid, we
can achieve such a high degree of resolved nonlinearity
(Re=26,512) that the consequent isotropic turbulence at
the onset of the inertial subrange (at about t ∼ 9, 000∆t)
outstrips the ability to visualize the myriad vortex tubes.
Fig. 2 is just a test case. The sustained floating point
per seconds (MFLOPS/PE) we achieved are the best of
all scientific codes run, for example on the Earth Simu-
lator, attaining over 67% of peak performance on 4,800
processors. Achieving the world’s highest Reynolds num-
ber in the field of computational fluid dynamics should
also occur in the near future. The current tested code
on Babbage, on 1, 6003 grid with 2,048 processing ele-
ments, can achieve a Reynold’s number of Re=565,667.
Modeling atmospheric scale turbulence, in the range of
Re ∼ 106 is possible today, for the first time in the half
century long history of numerical digital computers ap-
plied to aerodynamics.

Some runs with these models–in particular the Q15,
Q19, Q27 and S27 models–have been completed. The
advantages of these lower Q models are reduced wall-

FIG. 4: TFlops/sec scaling of ELB-Q27 code on Babbage with
number of CPUs.

clock times with less memory demands. The nonlinear
convective derivatives of in the Navier-Stokes equation
are recovered from purely local moments of kinetic space
distribution function. This is the basic reason why ELB
scales so well with PEs: the algorithm consists of simple
local computations and streaming of information only to
near neighbor grid sites.

No. PEs GRID MODEL WALLCLOCK (s) GFlops/s per PE
2912 19503 ELB-Q27 7,554.7 2.17
2912 19503 ELB-Q19 5,602.7 2.24
2912 19503 ELB-Q15 4,798.4 2.05
2912 19503 LES-LB-S27 4,451.2 1.05

TABLE I: The gigaflops per second per processor element for
2912 CPU runs on a 1952× 1946× 1950 grid for four lattice
Boltzmann codes variants. The wallclock time is for 2,000∆t
(lattice time steps). A full turbulence simulation takes about
54,000 time steps.

During Phase I, investigating the scaling properties
of the Q27 code, over 6.3 tera flops per second on the
full 2912 processor elements available on Babbage was
achieved, see Fig. 4.

The LES-LB-S27 code, which no longer needs the so-
lution of an entropy constraint equation, has also been
tested in Phase I. It is less computationally intensive (due
to the avoidance of log-calls and the need for a Newton-
Raphson root finder at each spatial node and time itera-
tion) and shorter wallclock time than the ELB-Q27 code,
see Table I.

V. QUANTUM INFORMATION PROCESSING

Quantum information processing (QIP) and quantum
communications will be integral to the 21st century. For
many years, QIP has been included in the Developing
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FIG. 5: Shown here is a newsworthy achievement of a first quan-
tum information processor circuit to embody a qubit (left), a basic
device for storing quantum information, designed by Terry Orlando
of MIT and build at MIT Lincoln Laboratory at Hanscom AFB in
2000 [6, 7]. The circuit must be placed in a dilution refrigera-
tor. Air Force Office of Scientific Research (AFOSR) supported
novel quantum computing technology based on superconductive
electronics under the Quantum Computation for Physical Model-
ing (QCPM) theme, and this research has recently found follow-on
use. A superconducting wire loop with multiple Josephson junc-
tions forms a qubit and such qubits are coupled together to make
quantum logic gates. AFOSR funded this new solid-state tech-
nology, fabricated at the superconductive electronics foundry at
MIT Lincoln laboratory. This helped establish the basic fabrica-
tion techniques to build scalable quantum computers and mapped
the quantum control methodology, proven with NMR spectroscopy
[4, 5], onto the field of superconductive electronics for quantum in-
formation processing, mapping pulse protocols to allow qubit-qubit
logical operations, constituting a basic 2-qubit quantum processor.
Going from a 2-qubit processor to a 16-qubit processor necessarily
entails a significant applied research effort recently announced by
D-Wave, a Canadian start-up company. D-Wave’s 16-qubit proces-
sor, fabricated by NASA, is shown (right).

Science and Technologies List, in the section of critical
information systems technology. There now exists the
possibility of the development of large quantum computer
arrays, potentially outstripping any supercomputers now
used for defense department computations.

On Babbage Q27, Q19, Q15 lattice Boltzmann codes
were tested, like the one shown in Figure 1. Using 2,048
processors it took two days to complete a single job. A
1, 0243 grid takes about 44 hours for Q27 on 512 proces-
sors, while the corresponding run for Q15 takes about
28 hours. The cost of the largest supercomputer parallel
arrays annually adds to a significant fraction of a billion
dollars for new government-owned systems in the United
States (e.g. 19,000 processor Franklin at DOE/NERSC
cost about $50 million and occupies the space of a gym-
nasium). Remarkably, exploiting quantum mechanical
complexity new quantum device technology can be used
to efficiently compute the collision operator of the Q15
lattice Boltzmann code, the basic engine of the code.

Therefore, a relatively low cost and small type-II quan-
tum computer with a few thousand 16-qubit quantum
processor chips, perhaps cooled with dilution refrigera-
tion, could handle the same supercomputing job. It could
cost a few million dollars to assemble, a couple orders of
magnitude less expensive than classical digital electronics

based supercomputers, such as Babbage, and physically
smaller by many orders of magnitude as well. Further-
more, future quantum processor arrays with more qubits
per node, if available in the near future, could outstrip
any traditional parallel supercomputer purchased under
the department of defense high performance computing
modernization program.

The kinetic lattice gas model has proven to be a state-
of-the-art tool for understanding the morphological evo-
lution of turbulence.
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Appendix A: Mathematical formulation

In the lattice model, dynamics is projected into a dis-
crete kinetic phase space. The logical “1” state (the ex-
cited state) of a qubit |q〉 associated with the spacetime
point (!x, t) encodes the probability fq of the existence of
a particle at that point moving with velocity !cq = ∆"xq

∆t ,
where ∆!xq are lattice vectors, for q = 1, 2, . . . , Q. A
fundamental property of the lattice model is that parti-
cle motions in momentum space and position space oc-
cur independently [8]. Particle momentum and position
space motions are generated by the combination of an
engineered qubit-qubit interaction Hamiltonian H ′ and
a free Hamiltonian −i!

∑
q !cq ·∇, respectively.

All the particle-particle interactions, the 2-body up to
and including all the (Q−2)-body interactions, generated
by H ′ are mapped to a local collision function H ′ &→ Ωq

that depends on all the fq’s at the lattice site [3].
In the type-II quantum computing case, quantum en-

tanglement is localized among qubits associated with the
same (!x, t) [9], so:

f ′q(!x, t) = fq(!x, t) + Ωq(f1, f2, . . . fQ) (A1a)
fq(!x, t) = f ′q(!x−∆!xq, t−∆t), (A1b)

where fq and f ′q are called the incoming and outgoing
probabilities, respectively. In the classical limit, there
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exists a fundamental entropy function

H (f1, . . . , fQ) =
Q∑

q=1

fq ln(γqfq), (A2)

where the γq are self-consistently determined positive
weights (

∑
q γq = 1). Ωq in (A1a) is determined by the

constant entropy condition:

H (f ′1, . . . , f
′
Q) = H (f1, . . . , fQ). (A3)

It is (A1) through (A3) that constitutes the lattice model
of fluid turbulence suited for parallel supercomputers.

In the Q-dimensional kinetic space, the equilibrium
distribution f eq

q , taken as a vector, is the bisector of the
difference of the incoming and outgoing kinetic vectors:

fq = f eq
q − 1

αβ
Ωq f ′q = f eq

q +
(

1− 1
αβ

)
Ωq,(A4a)

when limη→0 αβ = 2 and where f eq
q is analytically deter-

mined by extremizing (A3) subject to the two constraints
of conversation of probability and probability flux. Elim-
inating Ωq from (A4) yields an operative collision equa-
tion simpler than (A1a)

f ′q = fq + αβ
(
f eq

q − fq

)
. (A5)

Finally, eliminating f ′q in (A1b) and (A5), yields the lat-
tice Boltzmann equation

fq(!x + ∆!xq, t + ∆t) = fq(!x, t) + αβ
[
f eq

q (!x, t)− fq(!x, t)
]
,

(A6)

in the BGK collisional limit [10]. Since αβ and f eq
q are

determined by (A2), (A6) is called the entropic lattice
Boltzmann equation [11].

The kinetic lattice gas model becomes equivalent to
the Navier Stokes equations:

∂t!u+!u ·∇!u = −∇P +η∇2!u and ∇ ·!u = 0, (A7)

where !u = !u(!x, t) is the vectorial flow field, where the
pressure is proportional to the field density (P = ρc2

s,
with spatial dimension D and sound speed cs = 1√

D
∆r
∆t ),

and where the shear viscosity is the measure of dissipa-
tion (a renormalized transport coefficient for momentum
diffusion). In the limit when ∆!r → 0 and ∆t → 0 and
the hydrodynamic variables are cast as moments of the
probability distribution, (ρc, !u) =

∑
q(c,!cq)fq [12]. The

hydrodynamic variables are independently evaluated at
each spacetime point (!x, t). The shear viscosity is ana-
lytically determined, and the result is

η = ρc2
s∆t

(
1

αβ
− 1

2

)
, (A8)

so the model approaches the inviscid limit where η → 0
as αβ → 2 [13].
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