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Lattice-based quantum algorithms are developed for vector soliton collisions in the
completely integrable Manakov equations, a system of coupled nonlinear Schrödinger
(coupled-NLS) equations that describe the propagation of pulses in a birefringent
fibre of unity cross-phase modulation factor. Under appropriate conditions the exact
2-soliton vector solutions yield inelastic soliton collisions, in agreement with the
theoretical predictions of Radhakrishnan et al . (1997 Phys. Rev. E56, 2213). For
linearly birefringent fibres, quasi-elastic solitary-wave collisions are obtained with
emission of radiation. In a coupled integrable turbulent NLS system, soliton turbu-
lence is found with mode intensity spectrum scaling as k−6.

Keywords: vector solitons; Manakov equations; inelastic soliton collisions; quantum
lattice gas algorithms; turbulence

1. Introduction

There is much to be gained in using micro or meso descriptions for macroscopic
processes. For example, the straightforward solution of the nonlinear conservation
equations (e.g. the Navier–Stokes equation for fluid turbulence) is faced with the
problem of determining an accurate resolution of nonlinear convective derivatives.
This so-called Riemann problem is computationally very expensive (Peyret 1996).
However, if one proceeds to a mesoscopic description using the lattice Boltzmann
equation with the linearized BGK collision operator (Succi 2001), then one finishes
with a simple highly parallelized algorithm which in the long-wavelength long-time
limit recovers the original nonlinear macroscopic equations. The nonlinear convective
derivatives of the macroscopic system are replaced by simple linear (kinetic) advec-
tion in the mesoscopic lattice Boltzmann scheme. Alternatively, one could consider
a microscopic representation such as a lattice gas model with its detailed kinetic
two-body and three-body lattice collision rules (Frisch et al . 1987).

The nonlinear Schrödinger (NLS) equation has played a pivotal role in soliton
physics and, in particular, optical solitons (Kivshar & Agrawal 2003). Here we
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develop at the microscopic scales a quantum lattice gas (QLG) algorithm to exam-
ine vector solitons in certain classes of NLS equations. The impetus behind quan-
tum algorithms lies in their exponential speed-up over classical algorithms (as, for
example, illustrated by the Shor (1994) quantum factoring algorithm over classical
factoring schemes). The fundamental change in moving from a classical to quantum
algorithm is to replace the classical binary bits ‘0’ and ‘1’ by the quantum states
|0〉 and |1〉. It is the entanglement of multiple qubits, a purely quantum property
that has no counterpart in classical physics, that can lead to exponential speed-
up (Nielsen & Chuang 2000). In the quantum algorithms presented here, this qubit
entanglement is achieved by a unitary collision operator coupling on-site qubits. This
entanglement is then spread throughout the lattice by unitary streaming operators.
Quantum coherence needs to be retained during the application of a sequence of
these collide-stream unitary operators, until quantum measurement is required to
determine the amplitude of the wave function.

Soliton transmission in optical fibres is an important aspect of long-distance
(transoceanic) communication. However, optical fibres are birefringent, and a single-
mode fibre can support two distinct orthogonal polarizations: the O-mode, which
has a constant refractive index along the ray path, and the X-mode, whose refractive
index varies along the ray path. Hence pulses with components in these orthogonal
polarizations will travel at slightly different speeds. It can be shown (Lakshmanan &
Kanna 2001) that the slowly varying amplitudes of these modes satisfy the coupled-
NLS equations

i
∂Q1

∂t
+

∂2Q1

∂x2 + 2µ[|Q1|2 + B|Q2|2] · Q1 = 0,

i
∂Q2

∂t
+

∂2Q2

∂x2 + 2µ[|Q2|2 + B|Q1|2] · Q2 = 0,





(1.1)

where µ is a positive coefficient,

B =
2 + 2 sin2 θ

2 + cos2 θ

is the cross-phase modulation coefficient and θ is the birefringence ellipticity angle
(Menyuk 1989). In general, the coupled-NLS system equation (1.1) is non-integrable.
However, for the special case B = 1, equation (1.1) is completely integrable and is
known as the Manakov (1974) system. The Manakov equations also describe the
effects of mean random birefringence on the propagation of a circularly polarized
pulse down a real fibre.

In § 2, we shall briefly review the exact analytic solutions for 1-soliton and 2-solitons
in the scalar and vector NLS equations. While the scalar NLS soliton-collision proper-
ties are well known—the solitons retain their exact shape and speed after the collision
and suffer only a small spatial shift as the signature that a collision has occurred—it
has only recently been discovered (Radhakrishnan et al . 1997) that vector 2-soliton
collisions for the fully integrable Manakov system (equation (1.1) with B = 1) can
suffer inelastic collisions. This has led to a flurry of activity (Jakubowski et al . 1998;
Steiglitz 2001a, b) in designing sequences of such soliton collisions that can affect logic
operations (e.g. controlled-NOT gates) and so manipulate solitons to perform com-
putations. In § 3, we present the QLG representation for the coupled-NLS system.
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However, the algorithm is sufficiently general that it can handle arbitrary nonlinear
potential interactions, not just the cubic nonlinearity of the Manakov system. We find
that we require two qubits per scalar field at each lattice node. The one-particle sec-
tor representation of the Hilbert space allows us to restrict the dimensionality of the
wave-function probability amplitudes to just the dimensionality of the number of on-
site qubits. In § 4 we present the simulation results of the QLG representation for the
completely integrable Manakov system (B = 1) as well as for the quasi-integrable
solitary-wave solutions to the coupled-NLS equations with B = 0.667 (this corre-
sponds to a pulse propagating down a linear birefringent fibre). Turbulent soliton
interactions are also considered using a potential of the form

√
2µ[|Q1|2 + |Q2|2]

in the evolution of the Q2-mode, while the Q1-mode satisfies the standard cubic
NLS potential. We have presented some preliminary results on the elastic Manakov
soliton collisions at a SPIE conference (Vahala et al . 2003a). Here, we concentrate
on those soliton parameters that permit inelastic Manakov soliton collisions, and
consider the effect of the cross-phase modulation coefficient and turbulence on the
soliton/solitary waves. (We restrict our use of the word ‘soliton’ to strictly mean
a form-invariant propagating pulse following nonlinear collisions.) Finally, in § 5 we
present our summary and conclusions.

2. Inelastic soliton collisions

(a) Exact 2-soliton solutions

Consider the completely integrable Manakov system, equation (1.1), with cross-phase
modulation coefficient B = 1. The 1-soliton vector solution (2.4) has components

Q1(x, t) =

{
1
2α exp[−1

2R + iηI] sech[ηR + 1
2R],

1
2β exp[−1

2R + iηI] sech[ηR + 1
2R],

(2.1)

with complex
η = ηR + iηI = k(x + ikt). (2.2)

The parameter R is real:

R = ln
[
µ(|α|2 + |β|2)

4k2
R

]
, (2.3)

while α, β and k are arbitrary complex parameters with kR #= 0. kI determines the
velocity of the 1-soliton components.

Using the Hirota method, Radhakrishnan et al . (1997) have generated exact 2-
soliton vector solutions to the Manakov system, valid for all time. These solutions
are quite complicated. However, of specific interest here are the asymptotic limits
in which these 2-soliton solutions reduce to a sum of two widely separated (non-
overlapping) 1-soliton solutions

Q1(x, t) =
2∑

n=1

1
2αn exp[−1

2Rn + iηnI] sech[ηnR + 1
2Rn],

Q2(x, t) =
2∑

n=1

1
2βn exp[−1

2Rn + iηnI] sech[ηnR + 1
2Rn],






(2.4)
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ηn = ηnR + iηnI = kn(x − x0n + iknt), Rn = ln
[
µ(|αn|2 + |βn|2)

4k2
nR

]
, (2.5)

with appropriately chosen free complex parameters αn, βn and kn, n = 1, 2. The
(real) parameters x0n predominantly determine the spatial position of the peaks
of the two widely separated 1-solitons, knR the 1-soliton amplitudes and knI the
1-soliton velocities.

(b) Asymptotic post-collision solitons

The post-collision 2-soliton vector solution will also asymptotically reduce to two
non-overlapping vector 1-solitons of the form of equations (2.4) and (2.5). In partic-
ular, for the choice k1R > 0, k2R > 0, the post-collision non-overlapping 1-soliton
amplitude ratios are given by (2.5)

α′
1

β′
1

=
([

1 − g +
∣∣∣∣
α1

β1

∣∣∣∣
2]α2

β2
+ g

α1

β1

)(
g
α∗

1
β∗

1

α2

β2
+ (1 − g)

∣∣∣∣
α1

β1

∣∣∣∣
2

+ 1
)−1

,

α′
2

β′
2

=
([

1 − h ∗ +
∣∣∣∣
α2

β2

∣∣∣∣
2]α1

β1
+ h∗α2

β2

)(
h∗α

∗
2

β∗
2

α1

β1
+ (1 − h∗)

∣∣∣∣
α2

β2

∣∣∣∣
2

+ 1
)−1

,






(2.6)

where
g(k1, k2) =

2k1R

k2 + k∗
1
, h(k1, k2) =

2k2R

k1 + k∗
2

(2.7)

Note that the kn are invariant under soliton collisions. It is clear that a certain choice
of these complex kn will result in elastic 2-soliton vector collisions, as is always found
in scalar soliton collisions, but most choices of kn will result in inelastic 2-soliton
vector collisions. In particular, there is a choice of parameters for the kn such that

a′
i = 0, (2.8)

i.e. for the polarization mode Q1, its initial non-overlapping 2-solitons will in its
post-collision state have only a single outgoing soliton. It is this type of inelastic
soliton collision that has encouraged research into an all-soliton digital information
processor in a nonlinear optical media without radiative losses (Jakubowski et al .
1998; Steiglitz 2001a, b).

3. Quantum lattice gas representation for coupled-NLS

Here we generalize our QLG algorithm for the scalar NLS equation (Vahala et al .
2003a) to the coupled vector NLS system for arbitrary coupling potentials V1 and
V2,

i
∂Q1

∂t
+

∂2Q1

∂x2 + V1[|Q1|, |Q2|] · Q1 = 0,

i
∂Q2

∂t
+

∂2Q2

∂x2 + V2[|Q2|, |Q1|] · Q2 = 0.





(3.1)

Our NLS formulation was based on the one particle sector representation introduced
by Yepez & Boghosian (2002) in their quantum algorithm for the (linear) Schrödinger
equation. The spatial domain is discretized into L spatial nodes and two qubits per
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scalar wave function are introduced at each node x!, & = 1, . . . , L, i.e. qubits |q!
0,1〉

for the scalar field Q1 and qubits |q!
2,3〉 for Q2 at x!. A unitary collision operator

that will recover equation (3.1) is a factored collision operator that only entangles
on-site qubits, and actually only the on-site qubits, pairwise, corresponding to that
particular scalar field. The on-site coupling of all the four qubits |q!

i 〉, i = 1, . . . , 4 is
attained by introducing a phase transformation of the wave functions.

In the number representation of the 1-particle sector, the basis set factors into

|n1
0n

1
1 · · ·nL

0 nL
1 〉|n1

2n
1
3 · · ·nL

2 nL
3 〉, (3.2)

where only one of n!
0,1 is non-zero and equals unity, and similarly for n!

2,3. Because
of the factorization (see equation (3.2)), we need to consider the application of the
collision and streaming operators on each qubit pair separately.

(a) Unitary collision operator for the qubit pair |q0,1〉

To evolve the wave function for the two qubits |q0,1〉, a global quantum unitary
operator Ĉ is constructed from a tensor product of quantum gates, each indepen-
dently applied to each spatial site

Ĉ =
L⊗

!=1

Û!. (3.3)

Û! locally entangles the two qubits |q0,1〉 at each site and a local equilibrium can be
associated with this on-site unitary collision operator if |ν〉 is an eigenvector of Û!

with unit eigenvalue: Û!|ν〉 = |ν〉.
The Schrödinger part of the NLS equation is recovered by the

√
SWAP gate Û! = Û

on a site-by-site basis (2.7)

ÛNLS =





1 0 0 0
0 1

2(1 − i) 1
2(1 + i) 0

0 1
2(1 + i) 1

2(1 − i) 0
0 0 0 1




. (3.4)

with the Hamiltonian representation

ÛNLS = exp[18 iπ] exp[−1
8 iπ(σ1

xσ
2
x + σ1

yσ
2
y + σ1

zσ
2
z)] (3.5)

written in terms of the tensor products of the Pauli spin matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)

for qubits ‘0’ and ‘1’. Note that Û4
NLS = I, the identity operator, so Û4

NLS|ν〉 = |ν〉.

(b) Unitary streaming operator for the qubit pair |q0,1〉

The next step of the QLG algorithm is to stream the post-collision on-site ket
for qubits |q0,1〉 to nearest-neighbour sites. The (unitary) streaming operator Ŝ1 is
defined as a global shift to the right of qubit |q0〉 on each lattice node, i.e.

Ŝ1 =
L∏

!=1

χ̂0!→0!+1, (3.6)
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where χ̂0!→0!+1 is independent of &. The qubit |q1〉 is not streamed by Ŝ1. Thus,
for the two-qubit pair |q0,1〉, Û entangles the on-site qubit pair, while χ̂ operates on
the first qubit of neighbouring sites. Hence, the total collision matrix, Ĉ, does not
commute with the full streaming operator Ŝ1.

To symmetrize the algorithm, we also introduce the streaming operator Ŝ2, which
performs a global shift to the right of the second qubit on all the lattice nodes for
the qubit pair |q0,1〉:

Ŝ2 =
L∏

!=1

χ̂1!,1!+1. (3.7)

(c) Introduction of the potential field for the evolution
of the wave function for qubit pair |q0,1〉

It is known (Bialynicki-Birula 1994; Yepez & Boghosian 2002) that the effect of
an external potential V1(x) can be modelled by the introduction of a local phase
change to the system wave function for the qubit pair |q0,1〉. Let Q1 denote the wave
function for the qubit pair |q0,1〉. Thus,

Q1(x, t) → exp[iV1(x)∆t]Q1(x, t), (3.8)

where ∆t is the time advancement after each step of the algorithm.
We proceed similarly with the qubit pair |q2,3〉, introducing the

√
SWAP gate that

entangles the qubits |q2,3〉 and the streaming operator Ŝ1 that shifts qubit |q2〉 and
Ŝ2 that shifts qubit |q3〉. One can now introduce another external potential V2(x) by
a local phase change in the system wave function Q2 for the qubit pair |q2,3〉:

Q2(x, t) → exp[iV2(x)∆t]Q2(x, t). (3.9)

(d) Quantum algorithm for coupled-NLS equations

The collide-stream sequence of unitary operators is applied simultaneously to the
qubit pairs |q0,1〉 and |q2,3〉:

(
Q1(t + ∆t)
Q2(t + ∆t)

)
=

(
[ŜT

2 Ĉ Ŝ2Ĉ ŜT
2 Ĉ Ŝ2Ĉ · ŜT

1 Ĉ Ŝ1Ĉ ŜT
1 Ĉ Ŝ1Ĉ]Q1(t)

[ŜT
4 Ĉ Ŝ4Ĉ ŜT

4 Ĉ Ŝ4Ĉ · ŜT
3 Ĉ Ŝ3Ĉ ŜT

3 Ĉ Ŝ3Ĉ]Q2(t)

)
,

(3.10)
where ŜT

i is the transpose of Ŝi, with ŜT
i Ŝi = I, i = 1, 4 and Ĉ is the tensor product

of the unitary collision operator ÛNLS, equation (3.5). After performing the collide-
stream sequence (equation (3.10)), one then introduces the phase change transfor-
mations (3.8), (3.9):

(
Q1

Q2

)
→

(
exp[V1(|Q1|, |Q2|)∆t] · Q1

exp[V2(|Q1|, |Q2|)∆t] · Q2

)
, (3.11)

where the potential fields are required to be functions of the wave functions them-
selves, Vi = Vi(|Q1|, |Q2|).

The continuum limit is defined by scaling the spatial shift between neigh-
bouring nodes to be O(ε), the time advancement ∆t = O(ε2) and the potentials
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Figure 1. The propagation of an initial (t0 = 0) exact 2-soliton vector solution to the fully
integrable Manakov system (B = 1) for the polarization modes (a) |Q1|, (b) |Q2|. The solitons
propagate towards each other (t1 = 25 K) and undergo their first collision at t2 = 50 K.
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Figure 2. The post-collision polarization modes for soliton parameters, chosen so that there is no
left-propagating soliton for mode Q1 (see equation (2.8)). t2+ = 51 K, t3 = 75 K and t4 = 100 K.
The intensity in each mode

∫
dx |Qi(x, t)|2 = const. is preserved to better than one part in 10−7.

Within each mode, there is redistribution of the intensity in the outgoing asymptotic 1-soliton
states.

Vi = ε2Vi[|Q1|, |Q2|]. In the limit ε → 0, it can be shown using Mathematica that
the equation (3.10), (3.11) sequence yields the coupled-NLS equations

i
∂Q1

∂t
+

∂2Q1

∂x2 + V1[|Q1|, |Q2|] · Q1 = 0 + O(ε2),

i
∂Q2

∂t
+

∂2Q2

∂x2 + V2[|Q2|, |Q1|] · Q2 = 0 + O(ε2),





as ε → 0, (3.12)

with error of O(ε2). Equations (3.12) hold for any choice of potentials V1 and V2.
It is also clear how to extend this analysis to a system of N -coupled-NLS equations.

N -coupled NLS equations arise in the study of beam propagation in a Kerr-like
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Figure 3. The x–t plot of the 2-soliton vector solution to the Manakov equations under periodic
boundary conditions and with the same parameters as for the solutions shown in figures 1 and 2.
Soliton–soliton collisions occur around t = 50 K, 125 K and 200 K iterations. There is a totally
inelastic soliton state for the Q1-mode following the first collision. Following the second collision,
the outgoing state for Q1 once again has two solitons.

photorefractive medium, which typically exhibits very strong nonlinear effects with
extremely low optical powers. Partially coherent solitons have been observed through
excitation by partially coherent light (Mitchell et al . 1997) as well as by an ordinary
incandescent light bulb (Mitchell & Segev 1997).

It should also be noted that using the 1-particle sector allows the dimensionality
of the unitary collision matrix to scale linearly with the number of locally entangled
qubits, rather than scale exponentially with the total number of on-site qubits.

4. Quantum lattice gas simulation results
on inelastic soliton collisions

(a) Inelastic Manakov vector soliton collisions

For convenience, we consider periodic boundary conditions on a spatial lattice of
6000 nodes for the integrable Manakov equations with cross-phase modulation coef-
ficient B = 1. The simulation parameters are chosen so that the 2-vector solitons
for the polarization modes Q1 and Q2 are initially non-overlapping single solitons,
slightly displaced from x = 1000 and x = 5000, respectively, and moving towards
each other for a collisional interaction (at t0 = 0 in figure 1). Moreover, the param-
eters are chosen so that the theoretical results of equations (2.6)–(2.8) yield the loss
of one of these solitons in the Q1-mode in the post-collision state.

In figures 1 and 2 we show the results of the QLG algorithm, and indeed find the
totally inelastic post-collision state in which the second soliton in mode Q1 is absent.
Moreover, in the fully integrable Manakov system, the total intensity in each propa-
gation mode Qi is conserved, while its distribution among the individual solitons in
that mode can be redistributed by soliton collision (see equations (2.6), (2.7)). Our
algorithm conserves this total individual mode intensity to better than one part in
107, even in the single-soliton post-collision state. With periodic boundaries, there
will be further soliton–soliton collisions, as seen in the x–t plot in figure 3. Between
the first and second soliton–soliton collision (52 K < t < 125 K), there is a totally
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Figure 4. The detailed vector soliton solutions for modes Q1 (dashed curves) and Q2 (solid
curves), following a second collision for the parameters given in figures 1–3 (t5 = 150 K,
t6 = 175 K).
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Figure 5. The propagation of the same initial pulses as in figure 1, but now down a linearly
birefringent fibre in which the cross-phase modulation coefficient B = 2

3 . For these fibres, the
coupled-NLS equations are non-integrable. The pulses no longer propagate as solitons, since
their amplitudes are no longer invariant between collisions; rather, they propagate as soli-
tary waves with the emission of small-scale radiation. Again, the total intensity in each mode∫

dx |Qi(x, t)|2 = const. is preserved to better than one part in 10−7. Note that there is a
left-travelling solitary wave for the mode Q1 following the first collision (t4+ = 85 K), unlike the
result for the fully integrable (B = 1) Manakov system.

inelastic collision for Q1. However, the second 1-soliton solution reappears following
the second soliton–soliton collision, as shown in detail in figure 4.

(b) Coupled vector NLS of a linearly birefringent fibre

In a linearly birefringent fibre, the cross-phase modulation coefficient B = 2
3 in

equation (1.1), resulting in a non-integrable coupled-NLS equations. Since there is
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Figure 6. A detailed comparison of the pulse shapes for Q1 following (a) the first collision, (b) the
second collision for soliton solutions (B = 1, dashed curves) and solitary-wave solution (B = 2

3 ,
solid curves). Note the absence in (a) of the left-moving soliton for the fully integrable Manakov
system (B = 1).
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Figure 7. The intensity spectra for the Q1 mode for both the fully integrable Manakov system
(B = 1) at t = 75 K and t = 150 K and the mode propagation down a linearly birefringent fibre
(B = 2

3 ) at t = 150 K. The spectrum is narrower for the Manakov system (B = 1) at 75 K, since
this is after the first collision and there is only one propagating soliton. Following the second
collision, there are two propagating solitons and the spectrum is similar to the initial spectrum.
For the linearly birefringent medium (B = 2

3 ), the solitary waves have a similar shape to the
soliton solutions (see figure 6b) but the emission of small-scale radiation gives the high-k part
of the intensity spectrum.

only a slight variation in B from B = 1, one would expect a quasi-integrable solution.
This is verified, up to a point, by our quantum lattice algorithm (figures 5 and 6).
There is a slight decay in all the solitary-wave amplitudes as they propagate towards
each other (t0 → t1), with emission of radiation. In the post-collision state (t4+) note
that there is a quite strong solitary pulse in the Q1-mode that is totally absent in
the fully integrable Manakov system (B = 1). This, and the emitted radiation for
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Figure 8. A coupled cubic NLS-turbulent NLS system with Q1 integrable (B = 1) except for its
coupling to the turbulent Q2-mode. The same initial conditions and parameters as in figure 1
apply. Q1 exhibits solitary-wave behaviour, including a substantial pulse at t = 80 K that would
be absent in a Manakov system. The background radiation is quite strong, due to the coupling
to the turbulent Q2-mode. The Q2-mode exhibits δ-function-like spikes together with a short
wavelength solitary-wave turbulent bath. Collisions between members of this bath, as well as
with the δ-function spikes, are soliton-like. There is a locking between the spatial locations of
the solitary waves in Q1 and the location of the δ-function spikes in Q2.
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Figure 9. The intensity spectrum for the Q1- and Q2-modes for the coupled cubic NLS-turbulent
NLS system. The solitary-wave structure of |Q1| results in the k−2 spectrum for medium scales,
while the background radiation results in a k−5 small-scale spectrum. The turbulent |Q2|-mode
exhibits white noise for medium scales and a k−6 small-scale spectrum.

the non-integrable case, is further highlighted in figure 6, where we compare the
post-collision states of both polarization modes for B = 1 and B = 0.667.

Since it is the Q1 mode that is the most affected by the change in the cross-
phase modulation coefficient B, we examine how its intensity spectrum varies in
time (figure 7). First, consider the fully integrable Manakov system, B = 1. As
expected, the spectrum at t = 0 and t = 150 K (which is after the second soliton
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collision and the reappearance of the second soliton in the Q1-mode) lie on top of
each other. This is because for the fully integrable Manakov system we have simply
a translation in the position of the form-invariant solitons which plays no role in
the Fourier transform of |Q1|. The intensity spectrum at t = 75 K (for B = 1) is
significantly modified, since at this time there has only been one soliton collision
and the post-collision state for |Q1| consists of only one soliton. For the linearly
birefringent fibre (B = 0.667), we find solitary pulses and small-scale background
radiation. The intensity spectrum is statistically independent of time, and the effects
of the radiation emission are seen in the raised tail for wavenumbers k > 140. For
the Q2-mode, the effects of variations in the cross-phase modulation coefficient B
are not as pronounced with a lower level of radiation emission. As a result, we find
a raised tail in the intensity spectrum for wavenumbers k > 275.

(c) Quasi-turbulent soliton interactions

We now consider the following coupled-NLS system:

i
∂Q1

∂t
+

∂2Q1

∂x2 + 2µ[|Q1|2 + |Q2|2] · Q1 = 0,

i
∂Q2

∂t
+

∂2Q2

∂x2 + 2µ
√

|Q2|2 + |Q1|2 · Q2 = 0.





(4.1)

Q1 would be governed by the integrable NLS except for its coupling to the Q2-mode,
whose evolution is non-integrable. Again we choose the same initial profiles (equa-
tion (2.4)) and parameters as before. For the mode |Q1|, the initial non-overlapping
1-solitons at t = 0 propagate towards each other like solitary waves with emission
of radiation. By t = 80 K (figure 8a), the solitary waves have considerable width
for this quasi-integrable mode Q1. The evolution of mode Q2 is considerably dif-
ferent because of the underlying turbulent-evolution equation. The major peaks are
extremely narrow (there are three at t = 80 K; see figure 8b), with the spatial loca-
tions of the two largest δ-function peaks locked to those of the two solitary waves
of the Q1-mode. The background emission of Q2 is also considerably different from
the Q1-mode: it takes the form of a quasi-solitary turbulent bath of very short scales
which interact with other structures such as quasi-solitons. This can be readily seen
in the intensity spectra of these modes (figure 9). For the Q1-mode, there are two dis-
tinct spectral regions: a k−2 spectrum for medium range wavenumbers and a steeper,
k−5, spectrum for short spatial scales. The turbulent Q2-mode does not exhibit an
intermediate spectral range, but it is flat (like white noise). For very short scales we
see an intensity spectral decay of k−6.

5. Conclusion

A lattice-based quantum representation is developed for the solution of coupled-
NLS equations: equations that can model the propagation of pulses down a birefrin-
gent fibre. The algorithm requires two qubits per spatial node for each polarization
mode and introduces quantum entanglement on the on-site qubits. This entangle-
ment becomes strongly non-local due to the application of the streaming operator. A
symmetrized form of streaming on each qubits results in a more accurate numerical
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scheme (equation (3.12)), and in finite-difference form leads to an unconditionally sta-
ble algorithm. The nonlinear interaction between the polarization modes is achieved
by appropriate phase transformations on all four on-site qubits, and we have tested
our algorithm on a particularly exacting problem of totally inelastic vector soliton
collisions of the completely integrable Manakov system.

In this vector NLS algorithm, quantum phase coherence needs to be enforced
for only 16 quantum-gate operations, after which measurements are required so
as to determine the amplitudes of the wave functions. These amplitudes are then
used to construct the nonlinear interaction potential. It is clear that our quantum
algorithm for vector solitons would be difficult to implement experimentally. Even
though it is a one-dimensional model, it is complex because amplitudes must be
extracted from the quantum measurement process and not simply from probabili-
ties which are more naturally extracted from the projective von Neumann quantum
measurement process over a large ensemble of molecules, as occurs in nuclear mag-
netic resonance spectroscopy (Pravia et al . 2002, 2003). Nevertheless, it is hoped
that this one-dimensional quantum algorithm will serve as a stepping stone towards
more complicated quantum algorithms with sufficiently many qubits per site that
the experimental trade-off between the difficulty of achieving quantum entanglement
and the limitation of measurable classical information that can be extracted from
the quantum computer begins to work in our favour. Finally, it is interesting to note
that the QLG representation is very efficiently parallelized on a classical computer.

This work was supported by the Directorate of Computational Mathematics, US Air Force Office
of Scientific Research.
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