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ABSTRACT

The nonlinear Schrodinger (NLS) equation in a self-defocusing Kerr medium supports dark solitons.  Moreover the

mean field description of a dilute Bose-Einstein condensate (BEC) is described by  the Gross-Pitaevskii equation, which

for a highly anisotropic (cigar-shaped) magnetic trap reduces to a one-dimensional (1D) cubic NLS in an external

potential.  A quantum lattice algorithm is developed for the dark solitons.  Simulations are presented for both black

(stationary) solitons as well as (moving) dark solitons.  Collisions of dark solitons are compared with the exact analytic

solutions and coupled dark-bright vector solitons are examined.  The quantum algorithm requires 2 qubits per scalar field

at each spatial node.  The unitary collision operator quantum mechanically entangles the on-site qubits, and this

transitory entanglement is spread throughout the lattice by the streaming operators. These algorithms are suitable for a

Type-II quantum computers, with wave function collapse induced by quantum measurements required to determine the

coupling potentials.

Keywords: dark solitons, vector dark-bright solitons, nonlinear Schrodinger equation, Gross-Pitaevskii equation,

quantum lattice representation.

1.  INTRODUCTION

The nonlinear Schrodinger equation (NLS) plays a pivotal role in soliton physics
1
 – whether for solitons propagating in

an optical fiber or for solitons in a Bose-Einstein condensate (BEC).  In its simplest one-dimensional (1D) form the NLS

equation for the wave function   is

i
t

 +  

2

x
2

 +  V [ ]  =  0 (1)

where the potential V [ ]  =  
2

 for the integrable cubic NLS.  The parameter  plays a critical role in the soliton

properties : typically bright solitons exist for self-focusing > 0( )  Kerr media while dark solitons for self-defocusing

< 0( ) .  For BEC dynamics (see Sec. 4 for some more details),  is the macroscopic wave function for the condensate

and the two-particle interaction strength  parameterizes the s-wave scattering  length.  This scattering length describes

the elastic scattering properties of the atom-atom interaction ( > 0 for repulsive interactions between particles in the

condensate, and < 0 for attractive particle interactions) and can be readily tuned over orders of magnitude as well as

its polarity by appropriate variations in an external magnetic field near the Feshbach resonances
2
 (a quasi-bound

molecular state at nearly zero energy coupling resonantly to the free state of the colliding atoms).

Here, we extend our earlier quantum lattice algorithms
3,4

 to the case of dark solitons (i.e., < 0 ).   The simplest

possible solution to the cubic defocusing NLS with V [ ]  =  2
2

 is the black soliton
5

x, t( )  =  a
1/ 2
Tanh a

1/ 2
x x0( )[ ]Exp 2 i a t[ ] (2)

which is a special case of the dark soliton

x, t( ) = a1/ 2
Tanh a

1/ 2
b  x x0 2 a 1 b

2( ) t
 
 
 

 
 
 

 

 
 

 

 
  +  i 1 b

2
 

 
 

 

 
  Exp 2 i a t[ ] (3)

Quantum Information and Computation II, edited by Eric Donkor, Andrew R. Pirich,
Howard E. Brandt, Proceedings of SPIE Vol. 5436 (SPIE, Bellingham, WA, 2004)

0277-786X/04/$15 · doi: 10.1117/12.541647

376



with b 1.  The velocity of the dark soliton is a 1 b
2( )  .  Unlike the bright soliton, which has two free parameters,

the dark soliton only has one free parameter that couples the amplitude to its speed (the parameter a represents the

background amplitude since for dark solitons,  a
1/ 2

 as x  .  For bright solitons,  0  as x  ).

The black soliton is stationary, with 0  at the center of the soliton and a phase jump of  across the soliton

minimum

   Fig. 1  A plot (both analytic and that determined from our quantum algorithm) of  for the  black soliton for the defocusing cubic

NLS.   Black solitons are stationary, with zero intensity as its minimum and a phase jump of  across its minimum.  Dark solitons

have a non-zero velocity, a non-zero intensity minimum with a smaller phase jump (see Fig. 6).

Of more interest is the collision of two dark solitons.  An exact solution to the cubic self-defocusing NLS Schrodinger

equation

i
t

 +  

2

x
2

 +  V [ ]  =  0      ,   with   V [ ]  =  2
2

(4)

that describes the collision of two dark solitons of equal amplitude is given by
5

x, t( ) =
a

2
1/ 2

Cosh a x x0{ }( )  +  i 2
1/ 2

Sinh a
2
t t0{ }( )

2
1/ 2
Cosh a

2
t t0{ }( ) + Cosh a x x0{ }( )

Exp i a
2
t t0( )[ ] (5)

The soliton collision dynamics is shown in Fig. 2
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    Fig. 2   The time evolution of the collision of two dark solitons of equal amplitude (for both analytic and the quantum

algorithm).  The spatial grid is 1000 and the number of time iterations is 1000.

Here we  develop a quantum lattice algorithm for the evolution of  dark solitons and their collisions as well as the vector

NLS coupling of a dark-bright soliton pair under a self-defocusing nonlinearity.  This is of considerable interest since the

bright soliton only can exist in a defocusing medium because it is trapped within a co-propagating dark soliton.  These

types of interactions have been considered for an inhomogeneous two-species Bose-Einstein condensate.
6

2.  QUANTUM LATTICE REPRESENTATION FOR NLS

2.1  Scalar NLS
3,4

It is convenient to use the one particle sector representation of Yepez and Boghosian
7
.  The spatial domain is partitioned

into L spatial nodes :  
  
x

l
,l=1....L .  At each spatial site we associate two qubits, 

  
q1

l
, q2

l
 for the scalar wave function

 at 
  
x

l
.  The simplest unitary collision operator ˆ 

C  that will recover Eq. (1) is a factored operator that only entangles

the on-site qubits independently at each spatial site

  
ˆ 

C  =  
l=1

L ˆ 
U 

l
(6)

A local equilibrium can be associated with this on-site unitary collision operator if  is an eigenvector of 
  
ˆ 

U 
l
 with unit

eigenvalue :  
  
ˆ 

U 
l

 =  .
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Introducing the SWAP -gate on a site by site basis

ˆ 
U =

1 0 0 0

0
1 i
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        with   
  
ˆ 

U 
l

= ˆ 
U (7)

with the Hamiltonian tensor product representation

ˆ U  =  exp
i

8

 

 
 

 

 
 exp
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where the ' s  are the usual Pauli spin matrices for the two on-site qubits

x
k

=
0 1

1 0
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=

0 i

i 0

 

 
 

 

 
    ,   z

k
=

1 0

0 1

 

 
 

 

 
    ,     k=1,2 (9)

It should be noted that ˆ 
U 

4
is the identity matrix, so that ˆ 

U 
4

 =  .

The unitary streaming operator ˆ 
S 

1
 acts on the qubit q

1
at each lattice site and shifts it to the right to the next spatial

node.  The qubit q
2

 is not streamed by ˆ 
S 

1
.  Thus the total collision matrix ˆ 

C (which independently couples the two on-

site qubits at each lattice site) does not commute with the global streaming operators ˆ 
S 

1
 (which streams the 1

st
 qubit at

each lattice site to its nearest neighbor on the right.  The algorithm is symmetrized by also introducing the global

streaming operator ˆ 
S 

2
 which performs a shift to the right of the 2

nd
 qubit.

The appropriate collide-stream sequence of unitary operators needed to recover the dispersive part of NLS is dictated by

the fact that ˆ C 
4

 =  I

t + t( )  =  
ˆ 
S 

2

T ˆ 
C 

ˆ 
S 

2

ˆ 
C 

ˆ 
S 

2

T ˆ 
C 

ˆ 
S 

2

ˆ 
C .

ˆ 
S 

1

T ˆ 
C 

ˆ 
S 

1

ˆ 
C 

ˆ 
S 

1

T ˆ 
C 

ˆ 
S 

1

ˆ 
C   t( ) (10)

where ˆ 
S 

i

T
 is the transpose of ˆ 

S 
i
, with ˆ 

S 
i

T ˆ 
S 

i
 =  I  , i =1,2.   Note that  the potential in Eq. (1) can be readily introduced

into the formalism by introducing a local phase change to the system wave function for each on-site qubit pair
8,7

 after

performing the collide-stream sequence, Eq. (10) :

  Exp i V [ ] t[ ]     ,   with  =±1 . (11)

To proceed to the continuum limit one introduces the following scaling:

the spatial shift between neighboring lattice sites = O( )

            time advancement following stream-collide-phase sequence, Eqs. (10) and (11) , t =O 2( ) (12)

           potential phase shift   V [ ]  =  O
2( )

In the limit 0, it can be shown (using a symbolic manipulation program like Mathematica), that the collide-stream-

phase sequence, Eqs. (10) and (11), under the ordering Eq. (12) yields the NLS equation – with arbitrary potential V –

i
t

 +  

2

x
2

 +  V [ ]  =  0    +   O
2( )           ,   with  =±1  . (13)

2.2  Vector NLS

To recover the vector NLS equations appropriate for the study of polarized solitons and two-species BEC

i
1

t
 +  

2

1

x
2

 +  1V1 1 , 2[ ] 1  =  0  

i
2

t
 +  

2

2

x
2

 +  2 V2 1 , 2[ ] 2  =  0  (14)
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we now introduce at each lattice site 2 qubits for 
1
 and 2 qubits for 

2
.  The collide-stream sequence of unitary

operators is applied simultaneously (and independently) to the qubit pairs q1 ,q2  and q3 ,q4  since the interaction

between the wave functions 
1
 and 

2
 occurs only through the potentials V

i 1 , 2[ ]  :

1
t + t( )

2
t + t( )
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with

i

2

 

 
 

 

 
   

Exp i 1V1 1 , 2[ ] t[ ]
Exp i 2 V2 1 , 2[ ] t[ ]

 

 

 
 

 

 

 
 

1

2

 

 
 

 

 
 (16)

3.  NUMERICAL SIMULATIONS USING THE QUANTUM LATTICE ALGORITHM

3.1  Scalar Dark Solitons

The quantum lattice algorithm Eqs. (10) and (11), for the case of the black soliton solution to the defocusing NLS

                i
t

 +  

2

x
2

 2
2

 =  0 (17)

is shown in Fig. 3 for initial parameters a= 0.01, x0 = 100  and times t =100,200 .  The maximal pointwise divergence

from the exact solution, Eq. (1), at t = 200 is typically less than 0.05%.
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x
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 Fig. 3  Quantum Lattice solution   of the stationary black soliton for defocusing NLS.  The surface plot is shown in Fig. 1
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The corresponding quantum lattice algorithm, Eqs. (10) and (11), for the dark-dark soliton collision is shown in Fig. 4

for initial parameters: x0 = 500  ,  t0 = 500  and a = 2 /10 .
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Fig. 4  The quantum lattice algorithm for the dark-dark soliton solution for the defocusing NLS, Eq. (17) with initial conditions :

x0 = 500  ,   t0 = 500,   a= 2 /10 .  (a) Plot of  for t = 0 and t = 300 as the dark solitons approach each other, (b) at t = 400 and t

= 500 there is strong overlap followed by separation as the dark solitons pass through each other, (c)  times t = 700 and t = 1000.

(d)  the difference x,t = 400( )
quantum

  x,t = 400( )
exact

 in the absolute values of the wave function at t = 400.  The quantum

simulation is on a very coarse grid of only a 1000 spatial nodes and the algorithm takes less than 3 s to complete 1000 time iterations

on a MAC G5 in double precision.  The surface plot of this dark-dark soliton collision is shown in Fig. 2  The symmetry in the error

plot (d) indicates a very balanced algorithm.
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As a final example of the use of our quantum lattice algorithm we consider the motion of a coupled dark-bright soliton in

a vector defocused NLS system
6
.  For self-defocused NLS, the bright soliton per se is not a solution, so that this initial

profile will undergo spatial dispersion, Fig. 5(a).  However such a bright soliton can exist in self-defocused NLS when it

is trapped within a co-propagating dark soliton.  The vector self-defocusing NLS equations are

i
D

t
 +  

2

D

x
2

  
B

2

 +
D

2

  µ[ ] D
 =  0  

i
B

t
 +  

2

B

x
2

  
B

2

 +
D

2

  µ[ ] B
 =  0  (18)

with exact dark soliton wave function
D

, and bright soliton wave function
B

 solutions
6

D
x, t( )  =  i µ Sin   +  µ Cos .Tanh

x

2
x0 t Tan

 

 
 

 

 
 

 

 
  ,

B x, t( )  =  
NB

2
Exp i

2
1 Tan

2( )
2

t  +  i
x

2
Tan

 

 

 
 

 

 

 
 
  Sech

x

2
  x0   t Tan

 

 
 

 

 
 

 

 
 

 

 
 (19)

In the terminology of BEC, µ  corresponds to the chemical potential, N
B

 is the rescaled number of particles in the bright

soliton state, and the soliton inverse length is

 =  µCos2
 +  

N
B

2

16
    

N
B

4

The co-propagating dark-bright soliton pair has velocity 2 Tan .
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             (a)                                                                                                 (b)
Fig. 5  (a)  For the defocusing scalar NLS, the initial profile of a bright soliton diffuses since stationary solutions of the defocusing

NLS are dark solitons.  (b)  For vector defocusing NLS, with initial profiles of a bright-dark soliton pair [Eq. (19) with t =  0], the

propagating dark soliton traps the bright soliton and prevents its decay even in the defocusing case.  The parameters for these runs are

µ =0.000025 , N
B

=0.001 , =0.5  on a spatial grid of 14000 and 960 K time iterations.

In Fig. 6 we compare the real and imaginary parts of the dark soliton wave function 
D

 at t = 480 K and 960 K to the

exact solution (19).  There is little error in the Re QL exact[ ]DARK
, as seen Fig. 6 (a).   However, the numerical noise
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in Im QL exact[ ]
DARK

  at t = 480 K, Fig. 6 (b), has increased by two orders of magnitude into structured oscillations

which eventually will disrupt the simulation.
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Fig. 6  A plot of (a) Re dark[ ]
QL

and Re dark[ ]
exact

at t = 480K and t = 960K.  Even at t = 960K, the relative error is less than

0.07%.  Im dark[ ]
QL

 and Im dark[ ]
exact

=  const. at  (b) t = 480K , (c) t = 960K.  The extremely low numerical noise at t = 480K

(errors < 0.002%) has been amplified to structured oscillations with errors <  0.2%.  The (theoretical) phase discontinuity of dark

about its minimum is 0.71 [see (a) – (c)].
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4.  DISCUSSION AND COMMENTS

We have extended our quantum lattice algorithm to now cover both the self-focusing and self-defocusing NLS.  While

this is accomplished by a simple sign flip in the nonlinear potential term, the effect on the soliton solution is quite

dramatic.  In particular, the bright soliton complex wave function B (an exact solution to the cubic self-focusing NLS)

does not have a phase jump across its maximum.  Numerically this permits the use of periodic boundary conditions in

the quantum lattice algorithm.
3,4

  On the other hand, there is a phase discontinuity of at the zero intensity minimum of

a black soliton complex wave function.  As a result we abandoned the imposition of standard periodic boundary

conditions and employed inflow streaming boundary conditions using EOShift

The numerical solution of the defocusing NLS for dark solitons is also plagued by the occurrence of numerical (round-

off) instabilities.  Numerical noise hits both the standard split-step Fourier method as well as the quantum lattice method.

Parameters have to be chosen so that the physics of interest is achieved before these numerical instabilities hit.

The interplay between BEC and solitons has become an extremely active research area.  In particular, the 3D Gross-

Pitaevskii (GP) equation:

  

i h
r, t( )
t

 =  
h

2

2m
2  +  U r( )  + g Nc r, t( )

2 

 
 

 

 
 r, t( ) (20)

is a mean field theory of the macroscopic wave function r, t( )  of the Bose-Einstein condensate.  U r( )  is the external

trapping potential, 
  
g = 4 h

2 as /m  is the scattering amplitude with a
s
 the s-wave scattering length, and N is

proportional to the number of condensed bosons.  The GP mean field theory has been very successful in describing

experimental results on dilute Bose-Einstein condensates near zero temperature.  Of much interest, both experimentally

and theoretically, is the reduced dimension description of BEC as one experimentally constricts the condensate to disk-

shaped objects.  In appropriate trapping potentials, Salasnich et. al
11

 have derived a 1D nonpolynomial NLS for the

condensate of the form

  

i h
t

 =  
h

2

2m

2

x
2  +  V x( )  +

g N

2 a
2

2

1+ 2as N
2

 +
h

2
1+ 2as N

2
 +

1

1+ 2as N
2

 

 

 
  

 

 

 
  

 

 

 
 
 

 

 

 
 
 

 (21)

where 
  
a = h /m  is the oscillator strength in the transverse direction and r, t( )  =  y,z, t( ) x, t( ) .  In the special

case of weakly interacting Bose particles, as N
2

<<1 , Eq. (21) reduces to a cubic NLS with external potential V:

  

i h
t

 =  
h

2

2m

2

x
2

 +  V x( )  +
g N

2 a
2

2
 

 
 

 

 
  

while in the limit of strongly interacting axial high-density condensate as N
2

>>  1 (but with overall 3D dilute

condensate  as N
2

<<  1 ), reduces to the quadratically nonlinear NLS

  

i h
t

 =  
h

2

2m

2

x
2

 +  V x( )  +
3

2

g N
1/ 2

2 a
2

2as

 

 

 
 

 

 

 
 
 

We intend to consider these equations as well as the full 3D GP equation using quantum lattice algorithms.

384     Proc. of SPIE Vol. 5436



ACKNOWLEDGMENTS
This work was supported by the Directorate of Computational Mathematics, Air Force Office of Scientific Research.

REFERENCES
[1]  Y. S. Kivshar and G. P. Agrawal, Optical Solitons – from fibers to photonic crystals,  Academic Press, London, 2003

[2] S. Inouye, M. R. Andrews, J. Stenger, H. –J. Miesner, D. M. Stamper-Kurn and W. Ketterle, “Observation of

Feshbach resonances in a Bose-Einstein condensate”, Nature 392, 575-579 (1998)

[3]  G. Vahala, L. Vahala and J. Yepez, “Quantum lattice gas representation of some classical solitons”. Phys. Lett. A

310, 387-396 (2003)

[4] G. Vahala, L. Vahala and J. Yepez, “Quantum lattice gas representation of vector solitons”, SPIE Conf. Proc. 5105,

273-281 (2003)

[5]  N. Akhmediev and A. Ankiewicz, “First-order exact solutions of the nonlinear Schrodinger equation in the normal-

dispersion regime”, Phys. Rev. A 47, 3213-3221 (1993)

[6]  Th. Busch and J. R. Anglin, “Dark-bright solitons in inhomogeneous Bose-Einstein condensates,”Phys. Rev. Lett. 87,

010401 (2001)

[7] ]  J. Yepez and B. M. Boghosian, “An efficient and accurate quantum lattice-gas model for the many-body

Schrodinger wave equation”., Comp. Phys. Comm., 146, 280-294 (2002)

[8] I. Bialynicki-Birula, “Weyl, Dirac, and Maxwell equations on a lattice as unitary cellular automoata”, Phys. Rev. D

49, 6920-6927 (1994)

[9]  Th. Busch and J. R. Anglin, “Mossbauer effct for dark solitons in Bose-Einstein condensates”, to be published

[arXiv:cond-mat/9809408, revised Dec. 22, 2003]

[10]  Th. Busch and J. R. Anglin, “Motion of dark solitons in trapped Bose-Einstein condensates”, Phys. Rev. Lett , 84,

2298-2301, (2000).

[11]  L. Salasnich, A. Parola and L. Reatto, “Effective wave equations for the dynamics of cigar-shpaed and disk-shaped

Bose condensates”, Phys. Rev. A 65, 043614 (2002)

Proc. of SPIE Vol. 5436     385


