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Abstract

In recent work [Phys. Rev. E 68 (2003) 025103], it was shown that the requirement of Galilean invariance determined
the form of theH function used in entropic lattice Boltzmann models for the incompressible Navier—Stokes equafions in
dimensions. The form obtained was that of the Burg entropyfer 2, and the Tsallis entropy with= 1—2/D for D # 2.

The conclusions obtained in that work were restricted to particles of a single-mass and speed on a Bravais lattice. In this work,
we generalize the construction of such Galilean-invariant entropic lattice Boltzmann models by allowing for certain models
with multiple masses and speeds. We show that the reqédradhction for these models must be determined by solving a
certain functional differential equation. Remarkably, the solutions to this equation also have the form of the Tsallis entropy,
wheregq is determined by the solution to a certain transcendental equation, involving the dimension and symmetry properties
of the lattice, as well as the masses and speeds of the particles.
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1. Introduction

Lattice Boltzmann models of fluid®,3] evolve single-particle distribution functions in discrete-time steps on a
regular spatial lattice. That is, velocity space is discrete, and is comprised of (possibly linear combinations of) the
lattice vectors themselves. In spite of this very radical simplification of the Boltzmann equation, it has been shown
thatthe incompressible Navier—Stokes equations emerge unscathed in the limit of small Mach and Knudsen numbers.

Inthe most general situation, the collection of velocities that is retained do not all have the same magnitude, and we
denote them by, ;, where the index is associated with the magnitudg,= |c,, ;|, andj enumerates the velocity
vectors with that speed; velocities with the same indexe said to be in the sanspeed class. The single-particle
distribution corresponding to lattice vectqy; at lattice positiorx and time step is denoted by, ;(x, 7). The
simplest lattice Boltzmann models employ a collision operator of BGK fi@dimso that their evolution equation is

1
NajX +Cajo 1+ AD = Nojx, 1) + [N, (6, 1) = Noj (. )] (1)

forj =1,..., b, for each speed. Hereb, is the number of velocities with speeg, ij@(x, 1) is a specified

equilibrium distribution function that depends only on the values of the conserved quantities at a sitas and
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a characteristic collisional relaxation time. Using a discrete-velocity version of the Chapman—Enskog analysis
[3], we shall show that the mass and momentum moments of the distribution function obey the incompressible
Navier—Stokes equations for certain choices of equilibrium distribution.

The viscosity that appears in the Navier—Stokes equations obtained from these models is propottiedzPto
To lower viscosity and thereby increase Reynolds number, practitioners often “over-relax” the collision operator
by using values of in the rangg1/2, 1]. Though the method is guaranteed to be numerically stable fod, no
such guarantees apply whenc 1, and the method is fraught with numerical instabilities, which limit the highest
Reynolds numbers attainable.

In an effort to understand and thereby avoid these instabilities, there has been much recent iresetresidn
lattice Boltzmann models [5—7]. These models are motivated by the fact that the loss of numerical stability is due to
the absence of alH-theoren 7]. Numerical instabilities evolve in ways that would be precluded by the existence of
a well-behaved Lyapunov function. The idea behind entropic lattice Boltzmann models is to spegifyiaction,
rather than just the form of the equilibrium distribution; of course, the latter is that which extremizes the former.
The evolution will be required never to decredégyielding a discrete-timéf-theorem; this is to be distinguished
from other discrete models of fluid dynamics for which Artheorem may be demonstrated only in the limit of
vanishing time stef8], or not at all.

To ensure that collisions never decreakeghe characteristic collision timeis made a function of the incoming
state by solving for the smallest valagiy, < 1 that does not incread#. The value then used ts= tiin/k, where
0 < x < 1. It has been shown that the expression for the viscosity obtained by the Chapman—Enskog analysis will
approach zero asapproaches unitjp—7]. Thus, the entropic lattice Boltzmann methodology allows for arbitrarily
low viscosity together with a rigorous discrete-tirtHetheorem, and thus absolute stability. The upper limit to the
Reynolds numbers attainable by the model is therefore determined by loss of resolution of the smallest eddies,
rather than by loss of stabilify,9—11]

In an earlier paper, we constructed entropic lattice Boltzmann models for the incompressible Navier—Stokes
equations that are Galilean-invariant to second order in Mach number, and we showed that the requirement of
Galilean invariance makes the choicefbfunction unique. More specifically, we showed that the required function
has the form of the Burg entroft2] in two dimensions, and the Tsallis entropy in higher dimensions. These
conclusions were based on single-speed lattice Boltzmann models on Bravais lattices.

In this work, we generalize the construction of such Galilean-invariant entropic lattice Boltzmann models by
allowing for the treatment of certain models with multiple particle masses and speeds. We show that the required
H function for these more general models must be determined by solving a certain functional differential equation.
Remarkably, the solutions to this equation also have the form of the Tsallis entropy, isetetermined by the
solution to a certain transcendental equation. This equation involves the dimension and symmetry properties of the
lattice, as well as the masses and speeds of the particles in the model.

In Section 2we describe the lattices used for our multispeed lattice Boltzmann models. In particular, we introduce
notation for sums of outer products of velocity vectors, which play an important role in the Mach number expansion
of the equilibrium distribution and the Chapman—Enskog analysis. To make the analysis tractable, we restrict our
attention to multi-speed models for which each speed class separately satisfies the isotropy requiredeetits)
we specify the form of the equilibrium distribution function, assuming only thatiHenction is of trace form,
and we derive the Mach number expansion of this equilibriunAdpendix Awe construct a lattice BGK kinetic
equation with this equilibrium distribution and apply the Chapman—Enskog analysis to it, solving it in the asymptotic
limit of small Knudsen and Mach number. The resulting hydrodynamic equations are presedgetian 4 These
are of Navier—Stokes form, and the derivation yields the equation of state for the pressure, the viscosityg and the
factor that may multiply the convective derivative.3ection 5 we examine the requirement that 1, needed to
restore Galilean invariance in the context of four examples. The first is the single-speed model, in order to show that
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our methodology is able to recover the previously known results; the second is a single-speed model augmented by
the addition of rest particles of the same mass; the third allows the rest particles to have a different mass from the
moving particles; and the fourth is the general case, subject to the above-described restriction on our lattice.

2. Description of lattice

As noted above, velocity vectors are grouped into “speed classes” based on their magnitudes. We may associate
these magnitudes with speeds, since the unit of time is taken torbe 1. We denote the velocity vectors by
Cq, j» and assume that these are (linear combinations of) lattice vectorsa liem@ index denoting a certain speed
class, and indexes the vectors within that class. All lattice vectors within a speed class have the same magnitude
ICq, j| = ¢4, and are associated with particles of the same mags,

Sums of outer products of the velocity vectors arise frequently in the analysis of lattice Boltzmann models. Within
a speed class, these sums are denoted by

ba

n
bn,a = Z®Ca,j, (2)
J

so that, in particulaby , = b,. We assume that these quantities vanish forqduhd that they are isotropic tensors
for evenn < 4. That is, we assume that

b2,a = bZ,ula (3)

b4,a = b4,a per(l ® 1)7 (4)
where “per” denotes a sum over all symmetric permutations of tensor compdrfeBisvais latticg1,3] will have

byc?
bZ,a = aDa s (5)
bac4

bag=——2—, 6
*“~D(D+2 ©)

but we shall not specialize to this case in what follows. The assumption that the outer products of lattice vectors for
evem < 4beisotropic tensors, separately within each speed class, is restrictive. It eliminates from our consideration
certain interesting models (such as the D2Q9, D3Q15 and D3Q19 njdpefswhich these tensors are not isotropic

within each speed class, but are so when combined in weighted sums across speed classes. Nevertheless, it admi
an important class of multi-speed models while simplifying the analysis considerably, so we restrict attention to
that case in this paper.

3. Equilibrium distribution

The conserved quantities that we shall consider are the mass density, given by
n by
p=2_2 maNaj @)
a j

1 That s, if Aep, are the components of a rank-three tensor, thetgs, = Aqgy + Ayup + Apya-
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and the momentum density, given by
n by
pu = Z maCa,jNa,j. (8)
a j

We do not consider a hydrodynamic equation for energy since, in the incompressible limit, that decouples from
the evolution equations for mass and momentum. That is, the incompressibility condition and momentum equation
may be solved fop andu without need for the energy equation though, of course, the reverse is not true. In other
words, the energy becomes a passive variable with respect to the dynamics in the incompressible limit, so we neec
not consider it here.

In keeping with earlier workl], we assume that th# function is of trace form

ba
H=7"% hNy, 9

a (=1

whereh’(x) > 0 for x > 0. If we extremize this under the assumption thatnd pou are conserved, we find the
equilibrium distribution function

NED = g(uma + B maCa, ), (10)

wheren andp are the Lagrange multipliers determined by the constraintsgahd inverse function of’.
We expand the equilibrium distribution to second order in Mach number formally, g an expansion
parameter

NP = p(uma) + mad! (uma)B - Ca,j + 3m2¢" (1uma) BB Ca,jCa.j- (11)

Egs. (7) and (8are then used to derive the constraints

1

P = azjmaNl(liq) = ;mu(b(ﬂmu)bo,a + E,Bﬂ : ;msqb”(ﬂma)b&uv (12)

pu = Zmaca,jNa(iq) =8B ng(p/(,u,ma)bz,a. (13)
a,j a

Under the assumption thbt , = b, 4,1, for £ < 4, the above equations become

p=) maboad(ma) + i > " m3b2.ad” (uma), (14)
a ’ 2 a ¢ ’

pu= B> mZbz . (ma). (15)

a

The second of these yields

B= o
Yo mab o' (umg)’

and the first then yields

(16)

p2u? Y mibs 4@ (umy)

2 [Y,m2b2a¢ (umg)]? (17)

P = Zmabo,aﬁb(ﬂma) +
a
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To proceed, we define the functions

By(2) = ) Mabn.ad(@My). (18)

Note that the/th derivative of these is given by

DO (2) =Y mitb, 0 (zmy). (19)

In terms of thesep may be written

2.2 ! 2.2 "
p-u ¢2(M) , pPu ®2(M)
= do(u) + —2 " = Po(u) + P
P = POU T oz — PO P G @ or?
2.2 1
P () )
= + y ’ . 20
° (“ 2 opwlepi? (20)
The Lagrange multiplier is then obtained by first writing
_ 2u? ()
=50 - - 2 @)

2 oH(wlPy(w]?

and applying this equation to itself iteratively, until the right-hand side no longer contarplicitly. We find

pPu? (D5 (p))

=5t (p) - - - : (22)
° 2 @@y ()PP (0))]2
It follows that the first term on the right iEqg. (11)may be written
_ 2% DDy (0)mad (B5 (P)my)
D(umq) = (& (p)mg) — o L0 m 0 T (23)
¢0(q§0 (,0))[¢2((D0 (»)]
Finally, the Lagrange multiplieg is given by
u u
p=—" 4 (24)

T ) Dy dyt(p)

and we are ready to write down the complete Mach-expanded equilibrium distribution function, expressed in terms
of the conserved quantitigsand pu

mad (@5 (p)my)

N = ¢(@5 (pma) + pU - Caj
@ 0 @ (d51(p)) N
2 Vi -1
puu o2 s rop—1 Py (P () }
— 2 (@5 (0)ma)Ca, jCaj — mad (D L (p)mg) 201 Y (25)
2[4 (D51 ()] 0 e 0 @) (P51 ()

4, Hydrodynamic equations

We now insert the form of the equilibrium distribution derivediection 3nto the BGK kinetic equatiorgq. (1)
and perform the Chapman—-Enskog asymptotic analysis for small Knudsen number. In fact, we take the Knudsen
and Mach numbers to be of the same order, as is appropriate for the incompressible Navier—Stokes equations. The



174 B.M. Boghosian et al./ Physica D 193 (2004) 169-181
details of this analysis are presentedhippendix A The resulting hydrodynamic equations &eu = 0 and the
incompressible Navier—Stokes equation
au
E+gu-Vu=—VP+vV2u, (26)

where we have defined the scalar pressure

Dod, Doy pu?
P=¢>2+|: 0/;_ ? /Z]ﬂ 27)
(@)% P, 2
the kinematic viscosity
1\ o,
=|lt— =)=, 28
= (-3) % 9
and the factor multiplying the convective derivative
q)Od)Z
g= 0% (29)
(@))2

Here, all of the functiong,, are understood to be evaluate@%‘ll(p). We note that the correct form of the convective
derivative, and therefore Galilean invariance, is recovered wheri.

It should be noted that the expression foabove is specific to the choice of a BGK collision operator with
constantr, but the results fog and P are more general than that. Once we determine the form for the furiction
that will makeg = 1, we could use it to construct a variahleentropic lattice Boltzmann collision operator, with
relaxation parametear as described above, and perform a Chapman—Enskog analysis of that. The important result
thatg = 1 would be unaltered, as would the equation of state, but the expression for the viscosity would be different,
approaching zero asapproaches unity. We shall not provide the details of this entropic collision operator in this
paper, but rather focus solely on the determinatioh.of

5. Examples

The requirement of Galilean invariance is theg 1, or
(Po@z _
(AN

(30)

In this section, we solve this equation for four different example lattice models. The first is the single-speed lattice
Boltzmann equation with a Bravais lattice; here we make contact with previous results. In our second example, we
generalize this to include a zero-velocity component to the distribution—the case of so-called “rest particles™—with
the same mass as the moving particles. Here we show that the solutiostfibhas power-law form, and present

an analytic form for it that generalizes the result for a Bravais lattice. In our third example, we allow the rest particle
to have a different mass from the moving particles. Remarkably, we can show that a power-law solutisrsfibr
obtained, that the power required satisfies a certain transcendental equation, and that this equation is guaranteed
have a solution for that power. Finally, we treat the general case, subject to the restrictions on our choice of lattice
that were described above. We show that the power-law form again holds, and that the power required again satisfie
a certain transcendental equation; in this general case, however, we are unable to demonstrate the existence of
solution for that power.
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5.1. Single-speed models

In the case of a single-speed model, the indéxkes on only one value, which we may suppress. We have

Po(z) = mbog(zm), (31)
b
®5(2) = Mbpg(2m) = b—id’o(z), (32)
b
P4(2) = mhap(@m) = ;do(a). (33)
soEq. (30)yields
$()¢" (x) = 37[¢' W), (34)
where we have defined the new independent variablezm, and the coefficient
b
A= . 35
Vboba (35)

Eqg. (34)is a generalization of the differential equation derivefllih This equation has solution
$0) = Alx — BV, (36)

whereA and B are arbitrary constants. The inverse function of this must then be

oo 7\ 1-22
W@ =B+(=) . (37)
which integrates to yield
ho+Bz+Alnz if A=4/2,
h(z) = A2—1 2-2% _ . 38
@ ho+Bz— (Az 2> A1 (% otherwise (38)

The leading linear function of is unimportant, as it results in nothing more than a constant addition té/the
function; likewise, the multiplicative constant in front of the remaining piece is unimportant and may be set to unity.
What remains has the form of a Tsallis entropy wijth: 2 — A2 for A # +/2, and a Burg entropy otherwise. For a
Bravais lattice, we havi = /1 + 2/D, so thaty = 1 — 2/D, as reported in earlier woil].

5.2. Modelswith rest particles of the same mass

To understand the complications that arise when more than one speed is used in entropic lattice Boltzmann
models, we next consider the additionipf rest particles” to the,, single-speed model described above. Here
we have introduced the speed labels: r for the rest particles, and= m for the moving particles. We note that
bo,r = by, but thatby . = bs, = 0 since the rest particles have zero speed. It follows that

Po(z) = mmbO,m(P(Zrnm) + mrbO,r(b(Zrnr)’ (39)
D2(2) = Mmub2,mP(ZMy), (40)

DPu(z) = mmb4,m¢(zrnm)9 (41)
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soEq. (30)yields
[6() + yp(un)]d” (x) = A%[¢ (0)]?, (42)

where we have defined the new independent variablezm, and the coefficients

= bem (43)
vV bO,mb4,m
w=2r (44)
mpy
b
= I 20r (45)
My bO,m

If the rest particles have the same mass as the moving particleg, theh, andEq. (42)reduces to
22
(09" () = T [9'I (46)

This is of the same form as the equation obtained with no rest particles, except with the subgftutior? / (1+7).
It follows that the requiredd function again has the form of the Tsallis entropy with

22
q=2— (47)
1+y
with the Burg entropy recovered in the special casetfat 2(1 + y).
For a Bravais lattice, the expression foreduces to
1+2/D
g=2— +—/ (48)
1+ bo,r/bo.m

When the number of rest particlés, - goes to zero, this reduces to the single-speed result.
5.3. Modelswith rest particles of a different mass

If the moving particle mass and rest particle mass differ, thhea 1, andEg. (42)is an example of éunctional
differential equation [13]. Such equations relate the dependent variable and its derivatives at more than one value
of the independent variabfein this case, the value of the dependent varigbdad those of its derivatives atare
related to its value gtx. Such equations are difficult to solve, even when they are linear and the relevant values
of the independent variable are related by additive shifts; our equation is nonlinear, and the relevant values of the
independent variable are related by a multiplicative shift. Remarkably, in spite of all this, our equation admits an
analytic solution, namely the power-law

P(x) = AXP, (49)
whereA is an arbitrary constant, arglsolves the transcendental equation
1 B
vt B _ (50)
A2 p—1

2 Here we are using the terfunctional differential equation in a sense most often used by mathematicja8% Physicists often use the term
to refer to differential equations that involve what they ¢atictional derivatives, which are what mathematicians cBikechet derivatives. Lest
there be any confusion, that is most emphaticatiyywhat we are talking about here.
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The inverse function op is
, 2\
W =(5)" (51)

and this integrates to give

B AB (z\W+UB
h(z)—ho—i-m() :

The contribution tad from a given site is then

: (52)

n by n by 1 ,3 n by 1418
D2 hWNap=ho| 3231 +m(m)zz% : (53)
a J a J a J
SinceA andhg are arbitrary, it is clear that this can be brought into correspondence with the Tsallis entropic form,
which is a linear function of the sum ove/rzyj. We thus identifyy = 1+ 1/8, whereg must be found by solving
the transcendental equatidgfy. (50)
Since we would like the distribution functigito decrease with increasing argument, we are interested in solutions
with 8 < 0. If . > 1 andu > 1, such a solution will always exist. To see this, note that the funeffgi(s — 1)
is zero wheng = 0 and approaches > 1 asg — —oo; then note that the function4 yu# is 1+ y > 1 when
B = 0 and approaches 1 8s— —oo. Since both curves are continuous, they must cross for gbmé.

5.4. The general case

Encouraged by the last example, we may check to see if a power-law solution always exjst$ fog assume
¢(x) = AXP, then

D,(z) = Z mabn,aA(Zrnz)ﬂ = AZ'B Z m(J;Jrﬂbn,a- (54)
a a

Inserting this intdeq. (30) we quickly find that8 must satisfy the transcendental equation

(Zu matP bo,a) (Za miﬂsb‘ka) _ B . (55)

<Za miwbz,a)z p-1

The existence of power-law solutions fpthen hinges on the existence of solutions to this transcendental equation
with 8 < 0. Though we saw that such solutions exist for single-speed models and models with a single-speed
plus rest particles, it seems difficult to draw conclusions about the existence of more general solutions to this
transcendental equation, and we leave the matter to future inquiry.

6. Conclusions

Previous work[1] has established that the requirement of Galilean invariance determines the formmf the
function for single-speed, single-mass entropic lattice Boltzmann models on a Bravais lattice. This function was
found to have the form of a Tsallis entropy, wigh= 1 — 2/D, whereD is the spatial dimension. In this study,
we have extended the validity of this result to models with multiple speeds, and particles of different masses. We
carried out the full Boltzmann/Chapman—Enskog analysis for such models, and applied our results to four examples.
The first was the single-speed model, to verify that we could reproduce the earlier result. The second was the same
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model with the addition of rest particles of the same mass; here we showed that the only effect was to change the
value ofg. Our third and fourth examples involved particles of more than one mass; here we showedhilmsit

satisfy a certain functional differential equation, that this equation has a solution in power-law form, and that the
power is determined by a transcendental equation. Thus, we have shown that the power-law ideextremely

robust.

We note that our choice of the form @ differs from that of Karlin et al[6], which is of the formH =
Zf? N;In(N;/ W;), where theW; are speed-dependent weights. These weights are equal to the global equilibrium
at zero flow; thus, whewv; = W; they haveH = 0. Thus, by allowing weighted contributions #, they found
solutions for which: has the form of a (relative) Boltzmann entropy; by contrast, the present work assumes uniform
contributions toH, and finds solutions for which is not a Boltzmann entropy. Both approaches are capable of
yielding Galilean-invariant hydrodynamics. A more general formHdhat will subsume both approaches as special
cases, remains an interesting theoretical challenge.

Another outstanding problem involves the restriction that we imposed on the choice of lattice. Though the
requirement that the second-rank and fourth-rank tensors formed from sums of outer products of the velocities
be isotropic within each speed clasparately allowed for a simplified analysis, it seems unnecessary. There are
known lattice Boltzmann models for which this is not true, but which nevertheless yield the isotropic Navier—Stokes
equations in the hydrodynamic limit; this is because the union of velocity vectors across all speed classes does
satisfy the isotropy requirements. For example, the very popular D2Q9, D3Q15 and D3Q19 models fall into this
category3].

The analysis of the transcendental equatiorgfdgq. (55) to see under what circumstance there exist solutions
with 8 < 0, remains yet another outstanding problem.

Finally, in addition to these technical challenges, it would be useful and enlightening to have some physical
reason for the appearance of the Tsallis entropic form in this context. This form has often been reported as arising
from a lack of ergodicity, or a fractal spatiotemporal structure. There is no clear reason to believe that either of
these ingredients are present in the current context; yet the Tsallis entropic form appeared quite naturally from our
mathematical development. Thus, a clear and illuminating physical interpretation of our result remains perhaps the
most important outstanding challenge that we leave for future work.
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Appendix A. Lattice Boltzmann equation and Chapman-Enskog analysis

Using the equilibrium distribution function derived 8ection 3 the kinetic equatiorzg. (1) may be rewritten
as

Na,j(X, 1) + T[Na j(X + Ca .  + AD) = Ng j(X, D] = Ny (X, 1) (A1)
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or
{1 +t [exp(ca,j V) eXp(At%) - 1“ No j(. 1) = NP (x, 1), (A.2)
which has the formal solution
Ng j(X, 1) = {1 + [exp(ca,j V) exp(At%) - 1} }l ij‘.“)(x, 1. (A.3)

We introduce the order parameteby the following prescription, appropriate for viscous incompressible flow
(Mach and Knudsen numbers of ordgr

Ca,j = €Cq,js (A.4)
At — €2At, (A.5)

and we allow for the equilibrium distribution to be ordered in Mach number

(BQ) ¢ \7(€G6)
N, Z €Ny - (A.6)
The result
d =~
Naj =11+t |expec, ;- V)exp(ear—) -1 Y NG (A7)
s ot a
£=0
may be solved perturbatively by ordering, ; in the expansion parameter
[e¢)
Naj=Y €N (A.8)
=0
At orders zero, one and two, we find
N(O) N(eo,o>’ (A.9)
N = NEW — 1, ;- VNI, (A.10)
2 1 a 1 0
N2 = N —1c, ;- VN — 1 [AIE - (r 2) CaCaj VV} NEFO (A.11)

We shall use these to derive the leading gradient corrections to the distribution function, and insert these into the
conservation equations to arrive at the hydrodynamical equations for the system.
We now proceed to the Chapman—Enskog analysis. The ordering of our local equilibrium distribution function is

N = o(@g (oma), (A12)
Ieh—1
;elq’l) mad’ (¢0_1(:O)ma) u- Ca,j7 (Alg)
(@5 (p)
p 2 q)// @
002 = P et (@5 (0ma)Ca, G — & (@ o)m )M : (A14)

Gl 2@l <p>)]2 a0 (p))
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InsertingEgs. (A.12)—(A.14)nto Egs. (A.9)—(A.11)we get

N = ¢(@y pIma). (A15)
mad (@5 (p)ma)
Npj = ——— 23— pU- G, (A.16)
(])2((])0 ()
2
@) puu o2 g1 11 (D5 (p))
=5 - Ma® (Po T (PIMa)Cq, jCaj — M (Py T (P)mg )—
“ 2@y (0)]2 ° ” ° D@y ()
mad (D5 (p)ma)
- ; % Ca,jCa,j -+ (VU). (A.17)
qjg(q)o (0)
The solution to the kinetic equation to second order is then the sum of these
Noj =N +eNS + N2+ 0@, (A.18)

and the conservation equations are obtained by taking moments of the Taylor-expanded kinetic equation to secon
order

1
Eca,jca,j : VV1\]11,j = Qa,j: (Alg)

whereg?, ; denotes the collision operator. The mass moment yields

0Ny, j
At o +Caj- VNg j+

b,
dp 1 [ &
PR AICOR A Z Zmacu,jca,jzva,,- =0, (A.20)

while the momentum moment yields

b n b

) n a 1 a
E(pu) +V. E E MaCq, jCa,jNa,j | + EVV : Z E MqCq, jCa,jCa,jNa,j | = 0. (A.21)

a j a j

We now evaluate the second and third moments which appear in these equations, order by order. For the secon
moments, we find

Z Zmaca jCa, jN(O) Dy, (A22)

) -0 A.23

ZZmaca,cajN ) (A.23)
n_ bq 1 2 /" ’
@0@ oD | pu b D,

szaca,cajzv(zj [((p A q§,:|71~|—((p/4)2,0 uu—7 % p[(V WI+Vu+(vVu)'], (A.24)

where the superscript T denotes “transpose”, and the arguments of @lkthee understood to b, 1(p). For the
third moments, we find
n by
ZZ’”“C“ 7Ca.iCa, ,N(O) 0, (A.25)
a j
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n b

- W _ @
DD MaCa G, iCa jNgj = 5P PEML@ W), (A.26)
a j 2
n by
2
D> MaCaCa.jCa Ny =0, (A.27)
@

where, as noted earlier, “per” denotes a sum over all symmetric permutations of tensor components.

We now insert the above results irffgs. (A.20) and (A.21)and we adhere to the incompressible limit so that
time and space derivatives pfare of higher order i and hence ignored. The hydrodynamic equations given in
Section 4follow immediately.
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