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Abstract

In recent work [Phys. Rev. E 68 (2003) 025103], it was shown that the requirement of Galilean invariance determined
the form of theH function used in entropic lattice Boltzmann models for the incompressible Navier–Stokes equations inD

dimensions. The form obtained was that of the Burg entropy forD = 2, and the Tsallis entropy withq = 1− 2/D forD �= 2.
The conclusions obtained in that work were restricted to particles of a single-mass and speed on a Bravais lattice. In this work,
we generalize the construction of such Galilean-invariant entropic lattice Boltzmann models by allowing for certain models
with multiple masses and speeds. We show that the requiredH function for these models must be determined by solving a
certain functional differential equation. Remarkably, the solutions to this equation also have the form of the Tsallis entropy,
whereq is determined by the solution to a certain transcendental equation, involving the dimension and symmetry properties
of the lattice, as well as the masses and speeds of the particles.
© 2004 Published by Elsevier B.V.
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1. Introduction

Lattice Boltzmann models of fluids[2,3] evolve single-particle distribution functions in discrete-time steps on a
regular spatial lattice. That is, velocity space is discrete, and is comprised of (possibly linear combinations of) the
lattice vectors themselves. In spite of this very radical simplification of the Boltzmann equation, it has been shown
that the incompressible Navier–Stokes equations emerge unscathed in the limit of small Mach and Knudsen numbers.

In the most general situation, the collection of velocities that is retained do not all have the same magnitude, and we
denote them byca,j, where the indexa is associated with the magnitude,ca ≡ |ca,j|, andj enumerates the velocity
vectors with that speed; velocities with the same indexa are said to be in the samespeed class. The single-particle
distribution corresponding to lattice vectorca,j at lattice positionx and time stept is denoted byNa,j(x, t). The
simplest lattice Boltzmann models employ a collision operator of BGK form[4], so that their evolution equation is

Na,j(x + ca,j, t +
t) = Na,j(x, t)+ 1

τ
[N(eq)

a,j (x, t)−Na,j(x, t)] (1)

for j = 1, . . . , ba, for each speeda. Hereba is the number of velocities with speedca, N
(eq)
a,j (x, t) is a specified

equilibrium distribution function that depends only on the values of the conserved quantities at a site, andτ is
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a characteristic collisional relaxation time. Using a discrete-velocity version of the Chapman–Enskog analysis
[3], we shall show that the mass and momentum moments of the distribution function obey the incompressible
Navier–Stokes equations for certain choices of equilibrium distribution.

The viscosity that appears in the Navier–Stokes equations obtained from these models is proportional toτ−1/2.
To lower viscosity and thereby increase Reynolds number, practitioners often “over-relax” the collision operator
by using values ofτ in the range(1/2,1]. Though the method is guaranteed to be numerically stable forτ ≥ 1, no
such guarantees apply whenτ < 1, and the method is fraught with numerical instabilities, which limit the highest
Reynolds numbers attainable.

In an effort to understand and thereby avoid these instabilities, there has been much recent interest inentropic
lattice Boltzmann models [5–7]. These models are motivated by the fact that the loss of numerical stability is due to
the absence of anH-theorem[7]. Numerical instabilities evolve in ways that would be precluded by the existence of
a well-behaved Lyapunov function. The idea behind entropic lattice Boltzmann models is to specify anH function,
rather than just the form of the equilibrium distribution; of course, the latter is that which extremizes the former.
The evolution will be required never to decreaseH , yielding a discrete-timeH-theorem; this is to be distinguished
from other discrete models of fluid dynamics for which anH-theorem may be demonstrated only in the limit of
vanishing time step[8], or not at all.

To ensure that collisions never decreaseH , the characteristic collision timeτ is made a function of the incoming
state by solving for the smallest valueτmin < 1 that does not increaseH . The value then used isτ = τmin/κ, where
0< κ < 1. It has been shown that the expression for the viscosity obtained by the Chapman–Enskog analysis will
approach zero asκ approaches unity[5–7]. Thus, the entropic lattice Boltzmann methodology allows for arbitrarily
low viscosity together with a rigorous discrete-timeH-theorem, and thus absolute stability. The upper limit to the
Reynolds numbers attainable by the model is therefore determined by loss of resolution of the smallest eddies,
rather than by loss of stability[7,9–11].

In an earlier paper, we constructed entropic lattice Boltzmann models for the incompressible Navier–Stokes
equations that are Galilean-invariant to second order in Mach number, and we showed that the requirement of
Galilean invariance makes the choice ofH function unique. More specifically, we showed that the required function
has the form of the Burg entropy[12] in two dimensions, and the Tsallis entropy in higher dimensions. These
conclusions were based on single-speed lattice Boltzmann models on Bravais lattices.

In this work, we generalize the construction of such Galilean-invariant entropic lattice Boltzmann models by
allowing for the treatment of certain models with multiple particle masses and speeds. We show that the required
H function for these more general models must be determined by solving a certain functional differential equation.
Remarkably, the solutions to this equation also have the form of the Tsallis entropy, whereq is determined by the
solution to a certain transcendental equation. This equation involves the dimension and symmetry properties of the
lattice, as well as the masses and speeds of the particles in the model.

In Section 2, we describe the lattices used for our multispeed lattice Boltzmann models. In particular, we introduce
notation for sums of outer products of velocity vectors, which play an important role in the Mach number expansion
of the equilibrium distribution and the Chapman–Enskog analysis. To make the analysis tractable, we restrict our
attention to multi-speed models for which each speed class separately satisfies the isotropy requirements. InSection 3,
we specify the form of the equilibrium distribution function, assuming only that theH function is of trace form,
and we derive the Mach number expansion of this equilibrium. InAppendix Awe construct a lattice BGK kinetic
equation with this equilibrium distribution and apply the Chapman–Enskog analysis to it, solving it in the asymptotic
limit of small Knudsen and Mach number. The resulting hydrodynamic equations are presented inSection 4. These
are of Navier–Stokes form, and the derivation yields the equation of state for the pressure, the viscosity, and theg

factor that may multiply the convective derivative. InSection 5, we examine the requirement thatg = 1, needed to
restore Galilean invariance in the context of four examples. The first is the single-speed model, in order to show that
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our methodology is able to recover the previously known results; the second is a single-speed model augmented by
the addition of rest particles of the same mass; the third allows the rest particles to have a different mass from the
moving particles; and the fourth is the general case, subject to the above-described restriction on our lattice.

2. Description of lattice

As noted above, velocity vectors are grouped into “speed classes” based on their magnitudes. We may associate
these magnitudes with speeds, since the unit of time is taken to be
t = 1. We denote the velocity vectors by
ca,j, and assume that these are (linear combinations of) lattice vectors. Herea is an index denoting a certain speed
class, andj indexes the vectors within that class. All lattice vectors within a speed class have the same magnitude
|ca,j| = ca, and are associated with particles of the same mass,ma.

Sums of outer products of the velocity vectors arise frequently in the analysis of lattice Boltzmann models. Within
a speed class, these sums are denoted by

bn,a ≡
ba∑
j

n⊗ ca,j, (2)

so that, in particular,b0,a = ba. We assume that these quantities vanish for oddn, and that they are isotropic tensors
for evenn ≤ 4. That is, we assume that

b2,a = b2,a1, (3)

b4,a = b4,a per(1 ⊗ 1), (4)

where “per” denotes a sum over all symmetric permutations of tensor components.1 A Bravais lattice[1,3] will have

b2,a = bac
2
a

D
, (5)

b4,a = bac
4
a

D(D+ 2)
, (6)

but we shall not specialize to this case in what follows. The assumption that the outer products of lattice vectors for
evenn ≤ 4 be isotropic tensors, separately within each speed class, is restrictive. It eliminates from our consideration
certain interesting models (such as the D2Q9, D3Q15 and D3Q19 models[3]) in which these tensors are not isotropic
within each speed class, but are so when combined in weighted sums across speed classes. Nevertheless, it admits
an important class of multi-speed models while simplifying the analysis considerably, so we restrict attention to
that case in this paper.

3. Equilibrium distribution

The conserved quantities that we shall consider are the mass density, given by

ρ =
n∑
a

ba∑
j

maNa,j, (7)

1 That is, ifAαβγ are the components of a rank-three tensor, then per(A)αβγ = Aαβγ + Aγαβ + Aβγα.
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and the momentum density, given by

ρu =
n∑
a

ba∑
j

maca,jNa,j. (8)

We do not consider a hydrodynamic equation for energy since, in the incompressible limit, that decouples from
the evolution equations for mass and momentum. That is, the incompressibility condition and momentum equation
may be solved forρ andu without need for the energy equation though, of course, the reverse is not true. In other
words, the energy becomes a passive variable with respect to the dynamics in the incompressible limit, so we need
not consider it here.

In keeping with earlier work[1], we assume that theH function is of trace form

H =
∑
a

ba∑
i=1

h(Ni), (9)

whereh′(x) ≥ 0 for x > 0. If we extremize this under the assumption thatρ andρu are conserved, we find the
equilibrium distribution function

N
(eq)
a,j = φ(µma + β ·maca,j), (10)

whereµ andβ are the Lagrange multipliers determined by the constraints, andφ the inverse function ofh′.
We expand the equilibrium distribution to second order in Mach number formally, usingβ as an expansion

parameter

N
(eq)
a,j = φ(µma)+maφ

′(µma)β · ca,j + 1
2m

2
aφ

′′(µma)ββ : ca,jca,j. (11)

Eqs. (7) and (8)are then used to derive the constraints

ρ =
∑
a,j

maN
(eq)
a,j =

∑
a

maφ(µma)b0,a + 1

2
ββ :

∑
a

m3
aφ

′′(µma)b2,a, (12)

ρu =
∑
a,j

maca,jN
(eq)
a,j = β ·

∑
a

m2
aφ

′(µma)b2,a. (13)

Under the assumption thatb!,a = b!,a1! for ! ≤ 4, the above equations become

ρ =
∑
a

mab0,aφ(µma)+ β2

2

∑
a

m3
ab2,aφ

′′(µma), (14)

ρu = β
∑
a

m2
ab2,aφ

′(µma). (15)

The second of these yields

β = ρu∑
a m

2
ab2,aφ′(µma)

, (16)

and the first then yields

ρ =
∑
a

mab0,aφ(µma)+ ρ2u2

2

∑
a m

3
ab2,aφ

′′(µma)
[
∑

a m
2
ab2,aφ′(µma)]2

. (17)



B.M. Boghosian et al. / Physica D 193 (2004) 169–181 173

To proceed, we define the functions

Φn(z) ≡
∑
a

mabn,aφ(zma). (18)

Note that the!th derivative of these is given by

Φ(!)n (z) ≡
∑
a

m!+1
a bn,aφ

(!)(zma). (19)

In terms of these,ρ may be written

ρ=Φ0(µ)+ ρ2u2

2

Φ′′
2(µ)

[Φ′
2(µ)]

2
= Φ0(µ)+Φ′

0(µ)
ρ2u2

2

Φ′′
2(µ)

Φ′
0(µ)[Φ

′
2(µ)]

2

=Φ0

(
µ+ ρ2u2

2

Φ′′
2(µ)

Φ′
0(µ)[Φ

′
2(µ)]

2

)
. (20)

The Lagrange multiplierµ is then obtained by first writing

µ = Φ−1
0 (ρ)− ρ2u2

2

Φ′′
2(µ)

Φ′
0(µ)[Φ

′
2(µ)]

2
, (21)

and applying this equation to itself iteratively, until the right-hand side no longer containsµ explicitly. We find

µ = Φ−1
0 (ρ)− ρ2u2

2

Φ′′
2(Φ

−1
0 (ρ))

Φ′
0(Φ

−1
0 (ρ))[Φ′

2(Φ
−1
0 (ρ))]2

. (22)

It follows that the first term on the right inEq. (11)may be written

φ(µma) = φ(Φ−1
0 (ρ)ma)− ρ2u2

2

Φ′′
2(Φ

−1
0 (ρ))maφ

′(Φ−1
0 (ρ)ma)

Φ′
0(Φ

−1
0 (ρ))[Φ′

2(Φ
−1
0 (ρ))]2

. (23)

Finally, the Lagrange multiplierβ is given by

β = ρu
Φ′

2(µ)
= ρu

Φ′
2(Φ

−1
0 (ρ))

, (24)

and we are ready to write down the complete Mach-expanded equilibrium distribution function, expressed in terms
of the conserved quantitiesρ andρu

N
(eq)
a,j = φ(Φ−1

0 (ρ)ma)+ maφ
′(Φ−1

0 (ρ)ma)

Φ′
2(Φ

−1
0 (ρ))

ρu · ca,j

+ ρ2uu

2[Φ′
2(Φ

−1
0 (ρ))]2

:

{
m2
aφ

′′(Φ−1
0 (ρ)ma)ca,jca,j −maφ

′(Φ−1
0 (ρ)ma)

Φ′′
2(Φ

−1
0 (ρ))

Φ′
0(Φ

−1
0 (ρ))

1

}
. (25)

4. Hydrodynamic equations

We now insert the form of the equilibrium distribution derived inSection 3into the BGK kinetic equation,Eq. (1),
and perform the Chapman–Enskog asymptotic analysis for small Knudsen number. In fact, we take the Knudsen
and Mach numbers to be of the same order, as is appropriate for the incompressible Navier–Stokes equations. The
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details of this analysis are presented inAppendix A. The resulting hydrodynamic equations are∇ · u = 0 and the
incompressible Navier–Stokes equation

∂u
∂t

+ gu · ∇u = −∇P + ν∇2u, (26)

where we have defined the scalar pressure

P = Φ2 +
[
Φ0Φ

′′
4

(Φ′
2)

2
− Φ0Φ

′′
2

Φ′
0Φ

′
2

]
ρu2

2
, (27)

the kinematic viscosity

ν =
(
τ − 1

2

)
Φ′

4

Φ′
2
, (28)

and the factor multiplying the convective derivative

g = Φ0Φ
′′
4

(Φ′
2)

2
. (29)

Here, all of the functionsΦn are understood to be evaluated atΦ−1
0 (ρ). We note that the correct form of the convective

derivative, and therefore Galilean invariance, is recovered wheng = 1.
It should be noted that the expression forν above is specific to the choice of a BGK collision operator with

constantτ, but the results forg andP are more general than that. Once we determine the form for the functionh

that will makeg = 1, we could use it to construct a variable-τ entropic lattice Boltzmann collision operator, with
relaxation parameterκ as described above, and perform a Chapman–Enskog analysis of that. The important result
thatg = 1 would be unaltered, as would the equation of state, but the expression for the viscosity would be different,
approaching zero asκ approaches unity. We shall not provide the details of this entropic collision operator in this
paper, but rather focus solely on the determination ofh.

5. Examples

The requirement of Galilean invariance is theng = 1, or

Φ0Φ
′′
4

(Φ′
2)

2
= 1. (30)

In this section, we solve this equation for four different example lattice models. The first is the single-speed lattice
Boltzmann equation with a Bravais lattice; here we make contact with previous results. In our second example, we
generalize this to include a zero-velocity component to the distribution—the case of so-called “rest particles”—with
the same mass as the moving particles. Here we show that the solution forh still has power-law form, and present
an analytic form for it that generalizes the result for a Bravais lattice. In our third example, we allow the rest particle
to have a different mass from the moving particles. Remarkably, we can show that a power-law solution forh is still
obtained, that the power required satisfies a certain transcendental equation, and that this equation is guaranteed to
have a solution for that power. Finally, we treat the general case, subject to the restrictions on our choice of lattice
that were described above. We show that the power-law form again holds, and that the power required again satisfies
a certain transcendental equation; in this general case, however, we are unable to demonstrate the existence of a
solution for that power.
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5.1. Single-speed models

In the case of a single-speed model, the indexa takes on only one value, which we may suppress. We have

Φ0(z) = mb0φ(zm), (31)

Φ2(z) = mb2φ(zm) = b2

b0
Φ0(z), (32)

Φ4(z) = mb4φ(zm) = b4

b0
Φ0(z), (33)

soEq. (30)yields

φ(x)φ′′(x) = λ2[φ′(x)]2, (34)

where we have defined the new independent variablex = zm, and the coefficient

λ ≡ b2√
b0b4

. (35)

Eq. (34)is a generalization of the differential equation derived in[1]. This equation has solution

φ(x) = A(x− B)1/(1−λ2), (36)

whereA andB are arbitrary constants. The inverse function of this must then be

h′(z) = B +
( z
A

)1−λ2

, (37)

which integrates to yield

h(z) =



h0 + Bz + A ln z if λ = √

2,

h0 + Bz −
(
λ2 − 1

λ2 − 2

)
Aλ

2−1

(
z2−λ2 − z

λ2 − 1

)
otherwise.

(38)

The leading linear function ofz is unimportant, as it results in nothing more than a constant addition to theH

function; likewise, the multiplicative constant in front of the remaining piece is unimportant and may be set to unity.
What remains has the form of a Tsallis entropy withq = 2 − λ2 for λ �= √

2, and a Burg entropy otherwise. For a
Bravais lattice, we haveλ = √

1 + 2/D, so thatq = 1 − 2/D, as reported in earlier work[1].

5.2. Models with rest particles of the same mass

To understand the complications that arise when more than one speed is used in entropic lattice Boltzmann
models, we next consider the addition ofbr “rest particles” to thebm single-speed model described above. Here
we have introduced the speed labelsa = r for the rest particles, anda = m for the moving particles. We note that
b0,r = br, but thatb2,r = b4,r = 0 since the rest particles have zero speed. It follows that

Φ0(z) = mmb0,mφ(zmm)+mrb0,rφ(zmr), (39)

Φ2(z) = mmb2,mφ(zmm), (40)

Φ4(z) = mmb4,mφ(zmm), (41)
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soEq. (30)yields

[φ(x)+ γφ(µx)]φ′′(x) = λ2[φ′(x)]2, (42)

where we have defined the new independent variablex = zm, and the coefficients

λ ≡ b2,m√
b0,mb4,m

, (43)

µ ≡ mr

mm
, (44)

γ ≡ mr

mm

b0,r

b0,m
. (45)

If the rest particles have the same mass as the moving particles, thenµ = 1, andEq. (42)reduces to

φ(x)φ′′(x) = λ2

1 + γ
[φ′(x)]2. (46)

This is of the same form as the equation obtained with no rest particles, except with the substitutionλ2 → λ2/(1+γ).
It follows that the requiredH function again has the form of the Tsallis entropy with

q = 2 − λ2

1 + γ
(47)

with the Burg entropy recovered in the special case thatλ2 = 2(1 + γ).
For a Bravais lattice, the expression forq reduces to

q = 2 − 1 + 2/D

1 + b0,r/b0,m
. (48)

When the number of rest particles,b0,r goes to zero, this reduces to the single-speed result.

5.3. Models with rest particles of a different mass

If the moving particle mass and rest particle mass differ, thenµ �= 1, andEq. (42)is an example of afunctional
differential equation [13]. Such equations relate the dependent variable and its derivatives at more than one value
of the independent variable.2 In this case, the value of the dependent variableφ and those of its derivatives atx are
related to its value atµx. Such equations are difficult to solve, even when they are linear and the relevant values
of the independent variable are related by additive shifts; our equation is nonlinear, and the relevant values of the
independent variable are related by a multiplicative shift. Remarkably, in spite of all this, our equation admits an
analytic solution, namely the power-law

φ(x) = Axβ, (49)

whereA is an arbitrary constant, andβ solves the transcendental equation

1 + γµβ

λ2
= β

β − 1
. (50)

2 Here we are using the termfunctional differential equation in a sense most often used by mathematicians[13]. Physicists often use the term
to refer to differential equations that involve what they callfunctional derivatives, which are what mathematicians callFrechet derivatives. Lest
there be any confusion, that is most emphaticallynot what we are talking about here.
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The inverse function ofφ is

h′(z) =
( z
A

)1/β
, (51)

and this integrates to give

h(z) = h0 + Aβ

1 + β

( z
A

)1+1/β
. (52)

The contribution toH from a given site is then

n∑
a

ba∑
j

h(Na,j) = h0


 n∑

a

ba∑
j

1


+ 1

A1/β

(
β

1 + β

) n∑
a

ba∑
j

N
1+1/β
a,j . (53)

SinceA andh0 are arbitrary, it is clear that this can be brought into correspondence with the Tsallis entropic form,
which is a linear function of the sum overNq

a,j. We thus identifyq = 1 + 1/β, whereβ must be found by solving
the transcendental equation,Eq. (50).

Since we would like the distribution functionφ to decrease with increasing argument, we are interested in solutions
with β < 0. If λ > 1 andµ > 1, such a solution will always exist. To see this, note that the functionλ2β/(β − 1)
is zero whenβ = 0 and approachesλ2 > 1 asβ → −∞; then note that the function 1+ γµβ is 1+ γ > 1 when
β = 0 and approaches 1 asβ → −∞. Since both curves are continuous, they must cross for someβ < 0.

5.4. The general case

Encouraged by the last example, we may check to see if a power-law solution always exists forφ. If we assume
φ(x) = Axβ, then

Φn(z) =
∑
a

mabn,aA(zma)
β = Azβ

∑
a

m1+β
a bn,a. (54)

Inserting this intoEq. (30), we quickly find thatβ must satisfy the transcendental equation(∑
a m

1+β
a b0,a

) (∑
a m

1+β
a b4,a

)
(∑

a m
1+β
a b2,a

)2
= β

β − 1
. (55)

The existence of power-law solutions forφ then hinges on the existence of solutions to this transcendental equation
with β < 0. Though we saw that such solutions exist for single-speed models and models with a single-speed
plus rest particles, it seems difficult to draw conclusions about the existence of more general solutions to this
transcendental equation, and we leave the matter to future inquiry.

6. Conclusions

Previous work[1] has established that the requirement of Galilean invariance determines the form of theH

function for single-speed, single-mass entropic lattice Boltzmann models on a Bravais lattice. This function was
found to have the form of a Tsallis entropy, withq = 1 − 2/D, whereD is the spatial dimension. In this study,
we have extended the validity of this result to models with multiple speeds, and particles of different masses. We
carried out the full Boltzmann/Chapman–Enskog analysis for such models, and applied our results to four examples.
The first was the single-speed model, to verify that we could reproduce the earlier result. The second was the same
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model with the addition of rest particles of the same mass; here we showed that the only effect was to change the
value ofq. Our third and fourth examples involved particles of more than one mass; here we showed thath must
satisfy a certain functional differential equation, that this equation has a solution in power-law form, and that the
power is determined by a transcendental equation. Thus, we have shown that the power-law form forh is extremely
robust.

We note that our choice of the form ofH differs from that of Karlin et al.[6], which is of the formH =∑b
i Ni ln(Ni/Wi), where theWi are speed-dependent weights. These weights are equal to the global equilibrium

at zero flow; thus, whenNi = Wi they haveH = 0. Thus, by allowing weighted contributions toH , they found
solutions for whichh has the form of a (relative) Boltzmann entropy; by contrast, the present work assumes uniform
contributions toH , and finds solutions for whichh is not a Boltzmann entropy. Both approaches are capable of
yielding Galilean-invariant hydrodynamics. A more general form forH that will subsume both approaches as special
cases, remains an interesting theoretical challenge.

Another outstanding problem involves the restriction that we imposed on the choice of lattice. Though the
requirement that the second-rank and fourth-rank tensors formed from sums of outer products of the velocities
be isotropic within each speed classseparately allowed for a simplified analysis, it seems unnecessary. There are
known lattice Boltzmann models for which this is not true, but which nevertheless yield the isotropic Navier–Stokes
equations in the hydrodynamic limit; this is because the union of velocity vectors across all speed classes does
satisfy the isotropy requirements. For example, the very popular D2Q9, D3Q15 and D3Q19 models fall into this
category[3].

The analysis of the transcendental equation forβ, Eq. (55), to see under what circumstance there exist solutions
with β < 0, remains yet another outstanding problem.

Finally, in addition to these technical challenges, it would be useful and enlightening to have some physical
reason for the appearance of the Tsallis entropic form in this context. This form has often been reported as arising
from a lack of ergodicity, or a fractal spatiotemporal structure. There is no clear reason to believe that either of
these ingredients are present in the current context; yet the Tsallis entropic form appeared quite naturally from our
mathematical development. Thus, a clear and illuminating physical interpretation of our result remains perhaps the
most important outstanding challenge that we leave for future work.
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Appendix A. Lattice Boltzmann equation and Chapman–Enskog analysis

Using the equilibrium distribution function derived inSection 3, the kinetic equation,Eq. (1), may be rewritten
as

Na,j(x, t)+ τ[Na,j(x + ca,j, t +
t)−Na,j(x, t)] = N
(eq)
a,j (x, t) (A.1)
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or {
1 + τ

[
exp(ca,j · ∇)exp

(

t

∂

∂t

)
− 1

]}
Na,j(x, t) = N

(eq)
a,j (x, t), (A.2)

which has the formal solution

Na,j(x, t) =
{

1 + τ

[
exp(ca,j · ∇)exp

(

t

∂

∂t

)
− 1

]}−1

N
(eq)
a,j (x, t). (A.3)

We introduce the order parameterε by the following prescription, appropriate for viscous incompressible flow
(Mach and Knudsen numbers of orderε)

ca,j → εca,j, (A.4)


t → ε2
t, (A.5)

and we allow for the equilibrium distribution to be ordered in Mach number

N
(eq)
a,j =

∞∑
!=0

ε!N
(eq,!)
a,j . (A.6)

The result

Na,j =
{

1 + τ

[
exp(εca,j · ∇)exp

(
ε2
t

∂

∂t

)
− 1

]}−1
( ∞∑
!=0

ε!N
(eq,!)
aj

)
(A.7)

may be solved perturbatively by orderingNa,j in the expansion parameterε

Na,j =
∞∑
!=0

ε!N
(!)
a,j. (A.8)

At orders zero, one and two, we find

N
(0)
a,j = N

(eq,0)
a,j , (A.9)

N
(1)
a,j = N

(eq,1)
a,j − τca,j · ∇N(eq,0)

a,j , (A.10)

N
(2)
a,j = N

(eq,2)
a,j − τca,j · ∇N(eq,1)

a,j − τ

[

t

∂

∂t
−
(
τ − 1

2

)
ca,jca,j : ∇∇

]
N
(eq,0)
a,j . (A.11)

We shall use these to derive the leading gradient corrections to the distribution function, and insert these into the
conservation equations to arrive at the hydrodynamical equations for the system.

We now proceed to the Chapman–Enskog analysis. The ordering of our local equilibrium distribution function is

N
(eq,0)
a,j = φ(Φ−1

0 (ρ)ma), (A.12)

N
(eq,1)
a,j = maφ

′(Φ−1
0 (ρ)ma)

Φ′
2(Φ

−1
0 (ρ))

ρu · ca,j, (A.13)

N
(eq,2)
a,j = maρ

2uu

2[Φ′
2(Φ

−1
0 (ρ))]2

:

{
maφ

′′(Φ−1
0 (ρ)ma)ca,jca,j − φ′(Φ−1

0 (ρ)ma)
Φ′′

2(Φ
−1
0 (ρ))

Φ′
0(Φ

−1
0 (ρ))

1

}
. (A.14)
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InsertingEqs. (A.12)–(A.14)into Eqs. (A.9)–(A.11), we get

N
(0)
a,j = φ(Φ−1

0 (ρ)ma), (A.15)

N
(1)
a,j = maφ

′(Φ−1
0 (ρ)ma)

Φ′
2(Φ

−1
0 (ρ))

ρu · ca,j, (A.16)

N
(2)
a,j = ρ2uu

2[Φ′
2(Φ

−1
0 (ρ))]2

:

{
m2
aφ

′′(Φ−1
0 (ρ)ma)ca,jca,j −maφ

′(Φ−1
0 (ρ)ma)

Φ′′
2(Φ

−1
0 (ρ))

Φ′
0(Φ

−1
0 (ρ))

1

}

− τmaφ
′(Φ−1

0 (ρ)ma)

Φ′
2(Φ

−1
0 (ρ))

ρca,jca,j : (∇u). (A.17)

The solution to the kinetic equation to second order is then the sum of these

Na,j = N
(0)
a,j + εN

(1)
a,j + ε2N

(2)
a,j + O(ε3), (A.18)

and the conservation equations are obtained by taking moments of the Taylor-expanded kinetic equation to second
order


t
∂Na,j

∂t
+ ca,j · ∇Na,j + 1

2
ca,jca,j : ∇∇Na,j = Ωa,j, (A.19)

whereΩa,j denotes the collision operator. The mass moment yields

∂ρ

∂t
+ ∇ · (ρu)+ 1

2
∇∇ :


 n∑

a

ba∑
j

maca,jca,jNa,j


 = 0, (A.20)

while the momentum moment yields

∂

∂t
(ρu)+ ∇ ·


 n∑

a

ba∑
j

maca,jca,jNa,j


+ 1

2
∇∇ :


 n∑

a

ba∑
j

maca,jca,jca,jNa,j


 = 0. (A.21)

We now evaluate the second and third moments which appear in these equations, order by order. For the second
moments, we find

n∑
a

ba∑
j

maca,jca,jN
(0)
a,j = Φ2, (A.22)

n∑
a

ba∑
j

maca,jca,jN
(1)
a,j = 0, (A.23)

n∑
a

ba∑
j

maca,jca,jN
(2)
a,j=

[
Φ0Φ

′′
4

(Φ′
2)

2
−Φ0Φ

′′
2

Φ′
0Φ

′
2

]
ρu2

2
1+ Φ′′

4

(Φ′
2)

2
ρ2uu−τ Φ

′
4

Φ′
2
ρ[(∇ · u)1+∇u+(∇u)T], (A.24)

where the superscript T denotes “transpose”, and the arguments of all theΦ’s are understood to beΦ−1
0 (ρ). For the

third moments, we find

n∑
a

ba∑
j

maca,jca,jca,jN
(0)
a,j = 0, (A.25)
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n∑
a

ba∑
j

maca,jca,jca,jN
(1)
a,j = Φ′

4

Φ′
2
ρ per(1 ⊗ u), (A.26)

n∑
a

ba∑
j

maca,jca,jca,jN
(2)
a,j = 0, (A.27)

where, as noted earlier, “per” denotes a sum over all symmetric permutations of tensor components.
We now insert the above results intoEqs. (A.20) and (A.21), and we adhere to the incompressible limit so that

time and space derivatives ofρ are of higher order inε and hence ignored. The hydrodynamic equations given in
Section 4follow immediately.
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