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Abstract

Recent theoretical results suggest that an array of quantum information processors communicating via classical channels
can be used to solve fluid dynamics problems. Quantum lattice-gas algorithms (QLGA) running on such architectures have
been shown to solve the diffusion equation and the nonlinear Burgers equations. In this report, we describe progress towards
an ensemble nuclear magnetic resonance (NMR) implementation of a QLGA that solves the diffusion equation. The methods
rely on NMR techniques to encode an initial mass density into an ensemble of two-qubit quantum information processors.
Using standard pulse techniques, the mass density can then manipulated and evolved through the steps of the algorithm. We
provide the experimental results of our first attempt to realize the NMR implementation. The results qualitatively follow the
ideal simulation, but the observed implementation errors highlight the need for improved control. 2002 Elsevier Science B.V.
All rights reserved.

1. Introduction

The field of quantum information processing (QIP)
has made steady progress over the past decade, driven
in part by the realization that some quantum algo-
rithms offer a computational advantage over the best
known classical counterparts [1]. To reach a practical
improvement, however, most quantum algorithms re-
quire a large number of qubits coupled quantum me-
chanically, making physical implementation difficult.
Recently, however, it has been suggested that some
interesting problems might be solvable by a hybrid
classical-quantum device defined as a type-II quan-
tum computer [2]. A type-II quantum computer is es-
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sentially a parallel lattice of small quantum informa-
tion processors that share information through clas-
sical channels. Such a device offers the experimental
simplification that quantum coherences need only be
maintained locally within each small quantum proces-
sor. Using this architecture, it might be possible to
increase the range of problems that small quantum
processors can tackle by classically stringing many of
them together. A type-II quantum computer may thus
serve as an intermediate architecture between few-
qubit and large-scale quantum computers.

In this report, we explore the experimental aspects
of building a type-II quantum computer using nuclear
magnetic resonance (NMR) techniques. Quantum in-
formation processing by NMR usually employs a liq-
uid sample of molecules containing spin-1

2 nuclei that
is subjected to a strong magnetic field [3]. A typi-
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cal field B0 of ∼10 T creates an energy difference
�E between the aligned and anti-aligned spin states
that drives the system to an equilibrium state with net
magnetization. At room temperature,�E/kT is about
10−5, so that the net magnetization is relatively small,
but, given the large number of molecules in the sam-
ple (∼1018), it is still easily detectable. The entire spin
ensemble is accurately described by a reduced density
matrix of only the intramolecular spin degrees of free-
dom. The ensemble nature of the NMR sample thus
makes it inherently applicable to parallel computation.
A type-II architecture can be mapped onto an NMR
sample by creating a correspondence between the sites
of the lattice and spatially distinct spin ensembles. Us-
ing magnetic field gradients and radiofrequency (RF)
pulses, information in the lattice can be encoded, ma-
nipulated, and read out. As a first test of the NMR im-
plementation, we chose a basic quantum lattice gas al-
gorithm (QLGA) that solves diffusive dynamics in one
dimension.

2. Lattice-gas system

The diffusion of a mass densityρ is governed by

∂ρ

∂t
=D

∂2ρ

∂t2
. (1)

The above equation corresponds to the macroscopic
effective field theory result. Its relation to the lattice-
gas dynamics is seen by breaking space into an array
of lattice sites with occupation probabilities assigned
to each site [4,5]. The ensemble average mesoscopic
dynamics are controlled by the transport equations [2]

f1(n,m+ 1)= f1(n,m)+ 1
2

[
f2(n,m)− f1(n,m)

]
,

(2)

f2(n,m+ 1)= f2(n,m)− 1
2

[
f2(n,m)− f1(n,m)

]
,

(3)

where f1 and f2 represent occupation probabilities
and the bracketed terms represent a collision operator.
The number densityρ is the sum off1 and f2.
The indicesn and m correspond to lattice site and
time step, respectively. The connection between the
diffusion equation and the transport equations may
be seen by taking the Chapman–Enskog expansion
of the lattice Boltzmann equation written in terms of
occupation probabilities.

3. Quantum lattice-gas algorithm

The quantum lattice-gas implementation relies on
mapping each initial occupation probabilityf1 and
f2 into the corresponding single-particle states of two
quantum bits,∣∣q1,2(n,m)

〉 = √
f1,2(n,m) |1〉 + √

1− f1,2(n,m) |0〉,
(4)

where|q1,2(n,m)〉 are the qubit states and|0〉 and|1〉
correspond to the eigenstates of a two-level system.
The resulting two-qubit wave function for a site
becomes∣∣ψ(n,m)

〉 = √
f1f2 |11〉 + √

f1(1− f2) |10〉
+√

(1− f1)f2 |01〉 + √
(1− f1)(1− f2) |00〉 (5)

where |ψ(n,m)〉 spans the Hilbert space of two
coupled quantum systems. After initialization, the
algorithm calls for a collision operation∣∣ψ ′(n,m)

〉 = Û
∣∣ψ(n,m)

〉
(6)

that is carried out via unitary evolution by a “square-
root of swap” gatêU . The gatêU can be written as

Û =


1 0 0 0

0 1
2 − i

2
1
2 + i

2 0

0 1
2 + i

2
1
2 − i

2 0

0 0 0 1

 (7)

in the standard basis. The next step in the computation
requires a measurement of the occupation numbers

f ′
1,2(n,m)= 〈

ψ ′(n,m)
∣∣n̂1,2

∣∣ψ ′(n,m)
〉
, (8)

where the number operatorsn̂1,2 are defined as

n̂1 =


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 , n̂2 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 .

(9)

The measured occupation numbersf ′
1 and f ′

2 are
then streamed to the nearest lattice sites in opposite
directions, as given by

f1(n,m+ 1)= f ′
1(n+ 1,m), (10)

f2(n,m+ 1)= f ′
2(n− 1,m). (11)

The entire diffusion algorithm can be summarized in
four steps:
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(1) Initialization of occupation probabilities in each
spatially distinct site.

(2) Application of the collision operator,̂U , at all
sites.

(3) Readout of the expectation values of the number
operators.

(4) Determination of the new occupation probabilities
by streaming to nearest neighbors.

4. NMR implementation

In our particular test, we implemented a two-qubit
diffusion algorithm using a solution of chloroform
(13CHCl3) where the hydrogen and the labeled carbon
nuclei served as qubits 1 and 2, respectively. Fig. 1
shows the energy level diagram of the spins and a
picture of the molecule. As shown in the diagram, the
proton splitting is four times larger than the carbon
splitting, and both splittings are a small fraction of kT.

4.1. Mapping to spin ensembles

The first step in creating an experiment to study
the implementation of type-II quantum computer is
to define a mapping of the theoretically required
quantum states to a real physical system. In the
liquid-state NMR case, the required quantum states
|ψ(n,m)〉 are physically encoded onto spin ensembles
described by density matricesσ(n,m)∣∣ψ(n,m)

〉 → σ(n,m). (12)

However, the thermal equilibrium of liquid-state NMR
systems is a highly mixed state that is not immediately
applicable to quantum computing experiments. As a
result, the thermal equilibrium state must first be reset
to a pseudopure state of the form [6,7]

Fig. 1. The picture show the chloroform molecule and the nuclear
spin energy level diagram.

σ(n,m)= 1− ε
∣∣ψ(n,m)

〉〈
ψ(n,m)

∣∣. (13)

The above pseudopure state transforms identically to
the corresponding pure state|ψ(n,m)〉. Each sub-
ensembleσ(n,m) is in turn composed of a large
number (∼1018) of individual molecules distributed
within a slice of a cylindrical sample. More formally,
the reduced density matrixσ(n,m) at a site is

σ(n,m) = Tr�r
[∑

�r
T

[
z−�z

(
n− 1

2

)]
× ∣∣φ(�r,m)

〉 〈
φ(�r,m)

∣∣], (14)

where |φ(�r,m)〉 is the nuclear spin state of a single
molecule located at position�r , T (z) is the “top hat”
function

T (z)=
{

1, |z| � 1
2,

0, |z|> 1
2

(15)

that selects the relevant spatial slice with thickness�z,
and Tr�r denotes the partial trace over the spatial degree
of freedom. The variablez represents the correspond-
ing coordinate of the vector�r . The statesσ(n,m) re-
quired at the beginning of each update are created
by applying shaped radiofrequency (RF) pulses in the
presence of linear magnetic field gradients. This step is
related to slice-selection in magnetic resonance imag-
ing (MRI). Fig. 2 depicts the geometrical arrangement
of the slices relative to the gradient and RF coils in the
NMR probe.

Fig. 2. The cylindrical sample of chloroform employed in this
experiment is addressed in slices by the combined action of
magnetic field gradients and shaped RF pulses. Each slice represents
a node in the lattice of quantum information processors.
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Fig. 3. The pulse sequence for a single time step of the algorithm begins with the pseudopure state preparation. Gradients are used to perform
the necessary non-unitary operations required for equalizing the magnetization of the two-spin species and to prepare the pseudo pure state. The
lattice initialization is accomplished by applying weak RF shapes in the presence of a magnetic field gradient in the Z direction. A decoupling
sequence prevents the scalar coupling from interfering with the initialization. The collision operation is performed by a sequence of coupling
delay and strong RF pulses. The collision pulse sequence is applied without a gradient so that all of the spins in the lattice feel the same
operation. Readouts of both the carbon and hydrogen magnetizations are carried out on the hydrogen channel in two separate experiments.

4.2. Control and measurement of spin system

In the absence of a magnetic field gradient, the
Hamiltonian of the spin system in the doubly-rotating
frame is

H(t) = πJ

2
σ 1
z σ

2
z + [

w1
x(t)σ

1
x +w1

y(t)σ
1
y

]
+ [

w2
x(t)σ

2
x +w2

y(t)σ
2
y

]
. (16)

The first term denotes the scalar interaction between
the spins, while the remaining terms are the externally-
controlled RF Hamiltonian. The operators of the
form σ

1,2
x,y,z are Pauli spin matrices corresponding to

each qubit, and the scalar coupling Hamiltonian is a
Kronecker product of the single-spin operators. The
RF part of the Hamiltonian generates arbitrary single
spin rotations with high fidelity when the nutation
rates w

1,2
x,y are much stronger thanJ , the scalar

coupling constant.
As mentioned before, the collision operatorÛ for

the diffusion algorithm is the square-root of swap gate.
The unitary operator̂U can be written as

Û = exp

[
−i

π

8

(
σ 1
x σ

2
x + σ 1

y σ
2
y + σ 1

z σ
2
z

)]
(17)

if an irrelevant phase is ignored. Written in this
form, it is clear thatÛ can be decomposed into the
product of three commuting terms. Each term can be
implemented by making use of the scalar coupling

Hamiltonian plus appropriate single-spin rotations [8].
The operator̂U is applied to all the sub-ensembles
σ(n,m) such that

σ ′(n,m) = Ûσ (n,m)Û†. (18)

The final steps of the algorithm are to read the oc-
cupation numbers encoded inσ ′(n,m) and to stream
them to nearby sites. The readout is accomplished by
noticing that Eq. (8) can be rewritten in terms of the
z-Pauli matrices as

f ′
1,2(n,m) =

〈
ψ ′(n,m)

∣∣∣∣1− σ
1,2
z

2

∣∣∣∣ψ ′(n,m)

〉
= 1

2

[
1− 〈

ψ ′(n,m)
∣∣σ 1,2

z

∣∣ψ ′(n,m)
〉]

(19)

using the fact thatn̂1,2 = 1
2(1 − σ

1,2
z ). The last

equation can be written in the final form

f ′
1,2(n,m)= 1

2

[
1−M1,2

z

]
, (20)

where the trace has been replaced by thez-magnetiza-
tion M

1,2
z . Thez-magnetization is measured in NMR

by applying a “read”π/2 pulse and observing the
transverse magnetization. The measured valuesf ′

1,2
can be streamed on a classical computer and then
reinitialized onto the lattice.

4.3. Pulse sequence

The diagram in Fig. 3 shows the main parts of a sin-
gle time step of the NMR implementation: pseudopure
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Fig. 4. The plots show a simulated run of the ideal quantum lattice gas algorithm for diffusion. The top left plot contains the first step, followed
to the right and then down the rows by subsequent time steps. The dashed lines represent the initialized occupation numbersf1,2 for each spin,
while the solid lines represent the occupation numbersf ′

1,2 present after the collision. Thex-axis labels the node number and runs from 1 to 16.

Fig. 5. The experimental results for the corresponding time steps of the simulations from Fig. 4. Although the general features follow the
simulation, the experimental results are not of high fidelity and suggest a need for more precise control. Thex-axis labels the observed spectral
frequency. The actual nodes used in the experiment reside in the region between−200 and 200 Hz. The outlying region is included for reference.
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state preparation, lattice initialization, collision, and
readout. The top two lines correspond to operations
on the two qubits (H and C), while the third line shows
the required gradient pulses. The pseudopure state was
prepared by first equalizing the magnetizations of the
two spins, followed by a pseudopure state creation se-
quence [9]. The starting occupation numbers for each
time step were then encoded using weak shaped RF
pulses on the two spins. Because the RF power utilized
was weak relative to the gradient strength, the shape of
the pulse was determined by taking the Fourier trans-
form of the desired magnetization profile [10]. A de-
coupling sequence was applied simultaneously with
the RF shape, to average out the effects of the scalar
coupling on the RF excitation.

The collision operator was implemented by decom-
posing the total unitary operator into sequences of
scalar coupling delays and RF pulses. The readout
was performed by recording the spectra in the pres-
ence of a weak gradient. The classical communica-
tion part of the algorithm was absorbed into the en-
coding operation of the next time step. A linear phase
ramp was added to the RF shape, effectively shift-
ing the frequency of the excitation. Since the data on
the two spins was to be shifted in different directions,
the phase ramps for the two RF pulses had opposite
slopes.

5. Results

The two Figs. 4 and 5 show the results of pre-
liminary experiments and, for comparison, the cor-
responding ideal simulation of the NMR implemen-
tation. The experiments where performed using 16
nodes iterated through 12 time steps of the algorithm.
As can be seen, the broad features of the diffusion
can be seen, but large errors are present in the imple-
mentation. The errors are caused by problems in the
decoupling sequence, errors in the Fourier transform
approximation, and other experimental imperfections.
We are continuing to refine the experiments and we
expect to correct these errors in the near future with
improved results to be published in a subsequent pa-
per [11].

6. Conclusion

Ensemble NMR techniques have been success-
fully used to study the experimental details involved
in quantum information processing. The astronomi-
cal number of individual quantum systems (∼1018)
present in typical liquid-state spin ensembles greatly
facilitates the problem of measuring spin quantum co-
herences. In addition, the ensemble nature of the sys-
tem has been successfully utilized to create the nec-
essary pseudo-pure states and to systematically gen-
erate non-unitary operations over the ensemble [12].
In this implementation, we again exploit the ensemble
nature, but this time as a means of realizing a lattice
of quantum information processors. The implementa-
tion combines the advantages of quantum computation
at each node with parallel computation throughout the
lattice. The large size of the NMR ensemble provides,
in principle, sufficient room to explore large lattices.
Although achieved experimental results point to the
need for better control, the experiments are a first step
towards realizing the quantum lattice gas algorithm on
a NMR quantum information processor.
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