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Abstract

A new unitary quantum lattice gas (QLG) algorithm is proposed as a mesoscopic unitary per-

turbative representation of the mean field Gross Pitaevskii equation for Bose Einstein Condensates

(BECs). This consists of an interleaved sequence of unitary collide-stream operators and is tested

on the 1D nonlinear Schrodinger (NLS) equation since exact soliton solutions are well known. An

earlier QLG algorithm, based on the
√
swap collision operator has been found to have limited

application to spinor-BECs. Here a new unitary collision operator, based on the recent QLG of

Yepez for the Dirac particle, is used to model the 1D NLS soliton-soliton problem. It is found that

this new unitary algorithm can handle parameters (soliton amplitudes and speeds) a factor of over

20 greater than those under the previous
√
swap algorithm.
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I. INTRODUCTION

Recently, a new computational paradigm has arisen due to the one of the most puzzling
concepts of quantum mechanics—quantum entanglement [1]. This has led to a major interest
in the field of quantum computation and quantum information theory whose basic building
block is the qubit. Unlike the classical bit, which can only take on the value of “0” or “1”,
the qubit can reside in a general superposition state of the two (classical) states “0” and “1”
with complex probability amplitudes α0, α1:

|q〉 = α0|0〉+ α1|1〉 with |α0|2 + |α1|2 = 1. (1)

Two qubits thus exist in a four-dimensional state (with corresponding normalization)

|q1q2〉 = α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉 (2)

The quantum informational approach of specifying quantum dynamics, which is originally
due to Feynman [2, 3], is a rather new approach. The more traditional approach to quantum
dynamics is through the Hamiltonian or Lagrangian.

The quantum lattice gas (QLG) is one of the earliest quantum algorithms devised [4–
14]. If the local entangling gate structure (i.e. quantum algorithmic protocol) is chosen
appropriately, then the flow of quantum information can emulate, in the long wavelength
limit, a quantum wave function governed by an equation of motion such as the Weyl, Dirac,
or Schroedinger wave equation [15]. The quantum lattice-gas representation constitutes
a universal model of quantum computation. Further, any particular quantum lattice gas
representation of a quantum system is a faithful representation. Here we focus on the effect
of different representations of the one-dimensional nonlinear Schrdoinger equation (NLS) –
in the particular choices of the unitary collision operators. A somewhat related alternate
approach has been considered by Succi and his collaborators [16–18].

The NLS is an important equation of physics, arising in the study of Langmuir waves in
plasmas, in nonlinear wave propagation in optical fibers, in energy transport along molecular
chains, as well as the ground state dynamics of Bose-Einstein Condensates. In one dimension
(1D), the NLS will permit exact soliton solutions. In particular, the exact 1-soliton solution
to the 1D NLS equation

i∂tΦ = −∂xxΦ− |Φ|2Φ, (3)

is the 2-parameter family solution

Φ(x, t) = a
√

2 exp

[
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2
−
(
b2

4
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t

)]
sech[a(x− bt)] (4)

where a
√

2 is the soliton amplitude, and b is the soliton speed. When one moves to 3D
there are no longer exact solutions. Some specific Pade approximate solutions have been
determined by Berloff – but now there are no longer any free parameters in the solutions as
in the 2-free parameters in 1D NLS.

QLG is a unitary mesoscopic algorithm with interleaved collision-stream operators: the
local unitary collision operator entangles the qubit amplitudes while the unitary stream
operator moves that entanglement throughout the lattice. We first considered the unitary
collision matrix as the

√
swap gate with representation
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in the basis

|00〉 =

1

0

0

0

, |01〉 =

0

1

0
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0

, |11〉 =

0

0

0

1

 . (6)

In the 1-body subspace |01〉, |10〉 of the 4D 2-qubit Hilbert space, the local unitary
√
swap

collision operator takes the form

C = exp
[
i
π

4
σx(1− σx)

]
=

1

2

(
1− i 1 + i

1 + i 1− i

)
= ei

π
4

(
cos θ◦ −i sin θ◦
−i sin θ◦ cos θ◦

)
, (7)

for θ◦ = π/4 and where the σ are the Pauli spin matrices

σx =

(
0 1

1 0

)
σy =

(
0 −i

i 0

)
σz =

(
1 0

0 −1

)
. (8)

The corresponding wave function at lattice site x

ψ(x, t) =

α01(x, t)

α10(x, t)

 (9)

with the local qubit entanglement being propagated throughout the lattice by the unitary
streaming operators

S∆x,0 = n+ e∆x∂x n̄, S∆x,1 = n̄+ e∆x∂x n, (10)

n = 1
2
(1 − σz) and n̄ = 1

2
(1 + σz) with a shift in the components of ψ along the lattice

directions ±∆x, respectively. In essence, (10) unitarily shifts just one of these post-collision
excited state amplitude probability to the nearest neighbor lattice site x ± ∆x, respec-
tively. In particular, let us first consider the evolution operator for the γth component of
ψ. Our quantum algorithm interleaves the noncommuting collide and stream operators, i.e.
[S∆x,γ, C] 6= 0,

Ixγ = S−∆x,γCS∆x,γC (11)

where γ is either 0 or 1 corresponding to the streaming of either the α01 or α10 component
of ψ in (9).

One now considers the evolution operator for the γ component of wave function ψ

Uγ[Ω(x)] = I2
xγexp[−iε2Ω(x)], (12)

where Ω will later be specified as a nonlinear potential. ε is a small perturbative parameter.
The final quantum map with which we computationally evolve the wave function ψ is

ψ(x, t+ ∆t) = U [Ω(x)]ψ(x, t), with U [Ω] = U1

[
Ω

2

]
U0

[
Ω

2

]
. (13)

To recover the 1D NLS from this mesoscopic quantum map, one must choose parameters such
that the quantum map obeys diffusion ordering, with ∆x ∼ ε, [ψ(x, t+ ∆t)− ψ(x, t)] →
ε2∂tψ(x, t), and contracts the 2-component field ψ to the scalar 1D NLS wave function
Φ = (1, 1) · ψ = α01 + α10 and chooses the nonlinear potential Ω = −|Φ|2.

The QLG algorithm is readily extended to the scalar 3D NLS (or commonly called the
Gross-Pitaevskii equation in BEC literature): the evolution operator for the γ component is

3D : Uγ[Ω(x)] = I2
xγI

2
yγI

2
zγexp[−iε2Ω(x)]. (14)

The extension to spinor superfluids is also straight new 2-qubits |ψ′〉 = |q′1q′2〉 for each scalar
component of the macroscopic wave function describing the spinor field. The coupling of
spinor field components is achieved by suitably defining the nonlinear potential Ω.
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A. Successes and Limitations of the QLG with
√
swap collision operator

The success of the
√
swap−QLG algorithm has been tested on both scalar 1D NLS soliton

collisions, vector (Manakov) 1D NLS inelastic collisions - where exact solutions exist and the
conditions under which one has inelastic vector soliton collisions - as well as in turbulence
studies of the scalar (3D) NLS/GP equation. However, as one pushed into examining spinor-
BECs and spin energy spectra for spin turbulence we ran into computational limitations
with the

√
swap−QLG algorithm. Theoretically, we have introduced a “small” parameter

ε << 1, and required diffusion ordering ∆x ∼ ε with ∆t ∼ ε2 in order to recover the
1D NLS. Numerically, these conditions are met by primarily restricting the amplitude of
the qubits. It turns out that this maximum amplitude is dependent on the actual unitary
collision operator. In particular, for the unitary

√
swap collision operator, a “safe” wave

function amplitude |ψ| ∼ 0.012 and a soliton speed ∼ 0.033 lattice units/time step. For
the 1D NLS the appropriate range of parameters is readily checked since not only do we
have the exact 1-soliton solution to the 1D scalar NLS but in soliton-soliton collisions the
post-collision solitons retain their origin functional form and speed – the only signature of
the soliton-soliton collision is a constant spatially induced phase shift. In the more general
case in which the exact solution is not known (like for GP representation of the ground state
of the 3D BEC), one has as a necessary condition the conservation of energy since the GP
equation is Hamiltonian. For the 1D NLS bright soliton case, the energy integral

E =

∫
dx

[∣∣∣∣∂ψ∂x (x, t)

∣∣∣∣2 − 1

2
|ψ(x, t)|4

]
= Const. (15)

The conservation of the normalization of the wave function (conservation of particle number∫
dx|ψ|2) is automatic because of the unitarity of the QLG algorithm.
When the QLG algorithm was extended to simulate the spin-1 BECs it was found that

the numerical stability of the algorithm did not permit sufficiently high amplitude wave
functions to determine an appropriate spin energy spectrum.

II. ALTERNATE UNITARY COLLISION OPERATOR: DIRAC EQUATION

Yepez [52, 53] developed the first deterministic and unitary QLG algorithm for relativistic
Dirac particle dynamics in 3D. He [54] then developed a new unitary QLG algorithm for
the relativistic Dirac particle dynamics adding an effective potential as a Lorentz scalar.
Here we take the nonrelativistic limit of this unitary Dirac collision operator and extend it
to permit a nonlinear potential. This new collision operator CD, Eq.(16), replaces both the√
swap collision operator and the phase rotation used to implement the potential in the old

QLG algorithm [56]:

CD =

 cos θ(x) −i sin θ(x)

−i sin θ(x) cos θ(x)

 , (16)

with

θ(x) =
π

4
− 1

8
|ψ|2. (17)

We then use the same inter-leavened sequence of unitary collide-stream operators to recover
the 1D bright soliton NLS equation. The nonlinear potential Ω = −|ψ|2/8 is now an integral
part of the collision operator and is not just an extra exponential phase factor as in (14).
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The most important consequence of using the nonrelativistic unitary Dirac collision operator
CD in the QLG algorithm is that one can now run 1D NLS simulations with amplitudes
that are a factor of 20 to 30 greater than that with the

√
swap unitary collision operator.

In particular, we consider the Dirac-induced unitary collision operator QLG algorithm for
soliton maximum amplitudes 0.44 and 0.25 propagating with speed 0.5 lattice units/time
step [In our earlier simulations using the

√
swap QLG algorithm, [56], the safe soliton

peak parameters were 0.025, 0.0125 and speed 0.033 lattice units/time step]. The initial
solutions are well separated (by about 4000 lattice units on a grid of 6000). The larger
soliton always moves to the right while the smaller soliton always moves to the left under
periodic boundary conditions. There is significant overlap of the two solitons in their first
collision around t = 40k, Fig. 1.

After the 15th soliton-soliton collision we see a spatial shift in the location of the solitons
due to a collision-induced phase shift, but the solitons retain their exact shape and speed,
Fig. 2. The collision-induced spatial shift is greater for the smaller soliton. In Fig. 2 we
have chosen the initial snapshot time of t = 832k at which the smaller soliton is at the same
spatial location as its initial position at t = 0, Fig. 1a. Since the collision-induced phase
shift for the larger soliton is less, the spatial position of the larger solution is to the left of
its initial position, t = 0, Fig. 1a. Hence the soliton collision occurs mainly in the region
x < 0, Fig. 2.

In Fig. 3 we plot the time development of the collision-induced spatial shift in the larger
solition. After every soliton-soliton collision this spatial shift in the larger soliton is +18
lattice units. Since the soliton retains its exact form and speed post-collision there is no
spatial shift in-between collisions. Hence the staircase structure in Fig. 3. The Gibbs-like
jaggedness during the soliton-soliton collision time is a numerical artifact of the algorithm
that simply spits out the location of the maximum in ψ|. During the solition-soliton collision
this peak location is not necessarily the location of the individual soliton that one has been
following before the collision.

The Gibbs-like structures seen in the variation of the total energy (a constant of the
time-dependent 1D NLS equation), Fig. 4, is again a numerical artifact because of the grid
stencil used to approximate the spatial derivatives in the energy integral, (15). Note that
the energy E < 0 since the mean nonlinear interaction term in (15) is greater than the mean
kinetic energy.

It must be stressed that in the QLG mesoscopic algorithm there is no “knowledge” of
the existence of the constant energy integral of 1D NLS. It is only if we have chosen the
simulation QLG parameters such that the subsequent moment equations (in this case the
1D NLS equation) arise from diffusion ordering with the existence of the needed theoretical
perturbation parameter ε.

A. Limitations on soliton speed

To show some of the limitations on the soliton QLG parameters, we now increase the
soliton speed from 0.5 lattice units/time step to 0.75 lattice units/time step but keep the
same soliton amplitude peaks of 0.44 and 0.25. There seem no apparent deviations in
the snapshots of |ψ| in either pre-collision or post-collision states from their theoretical
counterparts. In Fig. 5 one sees |ψ(x, t)| at 6 snapshots starting from time t = 798k, in
increments of ∆t = 5k.

However, one starts to see slightly larger fluctuations in the energy constant of the motion
(away from the Gibbs-like spikes around the soliton-soliton collisions) for the case of faster
speed solitons, Fig. 6. Since the mean kinetic energy of the solitons has increased for these
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FIG. 1. Snapshots of |ψ(x, ti)| at time intervals of 8000 (∆t = 8k) for (top) pre-collision and (bottom)
post-collision soliton motion. Initially the large soliton has its peak around x ∼ −2000 while the small
soliton has its peak around x ∼ +2000. Color scheme for (top): blue (t = 0) → red (t = 8k) → brown (t
= 16k) → green (t = 24k) → blue (t = 32k) → red overlap (t = 40k). Color scheme for (bottom): blue -
overlap (t = 40k) → red (t = 48k) → brown (t = 56k) → green (t = 64k) → blue (t = 72k) → red (t =
80k). The large amplitude soliton always moves to the right while the lower amplitude soliton always moves
to the left under periodic boundary conditions. Soliton overlap/collision occurs at t ∼ 40k. Note that the
solitons move with the same amplitude and speed pre- and post-collision.

faster solitons, the total energy E, (15), is now a little less negative.

However, the collision-induced spatial phase shift – that is theoretically a constant away
from the soliton-soliton overlap – is the most sensitive to parameter variations, as seen
in Fig. 7 over the time interval 800k < t < 920k and over all the whole simulation run
0 < t < 106 in Fig. ??. This should be compared with the corresponding spatial shifts in
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FIG. 2. Snapshots of |ψ(x, ti)| at time intervals ∆t = 8k for the post-15th collision. Initial time instant
for these 6 snapshots is t = 832k with the large soliton peak around x ∼ −2200, and the small soliton
peak around x ∼ +1950 : (top) pre-15th collision and (bottom) post-15th collision soliton motion. The
large amplitude soliton always moves to the right while the lower amplitude always moves to the left under
periodic boundary conditions. Color scheme as explained in Fig. 1.

the large soliton at speed 0.5 lattice units/time step, Fig. 3.

On increasing the soliton speed to 1 lattice unit/time step one still finds that the soliton
retain their form and approximate speed as predicted by theory (similar to the plot in Fig. 1),
but a closer examination of the energy integral, (15), shows quite large fluctuations while the
collision-induced spatial shifts exhibit an unacceptable declination during soliton collisions -
indeed much more pronounced than in the case of soliton speed 0.75 lattice units/time step,
Fig. 7a.
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FIG. 3. The time evolution of the collision-induced spatial phase shifts in the large soliton for soliton speed
0.5 lattice units/time step. The spatial shift in-between solition-soliton collisions is basically a constant, as
expected theoretically for soliton-soliton collisions of 1D NLS. The Gibbs-like spikes that appear during the
soliton-soliton overlap collision is a numerical artifact on the use of the peak in |ψ| during the collision.
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FIG. 4. The time evolution of the energy integral, a constant of the motion of the 1D NLS Hamiltonian
system. For the chosen parameters, Econs = −0.889. The Gibbs-like spikes that appear during the soliton-
soliton overlap collision are numerical artifacts related to the stencil used to calculate Eq.(15).

III. CONCLUSION

We have presented a new quantum lattice gas algorithm for the NLS equation. This
approach is based on the quantum lattice gas model the Dirac equation [54] where the
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FIG. 5. Snapshots of |ψ(x, t)| in time intervals ∆t = 5k from t = 798k, after the 20th soliton-soliton
collision for the case of higher soliton speed = 0.75 lattice units/time step. The large amplitude soliton
(with peak x ∼ −2000 at t = 798k) is always moving to the right, while the lower amplitude soliton (with
peak x ∼ +1850 at t = 798k) to the left, under periodic boundary conditions. The color scheme as detailed
in Fig. 1.
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FIG. 6. The fluctuations in the energy integral E, (15), for soliton speed (a) 0.75, and (b) 0.5 lattice
units/time step. E(a) = −0.829, E(b) = −0.889 in the time interval 800k < t < 920k. As expected the
fluctuations are somewhat larger for the higher speed solitons. The Gibbs-like spikes that appear during the
soliton-soliton overlap collision are numerical artifacts related to the stencil used to calculate Eq.(15).

particle’s mass, a Lorentz invariant scalar quantity, is augmented by an additional scalar
quantity that in general is spatially dependent: m→ m+δm(x). When the additional mass
term is equated to an effective nonlinear potential, i.e. δm(x) = −|Φ(x)|2, we represent an
effective potential as a Lorentz scalar quantity. The nonrelativistic limit is then achieved by
employing a kinetic energy/potential energy decomposition interleaving scheme that uses a
quantum algorithmic protocol of multiple unitary stream and collide operations at each time
step. In this way, we can achieve high numerical accuracy even when the coupling constant
is large The new QLG algorithm has ben tested against the exactly soluble 1D NLS soliton
problem, and we obtain excellent agreement with theory for soliton motion even after 15-20
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FIG. 7. Fluctuations in the theoretically constant collision-induced spatial phase shifts in the large soliton
for soliton speed (a) 0.75, and (b) 0.5 lattice units/time step in the time interval 800k < t < 920k. As
expected the fluctuations are somewhat larger for the higher speed solitons while the actual spatial shifts
decrease. The Gibbs-like spikes that appear during the soliton-soliton overlap collision is a numerical artifact
on the use of the peak in |ψ| during the collision.

soliton-soliton collisions, with excellent conservation of energy.
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