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Abstract. A quantum vortex is a topological singularity with quantized circulation, unlike
a classical vortex with its continuous circulation strength. Quantum turbulence, envisaged as
strong tangle of quantum vortices, of a Bose–Einstein condensate is examined by developing
a unitary qubit lattice algorithm for the solution of the Gross–Pitaevskii equation. Earlier,
it was shown that a certain class of initial conditions had a very short Poincare recurrence
time for this Hamiltonian system. Here it is shown quantitatively that increasing the internal
energy of the initial state leads to a systematic degradation of this class of solutions. Coupled
Bose–Einstein condensate systems are investigated for a Hopf link class of initial conditions
in which a vortex ring core is threaded by a linear vortex core that then closes toroidal around
the vortex ring. These states are known as skyrmions and play a role in particle physics,
astrophysics and condensed matter physics.
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1. Introduction

Vortices are essential structures arising in fluid, plasma and quantum turbulence [1]. In classical physics,
however, the vortex is a somewhat fuzzy concept partially recognized by the circulation around its vortex
core. This fuzziness is a consequence of the fact that the circulation strength is a continuous variable with the
vortices having continuously varying spatial extents. Classical vortices arise in incompressible flows as well
as in compressible flows. On the other hand, the quantum vortex [2] is a topological singularity with the vortex
core having zero mean superfluid density. Thus for quantum vortices to exist it is essential for one to deal with
a compressible fluid. The circulation about a quantum core is quantized and a quantum core acts like a branch
cut: there is a phase discontinuity as one circumnavigates the core. Moreover, it can be shown that vortices
with higher winding numbers n (i.e., with a phase discontinuity on circumnavigating the core) are energetically
unfavorable so that in quantum turbulence one typically finishes with a tangle quantum vortices with a winding
number of 1.

In this paper, we continue our studies of complex quantum vortex structures using our unitary qubit lat-
tice algorithms [3–8]. The beauty of these mesoscopic representations is their extreme parallelizablity and
low memory requirements [9]. This permits production runs on previously unattainable grids (e.g., we have
performed production runs on quantum turbulence to grids 57603 using just 12 000 cores [9, 10]). Of much
interest, both experimentally and computationally, is the subject of quantum turbulence in Bose–Einstein con-
densates (BECs) [11–16]. For weakly interacting BEC gases, the ground state is given by the Gross–Pitaevskii
(GP) equation [17] (an equation which arises also in nonlinear optics and plasma physics, where it is known as
the nonlinear Schrodinger equation [18])—of Hamiltonian form. While all Hamiltonian systems with bounded
phase space have a Poincare recurrence of initial conditions, nearly all continuous Hamiltonian systems exhibit
a Poincare recurrence time that is essentially infinite [19, 20]. Earlier [21, 22], we found a class of initial con-
ditions which exhibits a remarkably short Poincare recurrence time. Here we will perturb this class of initial
conditions and observe the sensitivity of the extremely short Poincare time to certain parameters.

There are more complex quantum structures when one considers coupled BECs. In particular, we consider
the evolution of an unstable skyrmion [23] under periodic boundary conditions. A skyrmion is topologically
equivalent to two linked quantum vortices: the first BEC yielding a ring vortex core which is interlaced by the
second BEC whose line vortex core threads the ring vortex core and then closes toroidally to reconnect the line
core. In knot theory it is known as a Hopf link. We shall find that the initial skyrmion will evolve into a lattice
of multiple small skyrmions.

There is much interest ([25, 26, 27] and references therein), maybe too much, in the quantum turbulence
community in finding an interrelationship between quantum and classical turbulence, and in particular in
the existence of the Kolmogorov energy spectrum for the classical regime. Several major difficulties arise
in seeking this comparison: quantum turbulence essentially requires a compressible superfluid, and it is an
oversimplification to assume that compressible effects disappear in the ‘asymptotic’ region of a quantum
vortex. While this may be true if there is only a single quantum vortex in the system, it is very doubtful
when many vortices are present and interacting with each other. Second, nonlocal effects play a critical role in
quantum turbulence. We discuss some of the essential differences between a classical and quantum vortex
in section 2, while in section 3 we consider the parameter regimes that yield remarkably short Poincare
recurrence times and then perturb these parameters and see the consequent degradation of the very short
Poincare recurrence. Coupled BECs and the evolution of a particular Hopf link (known as a skyrmion) are
discussed in section 4. In the appendix, we briefly outline the unitary qubit algorithm and present some of the
weak and strong scalings on various supercomputing platforms. The algorithm shows excellent parallelization
to over 200 000 cores.

2. Quantum vortices

In incompressible classical fluid turbulence, one solves for the evolution of the velocity field v from the
Navier–Stokes equation (under the assumption of constant density)

∇ · v = 0,
∂v
∂t

+ v · ∇v = −∇ p + ν∇2v, −∇
2 p = ∇ · (v · ∇v) . (1)
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Figure 1. A cartoon of the Richardson energy cascade from large-scale to small-scale eddies in
incompressible fluid turbulence. In actual turbulence, vortices of many different scales will co-exist.
The density throughout the whole flow is constant: ρ (x, t) ≡ const.

The pressure field, because of incompressibility, is simply a bilinear functional of the velocity field and ν
is the viscosity. Of much interest is the energy spectrum of classical incompressible homogeneous isotropic
turbulence in three dimensions. The energy spectrum E (k) is typically divided into three distinct wave number
ranges: an input range, an inertial range and a dissipative range. For steady state turbulence, energy is fed into
the incompressible fluid at large scales, creating large-scale eddies (i.e., vortices). The nonlinear interactions in
the Navier–Stokes equation cascade this energy into smaller and smaller eddies until one reaches wave number
scales at which the dissipative term in (1), νk2v (k, t), dominates the nonlinear energy-conserving terms and
so brings to an end the so-called Kolmogorov inertial range energy k−5/3 cascade. This inertial energy cascade
is shown in the cartoon of figure 1.

In actual turbulence, at any particular instant, there will be many different size vortices present in the flow
and a mathematical definition of a classical vortex is fuzzy.

Turbulence has also been studied experimentally in superfluid helium with liquid 4He undergoing
Bose–Einstein condensation (BEC) at sufficiently low temperatures [14, 15, 16, 27]. However, the recent
success of BEC of weakly interacting gases has made possible a detailed study of quantum turbulence since
the evolution of the ground state wave function of the BEC is well described by the GP equation [1]

i h̄
∂ϕ

∂t
= −

h̄2

2m
∇

2ϕ +
[
g |ϕ|

2
− µ

]
ϕ. (2)

ϕ is the one-particle wave function, g is the nonlinear coupling parameter representing the s-wave scattering
of the weak bosonic interactions under the mean field approximation and µ is the chemical potential. For
numerical purposes, it is convenient to rescale the GP equation (2) into the form

i
∂ϕ

∂t
= −∇

2ϕ + a
[
g |ϕ|

2
− 1

]
ϕ, (3)

where a is a spatial rescaling parameter. The GP is a ubiquitous equation of physics—reoccurring also in
the field of nonlinear optics and plasma physics as the nonlinear Schrodinger equation. Under the Madelung
transformation [11]

ϕ (x, t) =
√
ρ (x, t)exp [iθ (x, t) /2] , v (x, t) = ∇θ (x, t) , (4)

one can rewrite the GP (1) into the closed set of fluid-like conservation equations for ρ, v:

∂ρ

∂t
+ ∇ · (ρv) = 0,

ρ

(
∂v
∂t

+ v · ∇v
)

= −g∇
(
ρ2) + 2ρ∇

(
∇

2√ρ
√
ρ

)
.

(5)
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(a) (b)

Figure 2. Density isosurfaces |ϕ| / |ϕ|max = 1/16 near the vortex core for 12 linear vortices with
winding number 5: (a) t = 0 and (b) t = 5000. The phase information is shown on both the density
isosurfaces and the walls: φ = 0 (blue) and φ = 2π (red).

Thus we can identify ρ as the superfluid density and v as the superfluid velocity. Moreover, ϕ is the order
parameter with a topological singularity at ρ = 0. This topological singularity gives rise to the quantum vortex
core. The circulation about the vortex core is quantized, unlike the classical vortex circulation. Using Pade
approximants [28], one can determine steady state linear vortex solutions to the GP (2): e.g., for winding
number n = 1, using cylindrical polar coordinates

ϕ0(r, φ) = eiφ
(

1

g

)1/2 ( 11ar2(12 + ar2)

384 + ar2(128 + 11ar2)

)1/2

, (6)

with ϕ0 (0) = 0, |ϕ0| → g−1/2 as r → ∞. Loosely speaking, the quantum vortex core acts as a branch point
(figure 2) in the isosurface plots of |ϕ0 (r)| for the vortex cores:

Here we consider 12 linear vortices (four in each plane) with winding number 5. If one examines the
intersect of the linear vortex with the wall, one finds five branch cuts connecting each branch point (figure 2(a)).
As this is energetically unstable, the initial condition is rapidly destroyed into loop vortices, tangled vortices as
well as sound waves. Sound wave ripples are visible on the walls. The color coding on both the quantum vortex
cores and the walls is φ = 0 (blue) and φ = 2π (red). All the simulations are assuming periodic boundary
conditions.

It is instructive to note the differences between the incompressible dissipative Navier–Stokes
equation, (1), for classical turbulence over the compressible, conservative GP equation (5) for quantum
turbulence. While the GP system (5) resembles a barotropic superfluid with ‘classical’ pressure p ∼ ρ2 there
is also a novel nonlocal pressure, typically called the ‘quantum’ pressure, with its complex dependence on
√
ρ—the second term on the right-hand side of (5). It is this quantum pressure that permits quantum vortex

reconnection [29, 30, 31, 32] without any dissipative terms in the evolution equation. On the other hand,
classical vortex reconnection can only occur under dissipation. Because the GP equation is conservative, the
total energy ETOT (t) = const. In the seminal work of Norec et al [11], this total energy can be decomposed into
a kinetic energy Ekin (t), which includes both compressible and incompressible kinetic energies—a quantum
energy Equ (t) and an internal energy Eint (t):

Ekin (t) =

∫
d3x

[√
ρv
]2
, Equ (t) =

2

a2

∫
d3x

[
∇

√
ρ
]2
, Eint (t) =

g

a2

∫
d3x [ρ]2. (7)

4



Computational Science & Discovery 5 (2012) 014013 G Vahala et al

Figure 3. The time evolution of the kinetic energy (red) and the quantum energy (blue). The internal
energy here is a factor of 10−6 smaller. There is semi-periodicity after 80 000 time steps with the
extremal peaks decaying by only 2–4%. The qubit unitary algorithm conserves the total energy to
within 0.5% of its initial value.

3. Poincare recurrence of initial conditions

Poincare proved that in every Hamiltonian system with bounded flows, the flow will pass arbitraril closely
to the initial state after some appropriate time. This, of course, led to the famous dialog between Boltzmann
(and his H-theorem) and Zermelo [33]. It is at the heart of the discussion between microscopic reversibility
and kinetic irreversibility—between dynamics and statistical mechanics. Boltzmann’s argument typically was
that the recurrence time was basically so long as to be essentially infinite. However, we shall find, for the GP
Hamiltonian system, that very short Poincare recurrence times can occur for parameter regimes

Eint (0) � Ekin(0), Equ (0) . (8)

We first consider the case of 12 linear vortices with winding number 1 and initial energies

Eint (0) /Ekin (0) = 2.6 × 10−6, Equ (0) /Ekin (0) = 0.095. (9)

The time evolution of the energies Ekin (t) and Equ (t) are shown in figure 3, with a very pronounced periodicity
of 80 000 time steps. Actually, from the isosurface plots of |ϕ| this is actually the half-period: the Poincare
recurrence occurs every 160 000 time steps.

The corresponding vortex core isosurfaces are shown in figure 4; with phase information on the
isosurfaces but now on the walls we present the wave function magnitudes |ϕ|: blue for |ϕ| → 0 and red
for |ϕ| → |ϕ|max. There are four linear vortex cores intersecting each plane, giving the four a ‘bulls eye’.
These vortex cores then become unstable and oscillate, reconnect and break into vortex loops. This is readily
seen in figure 4(b) at t = 4600. At the semi-Poincare recurrence time we again recover 12 linear vortices, but
now their positions are plane inversions of their initial positions. The vortex cores are so thin that one cannot
readily discern any phase information on these isosurfaces.

In figures 4(b) and (c), one sees a simple 2π phase discontinuity on circumnavigating the vortex cores,
and in panel (d) one sees the residual effects of sound waves on the walls at the semi-Poincare recurrence time.
One recovers the full Poincare recurrence of the initial conditions at t = 179 900 along with sound waves.

When the initial internal energy is increased by a factor of ∼104, one finds substantial effects on the
evolution of the energies (figure 5(a)), with some clear degradation in the Poincare recurrence, t = 179 900. On
further increasing the internal energy, one sees the total loss of the very short Poincare recurrence (figure 5(b)).

The energy spectra dovetail with the isosurfaces of |ϕ|, as can be seen from figures 6(a)–(d). At t = 0,
one has the 12 semi-isolated linear vortex cores. It can be shown that a single isolated quantum vortex core
yields an incompressible kinetic energy spectrum

isolated quantum vortex: Eincomp (k) ∼ k−3, Ecomp (k) = 0, (10)

with no compressible kinetic energy. However, in the case of our initial 12 linear vortices, there is a slight
overlap of the asymptotic wave functions so that one now sees a very weak nonzero compressible energy

5
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(a) (b)

(c) (d)

Figure 4. Isosurface plots of |ϕ| / |ϕ|max = 1/64 with phase information on the isosurfaces
(φ = 0 (blue) and φ = 2π (red)), while on the walls |φ|walls values are plotted with a color scheme
of blue (low) to red (high). (a) Initial 12 linear vortices, t = 0; (b) at t = 4600 after vortex reconnection
has occurred; (c) at t = 17 400 with multiple reconnections and vortex loop generations; (d) at
t = 79 800, which coincides with the extrema in the kinetic and quantum energies (figure 3) but which
is actually the semi-Poincare recurrence time as the vortex cores are at a plane inversion symmetry of
the initial state, t = 0. The full Poincare recurrence occurs at 179 800 and correlates with the kinetic
and quantum energy extrema of figure 3. The grid L3

= 10003.

spectrum (figure 6(a)). For 30 < k < 350, at t = 0, both the incompressible kinetic energy and the quantum
spectrum coincide and exhibit the k−3 power law. At t = 17 500, the spectra are as shown in figure 6(b)
along with the k−3.00 spectral line fit to the quantum energy for 75 6 k 6 300—and for most times these are
the typical spectral shapes although the magnitudes of the compressible and incompressible kinetic energies
do fluctuate somewhat. While the incompressible kinetic energy exhibits a single power (k−3) spectrum the
compressible kinetic energy spectrum exhibits its usual three power law exponents [21]. Typically, but not
always, the compressible kinetic energy spectrum is above the incompressible kinetic energy spectrum with
the quantum energy spectrum being above both of them. The exceptional times in the spectral evolution occur
either when the quantum vortices become minimal [21] and cannot sustain Kelvin waves (figure 6(c)) or near-
integer multiples of the semi-Poincare recurrence time (figure 6(d)). For minimal vortex core isosurfaces the
incompressible kinetic energy takes a very strong dip, while the compressible and quantum energy spectra
become quite noisy (figure 6(c)). Around the multiples of the semi-Poincare recurrence time the compressible
kinetic energy spectrum drops (figure 6(d)), reminiscent of its spectrum at t = 0, but now it has a significant
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(a) (b)

Figure 5. The time evolution of the kinetic energy (blue), the quantum energy (red) and the
internal energy: (green) for increasing initial internal energy: (a) Eint (0) /Ekin (0) = 1.1 × 10−2,

Equ (0) /Ekin (0) = 0.095; (b) Eint (0) /Ekin (0) = 7.5 × 10−2, Equ (0) /Ekin (0) = 0.095.

(a) (b)

(c) (d)

Figure 6. The spectra for incompressible kinetic energy (blue +), compressible kinetic energy (red
o) and quantum energy (green ∗) for the case of negligible internal energy at (a) t = 0, (b) typical
spectra, t = 17 500, (c) vortex core minimization, t = 57 000 and (d) semi-Poincare recurrence time,
t = 80 000. The grid L3

= 10003. The dashed black curve in (b) is the k−3 spectral line.

increase in spectral energy for small k, 5 6 k 6 50. Persumably this may be attributable to the emission of
sound waves which are absent at t = 0.

In the case of large internal energy (cf figure 5), the spectra for all times are similar to those in figure 6(b)
(except, of course, at t = 0, which resembles that of figure 6(a)). In our spectral studies here, we are more
concerned with spectral changes due to the loss of the very short Poincare recurrence time rather than with

7
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(a) (b)

(c) (d)

Figure 7. Isosurface plots of |ϕ| / |ϕ|max = 1/64 with phase information on the isosurfaces
(φ = 0 (blue) ;φ = 2π (red)), while on the walls we plot |φ|walls values ranging from blue (low)
to red (high). Higher initial internal energy Eint (0) /Ekin (0) = 7.5 × 10−2. (a) t = 0, (b) t = 17 400,
(c) t = 57 000 and (d) t = 79 800. The grid L3

= 10003.

the detailed studies of the actual power law exponents due to the limited grid resolution. We have shown [21]
that the Poincare recurrence time scales with the grid L as L2—i.e., as under diffusion ordering. For a very
detailed study of the spectral exponents, see [21] where our unitary qubit lattice algorithms are run on a grid
up to 30723.

The vortex core isosurfaces for Eint (0) /Ekin (0) = 7.5 × 10−2 are shown in figure 7 and these should be
compared to those with very low internal energy (figure 4). At these higher internal energies there are no vortex
loop minimizations (as in figure 4(c)) or a semi-Poincare recurrence (figure 4(d)). One also sees considerable
effects of compressibility on the walls with |ϕ|-values being blue for minima and red for maxima.

4. Skyrmions

Skyrme [35] started discussing topologically stable defects in a continuous field—objects that are now called
skyrmions—which are localized in space with a quantized topological charge that can undergo interactions
and form ordered phases and undergo phase transitions. Because of these particle-like properties they have
been studied as baryion elementary particle theory [35], in liquid crystals [36], BECs [37], and quantum Hall
effect [38, 39] and exhibit vortex lattice structure not unlike type II superconductors [40]. For our discussion

8
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(a) (b)

Figure 8. A vertical cut to display the isosurfaces of a skyrmion: (a) the vortex core consisting of
a vortex ring (red) threaded by a somewhat linear vortex (ϕ− green) through the vortex ring ϕ− and
which then encloses the vortex ring toroidally. |ϕ+|

2
= |ϕ−|

2
= 0.04 isosurface. (b) The corresponding

isosurfaces for the asymptotic state of the spinor wave function: |ϕ+|
2

= |ϕ−|
2

= 0.90 isosurface.

of skyrmions, we consider a set of coupled BECs with a spinor wave function 8 satisfying

i
∂8

∂t
= −∇

28 + a (gρ − 1) , with 8 =

(
ϕ+

ϕ−

)
, ρ = |ϕ+|

2 + |ϕ−|
2 . (11)

The vortex core isosurfaces of this spinor wave function and the corresponding spatial far-field asymptotics of
|8| are shown in figure 8.

The initial skyrmion wave function, axes centered at the origin, is given by

8(x) =

cos
[
π tanh (kr)− i z

r sin [π tanh (kr)]
]

−i
[
1 −

z2

r2

]1/2
sin [π tanh (kr)] exp [iθ ]

 , (12)

with r = (x2 + y2 + z2)1/2, θ = tan−1(y/x) and where L3 is the simulation volume. The spinor wave function
asymptotes to (relative to the origin)

80 =

(
ϕ+

ϕ−

)
0

=

(
−1

0

)
. (13)

In our simulation we consider the expansion of a skyrmion in a simulation box of 10243 and show the
evolution of the skyrmion vortex core |8| (figure 9(a)). By t = 150 (figure 9(b)), the vortex ring for the
component |ϕ+| thickens and descends and forms a capula structure by t = 1000 (figure 9(c)), while the vortex
threading the vortex ring is expanding and starts to interact with the periodic boundaries just after t = 2500
(figure 9(d)). The outer surface of the topological defect for |ϕ−| rapidly deforms into a lattice structure with
the topological defect for |ϕ+| forming capulas on many, but not all, of the lattice structure defects (figures 9(e)
and (f)) of |ϕ−|. The periodicity of the lattice structure varies throughout the run and we seem to find a
somewhat random lattice of Skyrmion-like defects. Since the filling fraction of the vortex ring condensate |ϕ+|

is too low to support quantum vortex rings around all the quantum vortex nodal lines of |ϕ−| in the lattice, the
|ϕ+| condensate appears to randomly percolate throughout the lattice of the |ϕ−| condensate.

The energy spectra during the time evolution of the skyrmion are also quite interesting. At t = 0, for the
ϕ− condensate, the kinetic energy and quantum energy spectra exhibit, for k > 50, the somewhat familiar k−3

spectrum, while the internal energy spectrum rapidly decays for k > 20 (figure 10(a)). By t = 1000, there is a
sharp increase in the very low wave number region of these spectra, followed by a subsequent drop for k > 7
(figure 10(b)). The spectral fit to the quantum energy spectrum for 75 6 k 6 300 yields a k−3.00 spectrum
(dashed black line in figure 10(b)).

9
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(a) (b)

(c) (d)

(e) (f)

Figure 9. The evolution of the spinor quantum core of a skyrmion. The single skyrmion rapidly breaks
into a lattice of percolating skyrmions. These isosurfaces are formed by culling the front to expose
the innards. (a) t = 0, (b) t = 150, (c) t = 1000, (d) t = 2500, (e) t = 7000, (f) t = 10 500,
(g) t = 17 000, (h) t = 21 000, (i) t = 22 000, (j) t = 24 000, (k) t = 28 000 and (l) t = 29 000.

10
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(g) (h)

(i) (j)

(k) (l)

Figure 9. Continued.

11
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(a) (b)

Figure 10. The kinetic (blue), quantum (red) and internal (green) kinetic energy spectra for the ‘linear-
toroidal’ vortex core condensate ϕ−, corresponding to the isosurface plots of figure 9. The dashed black
line in (b) is for a k−3 spectrum. (a) t = 0 and (b) t = 1 K.

Figure 11. The time evolution of the kinetic energy spectrum at t = 2000 (blue), t = 3000 (red) and
t = 4000 (green) for ϕ− condensate.

Figure 12. The kinetic (blue), quantum (red) and internal (green) energy spectra for t = 7000 for the
ϕ− condensate.

Quite strong oscillations now occur in both the kinetic and the quantum energy spectra with higher peak
magnitudes occurring at lower and lower k, see figure 11 (for t = 2000 (blue), t = 3000 (red) and t = 4000
(green)). The strength of these oscillations gradually decays (figure 12) and the spectra again exhibit the large-k
k−3 spectrum.

12
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Figure 13. Noisy kinetic (blue) and quantum (red) energy spectra at t = 24 000, with spectral exponent
k−α, α = 0.33 for condensate ϕ−.

Figure 14. Rope-like oscillations in the kinetic (blue) and quantum (red) energy spectra for the linear-
toroidal condensate ϕ− at t = 27 000.

Typically, the spectra for the ϕ− condensate are similar to those in figure 12, but with the oscillations
damped out. However at certain time intervals, in particular at t = 14 000, 17 000, 20 000 and 24 000, the
spectra become quite noisy (figure 13), while at times t = 22 000, 27 000 and 29 000 there are quite strong
rope-like structures (figure 14).

The spectra for the vortex ring condensate ϕ− behaves somewhat differently. Initially, the kinetic and
quantum kinetic energies have a mild oscillation with the spectrum being predominantly k−3 for large
k(k > 50) (figure 15). However, this k−3 spectrum is rapidly destroyed and one sees a very steep non-power
law decay for t > 2000 (figure 16).

During this evolution the internal energy spectrum increases for small k(k < 5) and then the spectra
are approximately unchanged for 2000 < t < 30 000, i.e., to the full run of this simulation on a 10243 grid
(figure 17). The total energy is conserved to within 0.01% throughout the run.

5. Conclusion

Since our unitary qubit algorithm respects the Hamiltonian structure of the GP equation, we can examine the
parameter regimes that yield very short Poincare recursion times. Here we have made quantitative simulations
examining the loss of this very short Poincare time when the internal energy of the BEC is increased.
The spectrum is more complex than one would expect if one were dealing only with a totally isolated
quantum vortex. In a totally isolated quantum vortex the compressible energy is exactly zero: all the energy
is incompressible. However, in the BEC superfluid, compressibility effects play an essential role in permitting

13
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Figure 15. The initial kinetic (blue), quantum (red) and internal energy spectra for the vortex ring
condensate ϕ−.

Figure 16. The development of the kinetic energy spectrum: t = 0 (blue), t = 1000 (red) and t = 2000
(green) for the condensate ϕ−.

(a) (b)

Figure 17. The kinetic (blue), quantum (red) and internal (green) energy spectra for (a) t = 14 000 and
(b) t = 27 000. The spectra are basically invariant for t > 2000.

vortex reconnection. Moreover, we find that typically the compressible kinetic energy spectrum is greater than
the incompressible kinetic energy spectrum for wave numbers k > 20. The incompressible kinetic energy
typically exhibits only a k−3 spectrum for wave numbers k > 10. However, the compressible spectrum and
the quantum energy spectrum typically exhibit three spectral regions—but the interpretation of these spectral
regions and whether they are even cascades is still an open question. It is very interesting to note that in classical

14
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compressible fluid turbulence simulation models in which subgrid closures are necessarily employed because
of grid resolution questions, the total subgrid kinetic energy spectrum is forced to yield the Kolmogorov k−5/3

spectrum [34]. In our GP simulations [21], we actually solve for the total kinetic energy spectrum and find
that it does yield a k−5/3 spectrum for small k, but the incompressible energy spectrum remains k−3. However,
it is not clear whether this corresponds to the classical Kolmogorov energy spectrum (as determined from
dimensional analysis for incompressible flows). The typical picture of the blending of quantum turbulence to
classical turbulence [24–27] is that the quantized vortices are embedded within the ‘largest’ vortices of figure 1
and these bundled quantum vortices undergo the cascade. The belief is that the bundled quantum vortices are
no longer quantized in the mean. No quantum simulations of the GP equation have explored this regime as
yet and it seems a doubtful picture in light of the important role played by compressibility in the quantum
turbulent flow. It is felt that nonlocal effects may be more important in quantum turbulence.

We have extended our unitary qubit algorithm for the scalar GP equation to handle multi-component BECs
and, in particular, considered the evolution of an unstable skyrmion in a cubical box under periodic boundary
conditions. The skyrmion under consideration had two vortex cores interlinked: one vortex core for the first
condensate was a ring vortex threaded through its axis by a linear vortex core of the second condensate, which
then toroidally enclosed the ring vortex of the first condensate. The toroidal surface of the second condensate
rapidly breaks up into a lattice of such vortices. Since the density of the vortex ring first condensate is too
low to populate all the quantum vortex nodal lines formed from the second condensate, we find that the multi-
skyrmions formed have the vortex ring randomly percolating through the lattice. Moreover, there are what look
like a breathing mode of the nodal vortex core with its toroidal closure and times when the skyrmions become
isolated from each other. These dynamics are not heavily imprinted on the energy spectra.

Finally, we comment on the scaling of the physics at the mesoscopic level. Standardly, for three-
dimensional lattice algorithms the physics would scale cubically with grid size: that is, if the physics in a lattice
simulation on a grid L1 occurred at time t2 = t1 (L2/L1)

2, then on a grid L2 the same physics will occur at time
t2 = t1 (L2/L1)

3. However, to recover the GP equation, we must have diffusion ordering (see the appendix):
i.e. t2 = t1 (L2/L1)

2. In the actual qubit numerical algorithm the only way to enforce the diffusion ordering
is to restrict our simulations to parameter regimes in which the diffusion ordering is automatically obeyed. If
one runs simulations outside this region, then at the macro level we will not be solving the GP equation itself.
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Appendix. The unitary qubit lattice algorithm [3–10, 21, 22]

We will briefly outline the unitary qubit lattice algorithm for the scalar GP equation (3) and then discuss the
extensions required in the algorithm to solve the coupled BECs (11). Instead of solving (3) directly we move
to the mesoscopic level and introduce qubits on a spatial lattice whose moments will lead to the BEC ground
state wave function ϕ. Since we will be using quantum entanglement and phase coherence at the mesoscopic
level, we require at least two qubits per grid point. However, two qubits will be all that is required to recover
the scalar GP equation (3), making the algorithm very light on processor memory and so permit large grid
simulations to be performed with relatively few qubits. For example, production runs have been performed on
grids of 57603 using just under 12 000 cores.

Since we are using two qubits per lattice site, there are 22 states. To recover the scalar wave function we
need, consider the complex amplitudes of two of these states: α (x, t) , β (x, t) and the time evolution of the
vector

ψ (x, t) =

(
α (x, t)

β (x, t)

)
. (A.1)
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(a) (b)

Figure A.1. The strong scaling of the unitary qubit codes on Jaguarpf (CRAY XT5 at Oak Ridge
National Laboratory) and Intrepid (IBM BlueGene at Argonne National Laboratory). Ideal scaling is
shown in dashed red (that is, on doubling the cores the wall clock is reduced by a factor of two). The
strong scaling is up to 110 592 cores on Jaguarpf and 131 072 cores on Intrepid and the unitary code
scaling is shown in blue.

(a) (b)

Figure A.2. The strong scaling of our coupled BEC unitary qubit codes on Hopper (CRAY XE6 at
NERSC) and on Jaguarpf (CRAY XT5 at ORNL). Ideal scaling is shown in dashed red (that is, on
doubling the cores the wall clock is reduced by a factor of two). The strong scaling is up to 150 000
cores on Jaguarpf and 216 000 cores on Intrepid and the unitary code scaling is shown in blue.

The unitary time evolution of this vector is achieved by a combination of the following three unitary
operations: (i) a unitary collision operator C that locally entangles these amplitudes; (ii) a unitary streaming
operator S that shifts just one of these amplitudes to the neighboring lattice site and eventually an exponential
phase operator that incorporates the nonlinear |ϕ|

2 term into the GP equation. To recover the ∇
2 operator, one

needs to use the 2 × 2 unitary collision matrix

C =
1

2

(
1 − i 1 + i

1 + i 1 − i

)
with C2

(
α

β

)
=

(
β

α

)
,C4

= I. (A.2)
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Table A.1. Weak scaling on Jaguarpf (CRAY XT5).

Grid Cores Wallclock (s)

6003 216 261.0
12003 1 728 261.8
24003 13 824 263.9
36003 46 656 268.4

Table A.2. Weak Scaling on Hopper (CRAY XE6).

Grid Cores Wallclock (s)

6003 216 209.2
12003 1 728 212.7
24003 13 824 212.1
36003 46 656 212.7
40003 64 000 213.3
48003 110 592 214.0

Because of (A.2), C is usually called the square-root-of-swap operator. The streaming shift operator

S1x,1

(
α (x)

β (x)

)
=

(
α (x +1x)

β

)
, S−1x,2

(
α (x)

β (x)

)
=

(
α (x)

β (x −1x)

)
, (A.3)

where the subscript ‘1’ refers to shifts on the amplitude α and ‘2’ to the amplitude β. The unitary operators
C and S do not commute: [C, S] 6= 0. We consider the following sequence of interleaved operators, with
γ = 1 or 2:

Jzγ = S−1z,γC S1z,γC, (A.4)

with the time evolutionary operator incorporating an exponential phase factor � to be specified later,

Uγ [�] = J 2
xγ J 2

yγ J 2
zγ exp [−i ε2 �], ε � 1, (A.5)

and ε a small perturbative parameter. Under this evolutionary operator

ψ (x, t +1t) = Uγ [�]ψ (x, t) ,

one can show under perturbation theory that, where I is the identity matrix and 1x = O(ε),

ψ (x, t +1t) = ψ (x, t)− iε2
[
−

1

2

(
0 1

1 0

)
∇

2 +�I

]
ψ (x, t) +

(−1)γ

4
ε3
(

1 −i

i −1

)
∇

2ψ (x, t) + O(ε4).

(A.6)

Since the O(ε3)-term in (A.6) alternates with sign depending on whether γ = 1 or 2, it can be eliminated by
symmetrizing the evolution operator

U [�] = U2

[
�

2

]
U1

[
�

2

]
, ψ(x, t +1t) = U [�]ψ(x, t). (A.7)

Moreover, under diffusion ordering: 1x = O(ε),1t = O(ε2), the vector qubit amplitude evolution equation
becomes

i
∂

∂
ψ(x, t) =

[
−

1

2

(
0 1

1 0

)
∇

2 +�

]
ψ(x, t) + O(ε2). (A.8)

On rescaling the gradient operator ∇ → a−1
∇ and contracting the vector ψ into the scalar ϕ

(1 1)ψ = (1 1)

(
α

β

)
= α + β ≡ ϕ, (A.9)
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one recovers the desired GP equation (3) under the choice � ≡ g |ϕ|
2
− 1,

i
∂ϕ

∂t
= −∇

2ϕ + a
(
g |ϕ|

2
− 1

)
ϕ. (A.10)

The extension of our qubit algorithm to the spinor BEC (11) is immediate, simply requiring four qubits per
grid node: two qubits for �± and two qubits for ϕ−. For a more general coupling between the two BECs, one
need simply to introduce two different exponential phasing factors �±.

The beauty of the qubit unitary algorithm is that its major operations are purely local collisional
entanglement and then that entangled information is appropriately streamed to the neighboring lattice site. This
permits near-ideal parallelization on current supercomputers and also permits direct application to quantum
computers once they become available due to the unitary nature of the algorithm. Moreover, it fully respects
the Hamiltonian nature of the GP (3) and thus permits the investigation of Poincare recurrence.

In figures A.1 and A.2, we show the strong scaling results of our unitary codes. In strong scaling, one fixes
the lattice grid and sees how the code’s wallclock time decreases in proportion to the increase in the number
of cores.

One can thus see that the unitary codes are even scaling superlinearly, as seen in figure A.2 with the blue
curve lying below the ideal scaling (shown in red).

The weak scaling of the unitary codes is also excellent, as seen in tables A.1 and A.2 In weak scaling,
one tests the wall clock time as the work done by each processor is kept constant as one increases the number
of cores (that is, if one doubles the grid in each dimension, then one would increase the number of cores by a
factor of 23).
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