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ABSTRACT

Quantum information theory is undergoing rapid development and recently there has been much progress in
mapping out its relationship to low dimensional gravity, primarily through Chern-Simons topological quantum
field theory and conformal field theory, with the prime application being topological quantum computation.
Less attention has been paid to the relationship of quantum information theory to the long established and well
tested theory of gravitational dynamics of 341 dimensional spacetime. Here we discuss this question in the
weak field approximation of the 4-space metric tensor. The proposed approach considers a quantum algorithmic
scheme suitable for simulating physical curved space dynamics that is traditionally described by the well known
Einstein-Hilbert action. The quantum algorithmic approach builds upon Einstein’s veirbein representation of
gravity, which Einstein originally developed back in 1928 in his search for a unified field theory and, moreover,
which is presently widely accepted as the preferred theoretical approach for representing dynamical relativistic
Dirac fields in curved space. Although the proposed quantum algorithmic scheme is regular-lattice based it
nevertheless recovers both the Einstein equation of motion as an effective field theory and invariance of the
gravitational gauge field (i.e., the spin connection) with respect to Lorentz transformations as the local symmetry
group in the low energy limit.

Keywords: quantum algorithm, quantum computation, quantum gravity, vierbien field theory, Einstein equa-
tion, Dirac equation in curved space, quantum lattice gas, Fermi condensate

1. INTRODUCTION

We present a quantum informational representation of the Einstein equations in the weak gravity field limit and
the relativistic wave equation for chiral matter in curved space. The field theory approach to General Relativity
(GR) using the vierbein field representation of the metric tensor was discovered by Einstein in 1928 in his pursuit
of a unified field theory of gravity and electricity —he originally published this approach in two successive letters
appearing one week apart.l’? The first manuscript, a seminal contribution to mathematical physics, adds the
concept of distant parallelism to Riemann’s theory of curved manifolds that is based on comparison of distant
vector magnitudes, which before Einstein did not incorporate comparison of distant directions. Einstein’s second
manuscript represents a simple and intuitive attempt at unification. He originally developed the vierbein field
theory approach with the goal of unifying gravity, electromagnitism and quantum theory, a goal that he never
fully achieved. Nevertheless, the vierbein field theory approach constitutes important theoretical progress toward
a quantum theory of gravity. This approach requires no extra constructs or compactified dimensions, just the
intuitive notion of distant parallelism. Moreover, in the vierbien field formulation of the connection and curvature,
the basis vectors in the tangent space of a spacetime manifold are not derived from any coordinate system of
that manifold.

In the beginning of the year 1928, Dirac introduced his famous square root of the Klein-Gordon equation,
establishing the starting point for the story of relativistic quantum field theory, in his paper on the quantum
theory of the electron.? This groundbreaking paper by Dirac may have inspired Einstein, who completed his
manuscripts a half year later in the summer of 1928. With deep insight, Einstein introduced the vierbein
field, which constitutes the square root of the metric tensor field.* Einstein and Dirac’s square root theories

*The culmination of Einstein’s new field theory approach appeared in Physical Review in 1948,* entitled “A Generalized
Theory of Gravitation.”



mathematically fit well together; they even become joined at the hip when one considers the dynamical behavior
of chiral matter in curved space.’

The Einstein-Hilbert action for gravity is
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where G is the gravitaitonal constant, g, is the metric tensor of the spacetime manifold, g = —det g,,,,, R

is the second rank Ricci tensor, T is the energy-stress tensor, and c is the speed of light.! The D = 4 flat
spacetime metric is n*¥ = diag(1l,—1,—1,—1), the Minkowski metric. The Ricci tensor is formed from the
Riemann curvature tensor as follows:

Ry = R\ = 9 Rpuonw, (2)
where the Riemann curvature tensor is
A A
Rf o = 0,0 — 0,105 + FZ/\FW — Ffj/\FW, (3)
which in turn is determined by the affine connection that is expressed in terms of derivatives of the metric tensor
g 1 g
F;w = 59 ? (8ugup + augpu - 8pg;w) . (4)

The equation of motion is determined by minimizing the variation of the action with respect to a local variation

of the metric tensor field, ‘;‘EEH = 0, which is calculated with the help of the useful identity
puv
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The well known result is
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The quantity G* = R* — % g“”gagRaﬁ is known as the Einstein tensor, and hence (6), the Einstein equation,

is written compactly as
8nG
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Our quantum informational model is designed to recover (7) as its effective field theory in the weak-field limit.

2. Q6 MODEL
2.1 Basic approach

Our basic approach begins by modeling source-free gravity in the weak field limit. Remarkably, in the vierbien
representation, the Lagrangian density has the form of a four-fold U(1) gauge theory

h afa
Egauge = ZFaBaF d ’ (8)

for a = 0,1,2,3, where h is the negative of the determinant of the field tensor g"”(x) = e/ (z)eY (x)n?, the flat
Minkowski space metric is n** = diag(1,—1,—1, —1), and the gravitational field strength is

Fo"ga(x) = 5“6%(96) — 8’Beo‘a(x). (9)

tAn excellent treatment of quantum field theory in curved space is given by Birrell and Davies,® which contains an
introduction to the vierbein representation of GR. Excellent introductions to Einstein’s vierbein field theory are given by
Weinberg® and Carroll,” albeit they review vierbein field theory as a sideline to their main approach to GR, the standard
coordinate-based approach of differential geometry.

!The mass and length and time units of these quantities are the following: [Semn] = ML? [G] = L [¢"] = 1,
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The vierbein field e*,(x) plays the role of the 4-vector potential in its coordinate (Greek) index for each value of
its noncoordinate (Latin) index (although e®,(z) is technically not a gauge field). The Lagrangian density (8),
quadratic in the field strength, was discovered by Einstein. In a note, added in proof, at the end of his second
1928 manuscript,? Einstein presents the Hamiltonian = hglwga"gﬁTAg BAZT, and it is from this covariant
quantity that we obtain the source-free Lagrangian density (8). This derivation is given in Appendix A. The
quantum algorithm relies on a spinor representation whereby each of the four vierbien fields are represented
as spin-1 entangled pair states of spin-% fields. The fundamental fermionic Spin—% fields come in quartets of

4-spinors denoted w and v and their antiparticles w and v:
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and the 16 amplitudes associated with the entangled spin-1 states are the eight states % (vl £0%,) and

% (w] 4 £ wp,), for s =1, ], plus eight more counting the antiparticle complements as well. The quartet (10)

constitutes a zeroth generation of fermions, a Fermi condensate representing space. There are three additional
generations of chiral matter, also arranged in quartets as well
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and likewise for the (s, c) and (b, t) quartets, denoted Q2 and Qs, respectively. The particle symbols are for three
generations of red quarks.$

Furthermore, our approach models the dynamics of the four generations of fermionic quartets, (v, w), (d,u),
(s,c) and (b,t), as they freely evolve through the curved space. Given this curved space manifold, the dynamics
of all the relativistic chiral (massless) particles is governed by the low-energy effective field theory

3
Cchiral - Zh Z@C(m) GZ (.%‘)’yaD# (JI)QC(LE), (12)

c=0

where D,,(z) = 0, + I',(z) is the covariant derivative, I',(z) = 2e%4(z) (uepn(z)) S** is the correction to the

spinor field, and S*¥ = ﬁ [v*,~¥] is the anti-symmetric generator of the Lorentz transformation for the spinor
field.

There are four algorithmic steps of the modeling approach, each represented by a unitary operator (or
sequence of unitary operators) acting on the qubit field. (A) The first step involves streaming the chiral matter
freely between neighboring points in space. The next three steps involves matter-matter interactions, which are
all local point interactions. (B) A proto-Higg mechanism is applied only to the (v, w) quarks, and the dynamical
vierbien field e, is identified as the resulting entangled chirality states in the zeroth generation. The 4-vector
et, (for fixed a) is a spin-1 entangled pair state. (C) Next, the qubit field is Fourier transformed from position-
space to momentum-space, and a local k-space interaction is applied to the (v,w) quarks forming entangled
(k,—k) pairs. Consequently, the (v,w) matter behaves as a Fermi condensate. The qubit field is then inverse
Fourier transformed back to its position-space representation. (D) Finally, the (v,w) quark generation (and

$The quantum informational dynamics model has been striped down for the sake simplicity and thus there is one
quark color (no green or blue quarks) represented and in turn no internal SU(3) gauge group. Furthermore, there are no
leptons and thus no full internal SU(2) gauge group either, which requires both quarks and leptons. (We could model
the SU(2) weak interaction between the quark flavors in the Q6 model, but choose not to do so here.) The quantum
chromodynamics and electroweak dynamics sectors of the Standard Model are recovered in a quite simple generalization
of the model introduced here. Here we focus strictly on the gravitational dynamics sector.



hence the e*, field) is coupled to each of the (d,u), (s,c), and (b,t) quark generations. It is this final coupling
that adds source-terms to (8), causes the I',, correction in the Weyl equation, and adds mass terms to (12)—the
inter-generational coupling breaks chiral symmetry for all the quark matter since the (v, w) chiral symmetry is
broken by the proto-Higgs mechanism.

2.2 Quantum state at a point

Let us now define the quantum state of the Q6 model at a point in space. For Q = 6, a point encodes 2972 = 16
Dirac particles, where each particle has 4 amplitudes. With the Q6 encoding convention we can keep track of
the spin and chirality states of three generations of fermions, which are quarks (and we choose these to be red
quarks say). So here is a quantum state for Q6 at a single point
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It is easier to write out all the amplitudes with identifiable particle labels
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The symbol & denotes folding the Hilbert space ket |¥) (which is a column vector with 26 = 64 amplitudes)
into the ordered array (4 x 4 X 4) so we can easily write out all the components on one page. The structure of
(13b) has the property that the even and odd columns comprise amplitudes with even () and odd (1) indices,
respectively. There are 64 labels shown corresponding to the four generations of chiral matter.

Each qubit at a point is given its own unique label:
|01 42 45 44 5 Gs) = |ee’)|r)[lo)]s). (14)

The encoding convention of the quantum state at a point in the Q6 model goes as follows:

e The qubit subspace |¢,¢,) = |ee’) is the generation selector: |00) are generation 0 states which encodes
(v, w) fermions, |01) generation 1 states encoding (d,u) fermions, |10) generation 2 states encoding (s, c)
fermions, and |11) generation 3 encoding (b, t) fermions.

e The qubit |¢g,) = |r) encodes the presence of a quark at the point (a red quark say). |r) = [1) is a quark
and |r) = |0) is an anti-quark.

TWe are introducing a quantum information dynamics particle encoding convention that is actually a discretized version
of the usual high-energy physics convention, and in the future it will be useful for quantum computational simulations of
high-energy particle physics.



e The qubit |I) encodes for isospin, the upper or lower component of a fermion doublet. For example, in the
first generation, |rl) = |11) is an up quark and |rl) = |10) is a down quark.

e The qubit |o) encodes for chirality; o) = |1) is a left-handed fermion and |o) = |0) is a right-handed one.

e The qubit |s) encodes for spin; |s) =|1) is a spin-up fermion and |s) = |0) is a spin-down one.

The bit encoding of the first generation of particles is given in Table 1.

0-body 4-body
o, 0 0 0 0 0 upe 11 1 15
1-body B 3-body
1L 0 0 0 8 dyy 0 1 1 7
my 0 0 0 1 1 ug; 11 0 14
2-body B 2-body
w0 0 1 9 dy, 0 1 0 6
.10 0 10 dpy 0 1 0 1 5
w, 1 1 0 0 12 Wy 0 0 1 s
3-body B 1-body
o100 1 11 dpy, 0 1 0 0 4
wy 11 0 1 13 W, 0 0 0 2

Table 1. @ = 4 Hilbert subspace of |r)|lo)|s) comprising the first generation (|ee’) = |01)) of red quarks. The particle
vacuum (0-body sector) and the hole vacuum (4-body sector) are included and are assigned. The decimal values from 0
to 15 obtained from the binary encoding of the particle states are tabulated as well.

Two number operators select the generations:

9o|¥) = hq ho|¥) generation 0: 0 < «a <15 (15a)
91|¥) = hy na|¥) generation 1: 16 < o < 31 (15b)
92|¥) = nq ha|T) generation 2: 32 < a <47 (15¢)

) ) (15d)

93|¥) = nqng| U generation 3: 48 < o < 63,

where n,, and hy, for a = 1,2, are the qubit number and hole operators for |g1) and |¢2) at the point in question.

The Pauli exclusion principle occurs at the qubit level. Yet, since all the amplitudes represent different
quantum states, multiple particles (up to 2°) may simultaneously exist at a point in quantum superposition
prior to projective measurement. The high-energy encoding principle is that only one particle state can be
observed at a point, because a measurement of all six qubits yields one configuration of six bits.**

2.3 Stream operators

The four qubits subspace |ee’ 0s) € |¥) encodes all the spacetime dynamics at a point (i.e. invariance w.r.t.
the Poincaré group). The remaining qubits specify all the internal gauge dynamics that may occur. Qubit
states simultaneously move in all spatial directions in quantum superposition. Directed motion (say where the
quantum particle has momentum p) occurs over the qubit field in the limit of low-energy coherent wave packets,
spread out over many qubits over a large scale relative to the grid scale. The principle of motion of qubit states
presented here is meant as a high energy representation of particle dynamics. The operators that affect the qubit
motion are called stream operators.

IHere we are using the convention that a product of two operators, say hihz is assumed to be a tensor product, h
applied to the first qubit tensor producted with h applied to the second qubit. So, h1hs = h ® h.
**This is compatible with the structure of baryons for example, such as the proton, which is known not to be a point
particle. A proton is a turbulent sea of virtual quarks and gluon gauge fields anti-screening the three u-u-d valence quarks
only accounting for a few percent of the proton mass. Albeit, the QCD sector is not represented in the Q6 model.



Streaming is related to the Lorentz group boosts directly acting on the |0 s) chirality-spin subspace (5th and
6th qubits) of (14). The spin sector generators (for boosts) in the adjoint representation are

Kui = 9, 157 03 04, (16)

where g, are the generation selectors for u = 0,1,2,3 and where o; are the Pauli matrices for ¢ = 1,2,3. The
stream operators are

Y,i(z) =e " = 155 + sinh(2)k,; + (cosh(z) — 1)nii. (17)
These stream operators are unitary for imaginary z and preserve chirality. The third generator of (16) is diagonal
K’IJ«3:gM 1582 0303, (18)

so as a matter of algorithmic practicality, we implement all the stream operators strictly using (18). That is, the
quantum algorithms for streaming along the  and y directions are

Li(z) = e Tt (5) e F 1 e (19)
Lo(z) = eFBTOn YL (5) . e 0 (20)

The local stream operator along the z-direction, for example for the 3rd generation (selected with nn), is
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where p = —i0; for example. In this example, 4-spinor amplitudes associated with the (red) top and bottom
quarks in (13b) are streamed; the basic (quantum lattice gas) stream operator is
eigm'ztgi(:ﬁ) gi(m +ox,t)
Fox- T T
L (: . + _|¢€ tRT(‘r) _ RT(w + 61:7 t)
T33(25$ p) = Sém t(l‘) - EIJm-VtQL(l,) - ;L(w ¥ 5:137 t) ) (22)
ei‘sm'vtzT(x) tiq(x £ 0z, )

amounts to a shift of the amplitudes for the top quarks, and this is a simple permutation (a unitary operation).
This works similarly for all the 4-spinor fields in (13b). To reiterate, the stream operators like (22) are represented
in terms of a sequence of qubit-qubit interchange gates.

Streaming of all the particles in one generation g, along the x, y, and z directions, is
Ug = ® [e_i%lggf) 7v X s (id) - 515" (oytos) Y 5(idy) - e"iF157 0n ;3(262)} . (23)
x

So streaming all the generations of fermions represents the high-energy chiral motion®?

3
W) = <H Ug> 0), (24)
g=0

where the grid sizes are unit length, c¢dt = dx = dy = dz = 1. The grid-level quantum algorithm (24) leads to
the equation Weyl equation in the low-energy scaling limit

iv"0,Qq = 0, (25)

for g = 0,1,2,3 and in the chiral representation where 7 = 01 ® 1 and 7’ = i0o ® ;. At this stage, the dynamics
of all the four generations of quarks @, are the same. Equation (25) is exact only in flat Minkowski space where
the vierbien field is diagonal, e, = §#, when we can take x = dy = §z = 1. In the case when e*, = 0K +k*,+- - -,
then correction terms will necessarily emerge in (25) as dx # dy # dz and v#9,, — e o(x)y* (9, + ).



2.4 Collision operators

There are three classes of collision operators: The first class breaks chirality in the (v,w) generation. The
vierbien fields are mapped to the resulting entangled chiral states as described in Sec. 2.4.1. The second class
represents the collisional k-space dynamics strictly between the (v, w) quarks themselves. The (v, w) quarks are
modeled as a Fermi condensate and the respective quantum collision operators that represent the condensate
dynamics is given in Sec. 2.4.2. The third class represents the collisional x-space dynamics between the (v, w)
Fermi condensate and the bright matter (u,v), (s, c), and (b,t) quark fields. We use three collision operators to
account for the gravitational interaction of the quarks in the high-energy limit, and these are given in Sec. 2.4.3.

2.4.1 Vierbien fields as entangled states

The four veirbien fields, e*,(z) for a = 0, 1,2, 3, when grouped together, form a generation of spin-1 amplitudes

ezo(x) eio(ﬂc) ezo(x) ezo(x)
= | 00 w0 e | @)
e3(z) es(z) €e%z(z) e3s(x)

and as already mentioned they are identified with spin-1 entangled states of w(z) and v(z) and of their antipar-
ticles w(z) and ©(x). The map of the zeroth generation amplitudes to the vierbien components goes as
awy,, +bwg, awWi4 +bWwry awr, —bWi, awWry—bWwis
avi, +bvg, aviy +bvgy av) —bvg,  avip —bupy = {e"a(@)}, (27)
awr, +bwg, awi;+bwry awg —bwi; awpy —bwis
where a = costyy and b = sinty. The gate angle Jy is a free parameter in the model. The proto-Higgs
mechanism applied to the zeroth generation is generated by
v = hhi1§?o,1,. (28)
The proto-Higgs collision operator is
Y () = HY = 155 + i sin(dn)v + (cos(Vn) — 1) v2. (29)

The equations of motion governing the low-energy particle dynamics of Qg in flat Minkowski space are
iOww; = do-Vw +--- 10wy, = —io - Vwp, + - -+ (30a)
i, = io-Vou +--- i0pvf, = —io - Vo, + -+ -, (30b)

which are the Weyl equations for massless fermions in the chiral representation. In turn, the equations of motion
governing entangled pairs (vierbeins) in flat Minkowski space turn out to be

i0¢ (awp, +bwy) = —io-V(ewg —bwi)+--- 10t (awg —bwy) = —io - V (awi, +bwg) + - -+ (31a)
10 (av) +bvg) = —io-V(avg —bvf)+--- 10 (avg —bv]) = —io -V (av] +bvg)+--,(31b)
which are not chiral Weyl equations for massless fermions, but the coupled linear decomposition of the wave
equation 0"9,e",(x) = 0. Thus, the vierbien fields are not gauge matter in the adjoint representation of a local

gauge group—instead, they are represented here as pairwise entangled states that are governed by the wave
equation.

2.4.2 Fermi condensation
The (v, w) matter (zeroth generation of fermions) is modeled as a Fermi condensate. The entangling gate between
condensate quarks oo = (1, —k) and 8 = ({, k) is generated by the joint number operator

ma(’l?a E) = COS2 (g) Na + Si1’12 (;9) hﬁ + : 8121119 (e—i.fala% + €i£aaa5) ) (32)




which is idempotent. The analytical form of (32) derives from a similarity transformation of the number operator

9 cq T .

Ne; that is, N, = e dapasy o~ Gap®ef with joint ladder operators a:rw = % (aa +e’l§a2) and aqg =
1 ,

7 (aL + elfaﬁ).

The qubit field in position space is Fourier transformed into a qubit field in reciprocal space. Then the two
k-space points, k1 = k and ko = —k, together constitute a field of 12 qubits:

1 42 G5 G G5 46) 1101 42 G5 Q2 G5 G6)2 = |erel)|r1)]lion)]s1)]eaeh) |r2)|l202)]52). (33)

Then, (32) is employed as the generator of entangling collisions as follows:

9 V f
oy :cos2<2> hhn1§2hhh1g®3n+sin2(2) hh1$2hhhh15%n

- /. (34a)
BSmY i ot 192 hhhal 1820 + %eiihhm;@?hhhmg@? n.
2V ®2 ®3 oV ®3 ®2
@ =cos™| 5 hhnl13“nhh15° h+ sin 5 hh15°nhhh15°h
N S (31b)
Y e hhat 182 nhhat 1925 + %eiﬁhhm;@?nhhul?? h.
The Fermi condensate collision operator is
T§f75(97197§) =@ —s = 1586 + isin(0)w,,_s + (cos(0) — l)wf’,s, (35)

where s =1, |.

The relationship of (32) to a superconducting Fermi condensate is straightforward to demonstrate. We begin
with the triangle relation
EL =&+ 1A, (36)

where we define three real-valued quantities: the pairing energy FE,, the single particle kinetic energy &,, and

the gap energy magnitude |A,|. The names of these quantities, and their respective symbols, are chosen to make

a connection to condensed matter theory of superconductivity. The triangle relation (36) is shown in Fig. 1, and

it allows us to express the similarity transformation angle 9, in terms of the energies as follows:
Ea A

cost, = E—a and sind, = B

(37)

We will also need the following half-angle identities: cos2%‘ = %(1 + %‘;) and sin2% = %(1 — J%;) . Finally,

Eq

1A
]
Ea
Figure 1. Triangle relation for pairing energy (hypotenuse) expressed in terms of the single particle kinetic energy (leg
adjacent to ¥, ) and the magnitude of the gap function (leg opposite to 9¥4).

the gap function is complex and, with an eye towards superconductivity, we propitiously choose its phase as
A, = |A,lie™ . In the new energy variables, we can rewrite (32) as

1 & 1 & A A*
S La )t (1 &> T 2ot ,t o
N, = 5 (1 + Ea) alay + 5 <1 Ea> agay + 2L, anay + 5 aalgaa, (38)
where in the last term we made use of the anticommutation relation anag = —aga, for a # 3. Now if we

multiply through by the pair energy F, and sum over all the pairs, denoted as (@), in the situation where



there are no unpaired qubits (that is, the number of pairs is /2), then we can count the number of pairwise
entangled states as follows:

HBCS = Z Eofﬁlag (3:8) Z(SQCLLCLQ + % Z (AQCLLGE + A;';agaa) + i Z (Ea — Ea) . (39)
(aB) a (aB) @

We recognize this as a well known Hamiltonian in the condensed matter theory of strongly correlated fermions
in the BCS theory of superconductivity.!?

Consider a k-space pair (a, §) and some other pair (o, '), then because the entanglement number operators
commute over different pairs
[maﬂma’ﬂ’] =0, (40)

we may write the exact evolution operator for the fully paired system of qubits as a tensor product of entanglement
gates which is equivalent to a simple product over the pairs

® Tg% — H eianag(st/h — eiz<')‘5> anugét/rl, (41)
(aB) (aB)

where the quantum gate angle is proportional to the pair energy times the gate time, ©, = E,d0t/h. The
quantum evolution operator (41) constitutes a quantum algorithmic protocol for the self-interacting part of the
Fermi condensate.

The position-space representation of the qubit system must be Fourier transformed to a k-space representation
to implement the BCS superconductive self-interaction of the Fermi condensate. Then, a parity operation is
accomplished on all spin-up particles, say. If we denote this parity operation as Pj, then it is defined by the
following k-space map:

Tk TRl
Py Cootodo = Cootede : (42)
Tokdk Tokde

Y*¢ is the local collision operator in k-space, and it is applied independently (and homogeneously) to all points
in the system, as is typical of the collision step in a quantum lattice gas. To determine the position-space
representation of the quantum state of the Fermi condensate, one would have to perform a system wide discrete
Fourier transform. Fortunately, the gate protocol for the quantum Fourier transform is well known, quite
straightforward, and on a standard quantum computer can be completed in log time.'! Hence, if Uy is the
quantum algorithm (23) for the n-body quantum wave equation for the (v,w) fermions, and F denotes the
Fourier transform operator acting on all the qubits mapping them to the k-space representation, then the
quantum algorithm for the interaction part of the Fermi condensate of the zeroth generation of quarks in the
model would have the form

|\II/> :UFC(@ﬂ§ﬂ§)|“I}> =Uo |F Py ® Z%(Gﬂ%g) PT]:_I ), (43)
(aB)

where |U) is the quantum state of the many-body system.

2.4.3 Condensate-bright matter interactions

The Fermi condensate in the model is ultimately responsible for mediating the gravitational force. The interac-
tions between the condensate (generation 0) and the bright matter (generations 1,2,3) are generated by

Po1 = h Oy 1?4 (44&)

po2 = oxh1$? (44b)
P (aT at + aa) 158’4. (44c)



The condensate-bright collision operators are

Yoo (By) = e o Po0 =159 —isin(By) pog + (cos(By) — 1)po, (45)

for g = 1,2, 3. For example, for gate angle 83 = /4, the interaction between the condensate generation and the
(b,t) generation is

W, _dtpy W4 ity WR | itRy W4 B itRq
TRy ZbRL IRt ZbRT Ly 'LbLL g ’LbLT
YRy zbru YRt ’bRT vLy ’bL¢ VL ’bLT
wry 'LiLl wpp ZtLT WR | 'tR¢ WRt ltRT
V2 V2 V2 V2 V2 V2 V2 V2
_r _
ULy ULy URry Urt
T I8 I8 T
Rl Rt Ll Lt
s T s T
Rl Rt Ll Lt
m ur. ur, UR UR
ce (T L Lt Rl Rt
T?) (4) |‘l/> R cr cr h ch ) (46)
Ll Lt Rl Rt
T T = =r
SRy SRt SLy SLy
T T
SRJ, SRT SLJ, SLT
T T
Fr CLl/ T Fr CLT =T Fr CR‘\L =T Fr CRT =T
tL¢ _ 10y, | tLT . AW 4 tRi o 1WR | tRT _ 1WR4
bR.L iRy bRT Ry bL,L oy bLT I
V2 V2 2 V2 \/2 V2 V2 V2
bRL . “"al bRT . 'w{;‘m b£¢ . “){i bLT . “’iT
tLl _ zw{i tLT _ 'LwLT tRJ, o “U;:U tRT - zwﬁT
V2 V2 V2 V2 V2 V2 V2 V2

and similarly for the (d,u) and (s,c) generations. These are chirality conserving collisions. Yet, when (45)
are combined with the entangling collisions (27), which do not preserve chirality, the bright quark generations

necessarily acquire mass. Thus, the indirect interaction with opposite chirality (v, w) matter yields an effective
Higgs mechanism.

The local collision operators (45) actually result in long-range gravitational interaction because the (v,w)
generation is a Fermi condensate filled with entangled pairs. Therefore, a local collisional interaction of between

the w and t quarks, at = say, must necessarily be linked to a counterpart local collisional interaction between
the w and t quarks at a distant point z’ # x.

3. CONCLUSION

The full unitary evolution operator combines the interaction (45) of the (b, ¢) quarks with the bright quarks, the

k-space pairing interating (43), the proto-Higss mechanism (29), and the stream operators (23) for generations
1, 2, and 3. Therefore, the quantum algorithm for the gravity sector is

3
(H > T () <1‘[ T5° (—ifBy) ) Ut©(e,9,8) |v). (47)

There are seven free parameters in the model:

e Yy determines the mass of all of the (v, w) quarks,
e 3, for b =1,2, 3, determine the strength of the gravitational interaction and the mass of the bright quarks,

e ¥, the e-bit angle in (34), determines the ratio of the single particle kinetic energy to the pairing energy
and the ratio of the gap energy magnitude to the pairing energy in the for the Fermi condensate, and

e ¢, an e-bit internal phase angle in (32)—and in turn in (34)—for an entangled pair in the condensate.



Thus, the gravitational constant G and eight Standard Model (SM) parameters (the Higgs quadratic coupling
i, the Higgs self-coupling strength A, and the quark masses m,, mq, m., ms, ms, and my) are consolidated
into seven parameters (the proto-Higgs angle ¥y, the condensate angles ©, ¥ and &, and the three 8’s). This
is progress (even before adding in the extra particle physics of the strong and electroweak sectors) towards
unifying gravity with quantum field theory. A priori, one would not expect that the 8 angles to be different. If
B1 = B2 = B3 the interaction strength of the inter-generational couplings are all the same, then the 1 GR and 8
SM parameters are consolidated into 5 free parameters.

In a maximally entangled Q6 model, g = 1 = B2 = 3 = © = ¥ = 7, there remains a single innocuous
parameter £. Yet, even in the parameterless case (with £ = 0), the effective quark masses in the low-energy limit
would not necessarily be identical as there remains an overall degree of freedom: the filling fraction in the model,
which is the average number of bits per point, f = 2 > (¥(z)|ny ng - -+ ng|¥(z)), where L is the grid size. f
affects the asymmetry between the abundance of matter and anti-matter in the model.

3.1 Summary

We have described a particular high-energy quantum information dynamics over a field of qubits (a cubical grid
with six qubits per point). The modeled space is represented by a dynamical field tensor g"¥ (x) = e (x)e”y(x)n*®
that in the weak-field limit is governed by the Einstein equation of general relativity. Chiral matter is represented
by 4-spinor fields, that gain mass through a proto-Higgs mechanism, governed by the Dirac equation in curve
space in the model’s low-energy limit. This quantum informational model is called the Q6 model. The qubits at
a point x are denoted |¢; ¢» s ¢4 g5 gs) = |e€’)|r)|lo)|s) where

e the qubits |e) and |e’) select between four generations of particle; that is, ee’ € (00,01,10,11) = (0,1, 2, 3)
e the qubit |r) encode a (red) quark; that is, if » = 1 at z, then a quark occupies the point .

e 3 qubits |I), |o), and |s) encode for isospin (up/down), chirality (L/R), and spin (1/])

e the quark isospin doublets are (v, w), (d,u), (s,c), and (b,t) for generations 0, 1, 2, 3, respectively.

e an antiparticle |ee’)|7)|l6)|5) is the bitwise complement of a particle |ee’)|r)|lo)|s) (where the antiparticle
is defined as the bit-complement within the same generation’®); for example, the encoding of the up quark is
ug,, = (01,1100) and its antiparticle is @y, = (01,0011).

The dynamical properties of the curved space manifold are as follows:

e the qubit field is connected by pairwise entangling gates

e the (v, w) quarks, along with their associated antiquarks, constitute a Fermi condensate in the model
e bosonic entangled k-space pairs in the condensate mediates the gravitational interaction

e the vierbien field is represented as entangled states in condensate that mix chirality, and in turn through
the gravitational interaction, and the interaction between condensate (v, w) and bright quarks (d,u), (s,c), and
(b, t), impart mass to the bright quarks

e the number of points in curved space is a fixed at all time and equals the number of grid points in the
cubical field of qubits.

So, all the available information about the dynamical system, including the dynamical spacetime metric, is
contained within a field of qubits. A basic structure that emerges from this model is four generation of fermions.
The long-range effect of gravity is understood as due to a fundamental (action-at-distance) momentum exchange
mediated by entangled pairs in the condensate background. This is an intuitive model of gravity.

T This conforms to the Standard Model convention for identifying antiparticles with respect to the internal gauge group.
Yet, in the quantum informational representation of high-energy particle dynamics that includes a gravity sector, one
could define an antiparticle as the full bit-complement of the Q6 state, |ee’)|r)|lo)|s) = |g&')|7)|l6)|5). With this quantum
gravity oriented perspective, the (b,¢) generation quarks would be the antiparticles of the (v,w) quarks and the (s, c)
quarks the antiparticles of the (d,u) quarks. For example, the encoding of the up quark is uy; = (01,1100) and its
antiparticle is ¢gs = (10,0011).



3.2 Final remarks

There were a number of constructs presented as the basis of a quantum algorithm for quantum gravity. These
constructs include a (v, w) quark condensate (in the zero-temperature limit) that serves multiple roles: (1) pro-
viding a proto-Higgs mechanism, (2) representing the vierbien fields as entangled states, and (3) communicating
the long-range gravitational force between remote bright fermions as they jointly interact with entangled pairs
in the condensate. Throughout the presentation, the (u,v), (s,¢), and (b,t) generations of quarks were referred
to as bright matter. When additional qubits per point are added to the Q6 model, internal gauge symmetries
emerge—in particular SU(2) and SU(3) gauge symmetries of the SM are recovered. (The extended quantum
algorithm encompassing SM particle physics will be presented in a subsequent paper. Temporarily restricting
our focus to the gravitational sector was meant to make the introduction of the model simpler.) The gauge
symmetries affect generation 1, 2, and 3 fermions. Hence, the term “bright matter” is applied to these three gen-
erations. In the extended model, the (v, w) condensate not only represents the vierbien fields but also represents
the additional gauges fields as well, in their respective adjoint representations. It is possible to regard the (v, w)
generation as constituting dark matter and the (v, w) entangled states as constituting a source of dark energy
in the model.

We did not strive to present a quantum algorithm with high-order numerical accuracy. Instead, our initial goal
was to sketch out a candidate design of the quantum algorithm, enumerating relevant pieces to make a workable
model of gravity, a step towards quantum gravity. The candidate quantum algorithm presented here can be
implemented on a quantum computer for quantum simulation purposes. Of course certain (e.g. mean-field)
approximations of the model could be implemented on a classical computer for testing purposes too. Quantum
simulations can help validate the relation of the free parameters in the quantum algorithm to those in the SM and
GR theories. Therefore, the material presented here is intended (and hopefully will be taken) as an incremental
step in the direction toward a practical model of quantum gravity. Numerical predictions obtained from quantum
simulations based on this quantum algorithm (or variants with higher-order numerical convergence) will be the
subject of future work. Finally, as a future outlook, it may be possible to obtain some numerical predictions
via analog quantum simulations using quantum gases (condensates of ultracold Fermi atoms) trapped in a 3D
optical lattice.
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APPENDIX A. EINSTEIN’S VIERBEIN REPRESENTATION

In this section, we present a derivation of the equation of motion of the metric field in the weak field approx-
imation. We start with a form of the Lagrangian density originally presented in? for the vierbein field theory.
Einstein’s intention was the unification of electromagnetism with gravity.

With h denoting the determinant of |e,q| (i.e. h = +/—g), the useful identity (5) can be rewritten strictly in
terms of the vierbein field as follows

1 1 1 1
oh = ihg“"égw = ihg””é(e#“el,b) Nab = ih de et + ih eV poe,b = hoe, et . (48a)
With the following definition
1
ap = 57" (Opcaa — Daepa), (49)
we consider the covariant Lagrangian density
L= hg;w!]aagﬁTAgﬁAZr (50&)
h
Zgwgo‘”g’BTe““e”b (08€aa — 0apa) (Oreop — Overp) - (50Db)
For a weak field, we have the following first-order expansion
€ua = 6ua - kua Tt (51)

The lowest-order change is

oL = %mwnwnmg#aavb (0gkaa — Oakpa) (O-€ob — Oserp)

(52a)
h
= annﬁf (0skar — Oukpy) (Orks” — Ook,") (52b)
h
= (Opkay — Oakipy) (%K™ — 0°k"") (52¢)
h
= 3 (05kan 0P k™ — Ogkan 0°KP" — D4kp, 0° k™"
+ Oakp, 0°K) (52d)
_ % (05kan 0k — O3kan 0K — ka0 kP
+ 0k 0° k™) (52¢)
h
= 5 (=% 950°K”") k. (52f)
This implies 9k — 90*kP" = 0, or
%kpo — 0" 0pkpe = 0. (53)

A.1 First-order fluctuation in the metric tensor
The metric tensor expressed in terms of the vierbein field is

9ap = €a"pa = (g + ka") (9pa + Fpa) - (54)

So the first order fluctuation of the metric tensor field is the symmetric tensor

ﬁEgaﬁ—éaﬁzkaﬁﬁ-k‘ga-“. (55)
Einstein defined the electromagnetic four-vector by contracting the field strength tensor
(0% 1 aa
o =A%, = 3¢ (Oatpa — Ou€aa) - (56)

This implies ¢, = %50“1 (Oakpa — Opkaa), SO we arrive at

20, = Oak,® — 0,ka”. (57)



A.2 Field equation in the weak field limit

The equation of motion for the fluctuation of the metric tensor from the Lagrangian density is obtained by
adding (53) but with « and 8 exchanged:

82]€ﬁa - (9”8/5%'“@ + 82k‘aﬂ — a“aakug =0, (58)

which gives
0*Fap — 0" Oakps — 0" Opke = 0. (59)

Using (57) above just with relabeled indices
20 = Ouka! — Ok, (60)
Taking derivatives of (60) we have ancillary equations of motion:
—0,08ka" + 0,05k, = —20p0q (61a)

and
—8H3ak'gu +8a(9,3kjuu = —28a<p5. (61b)

Adding the ancilla (61) to our equation of motion (59) gives
0P + 9 0u (ks + k) + 005 (K + i) — 20005k = 29500 + Ducop). (62)

Then making use of (55) this can be written in terms of the symmetric first-order fluctuation of the metric tensor
field

1 __
5 (-a?m + 0"06G5 + 0"05Ta — OOl ) = 0ppa + Oaipp- (63)

This result is the same as Eq. (7) in Einstein’s second paper. In the case of the vanishing of ¢,, (63) agrees to
first order with the equation of General Relativity

Ras = 0. (64)

Thus, Einstein’s action expressed explicitly in terms of the vierbein field reproduces the law of the pure gravita-
tional field in weak field limit.

APPENDIX B. RELATIVISTIC CHIRAL MATTER IN CURVED SPACE
B.1 Invariance in flat space

The external Lorentz transformations, A that act on 4-vectors, commute with the internal Lorentz transforma-
tions, U(A) that acts on the spinors wave function, i.e.

(A%, U(A)] = 0. (65)

Note that we keep the indices on U(A) suppressed, just as we keep the indices of the Dirac matrices and the
component indices of i suppressed as is conventional when writing matrix multiplication. Only the exterior
spacetime indices are explicitly written out. With this convention, the Lorentz transformation of a Dirac gamma
matrix is expressed as follows:

UM U(A) = Aor7. (66)

The invariance of the Dirac equation in flat space under a Lorentz transformation is well known:'?

[iv"0, —m]¢(x) =5 U(A)[i4"8, —m] ¢ (A™'2). (67a)



B.2 Invariance in curved space

Switching to a compact notation for the interior Lorentz transformation, Ay = U(A), (66) is
AiyHAy = A7, (68)

where we put a minus on the subscript to indicate the inverse transformation, i.e. A_ 1= U(A)~t. Of course,
exterior Lorentz transformations can be used as a similarity transformation on the Dirac matrices

Aoy (A1), =" (69)
Below we will need the following identity:
_1\V 65 _1\V
AAAA AT A E AN (M) A (ATY,
(70a)
(6_8) o A —1\¥
= A%AMU (A A€ a’ya) (A ) o
(70b)
(@) v oA .a
= A%A AE QY (700)

We require the Dirac equation in curved space be invariant under Lorentz transformation when the curvature of
space causes a correction I',,. That is, we require

ela 7" (O +Ty) (@) 25 AP aeray (A1), (0, +T)) A (A ) (71a)
=AM A (a FA 1FLA%)¢(A_1:U)+ Nyryt (A1) <8VA%)1/J(A_13:) (71b)
LD [(a +A_T)A )¢(A*1x)+ A, (aVA%)wA*lx)}

) H(A ). (71c)

N|=

=AM {(aﬁry)— T, + A 3TLAs +A 10, (A

Nl

=0

In the last line we added and subtracted I',. To achieve invariance, the last three terms in the square brackets
must vanish. Thus we find the form of the local “gauge” transformation requires the correction field to transform
as follows:

Ty + A TAy + A0, (Ay) =0 (72a)
or
L= AyDAy =0, (Ay) Ay, (72b)
Therefore, the Dirac equation in curved space
iveto(x)Dpty —mip =0 (73)
is invariant under a Lorentz transformation provided the generalized derivative that we use is
D, =8, +T,, (74)

where I';, transforms according to (72b). This is analogous to a gauge correction; however, in this case I, is not
a vector potential field.



B.3 Covariant derivative of a spinor field

The Lorentz transformation for a spinor field is

1
Ay =14 A 5%, (75)
where the generator of the transformation is antisymmetric S = —S%*. The generator satisfies the following
commutator
[‘thk7 S’L]] — ,',]hjsrki + nkishj o nhiskj _ nkjshz (76)

Thus, the local Lorentz transformations (LLT) of a Lorentz 4-vector, x® say, and a Dirac 4-spinor, 1 say, are
respectively:

LLT: 2% — 2/ = A%a? (77)
and
LLT: [ A%w. (78)
The covariant derivative of a 4-vector is
VX% =0,X*+1% X°, (79)

and the 4-vector at the nearby location is changed by the curvature of the manifold. So we write it in terms of
the original 4-vector with a correction

Xz +dz%) = X (z) — I‘gl‘y(x)Xﬁ(x)é:v"*7 (80)
as depicted in Fig. 2.
1";,”Y(a:)Xﬁ(x)éx”Y
X (x X% (x4 dx)
x® x® + oz

Figure 2. Depiction of the case of an otherwise constant field distorted by curved space. The field value X *(x) is parallel
transported alone the curved manifold (blue curve) by the distance 6z going from point * to =@ + dx°.

Likewise, the correction to the vierbein field due the curvature of space is
et (z + dz%) = ety (z) — Fgl(az)eﬂk(x)&ca. (81)
The Lorentz transformation of a 2-rank tensor field is
A% Ay = Narer - (82)
Moreover, the Lorentz transformation is invertible
Ao A = 6; = A%A,, (83)

where the inverse is obtained by exchanging index labels, changing covariant indices to contravariant indices and
contravariant to covariant. In the case of infinitesimal transformations we have

A'j(@) = 85 + X'j(x), (84)

where N -
0= +Xjs = A7 +N°. (85)



Lorentz and inverse Lorentz transformations of the vierbein fields are
el (x) = Ap(x)e! o (2) (86)

and ,
en(x) = A" p(x)e", (v), (87)

where temporarily we put a bar over the transformed vierbein field as a visual aid. Since the vierbein field is
invertible, we can express the Lorentz tranformation directly in terms of the vierbeins themselves

/ ’

e, (v)eln(x) = A" p(x). (88)

Now, we transport the Lorentz transformation tensor itself. The left-hand side of (88) has two upper indices,
the Latin index a’ and the Greek index p, and we choose to use the upper indices to connect the Lorentz
transformation tensor between neighboring points. These indices are treated differently: a Taylor expansion can
be used to connect a quantity in its Latin noncoordinate index at one point to a neighboring point, but the affine
connection must be used for the Greek coordinate index. Thus, we have

AV (@ +62%) = €y, W (z + 0z%)el (x4 62®) (89a)
81 _ 8é h a «@
& (euh(x) + 3;0‘ dx > (e“k - Fga(x)eﬁk(x)éx ) (89b)
oe

= 0O+ B:UMQ dx%ety — Fgaeﬁkzsxaéuh

(89c¢)
oe

= 52 + 8;‘1 5;; - Fgaéﬂh P8z
(89d)

= 0P+ (e“kﬁaéuh — Fgaéuhe’gk> dx®
(89¢)
= O —wa e, (89f)

where the spin connection

wa''y = —e"0ae," + 58, e’), (90)

is seen to have the physical interpretation of generalizing the infinitesimal transformation (84) to the case of
infinitesimal transport in curved space. Relabeling indices, we have

wuy = —e%p0ue,” +T7,e.%" (91a)
= —e" ((%eua - Ffweaa) (91b)
= _eubvueuav (91C)

where here the covariant derivative of the vierbien 4-vector is not zero.*¥ Writing the Lorentz transformation in
the usual infinitesimal form
Al =61+ A (92)

HEquation (91b) is known as the Tetrad postulate, which is written as

a a amo a b
Vype," =0ue,” —eo Ty +wi e =0.



implies

My = —wly 6 (93a)
= e (Vaeuh) oz (93b)

or
)\hk = eﬁk (Vaegh) ox”. (93C)

Using (75), the Lorentz transformation of the spinor field is

1
A = (1 + 5k Shk) Y=+ 60. (94)
This implies the change of the spinor is
1
s = 56% (Vaesn) 62 S (95a)
= Tt dx®, (95Db)

where the correction to the spinor field is found to be

I, = %eﬂk (Vaesn) S™ (96a)
= 5k (Buesn — Tgeon) ™ (96D)
= %eﬁk (Oaepn) S" — %I‘Zﬁ(egheﬁk)Shk (96¢)

where the last term in (96¢) vanishes because eone’i is symmetric whereas S™* is anti-symmetric in the indices
h and k. Thus, we have derived the form of the covariant derivative of the spinor wave function

Dy = b +T 0 (97a)
= (fh + %eﬁkv#em shk) o (97b)
= <aﬂ + %eﬁk duesn shk> Y. (97¢)

This is the generalized derivative that is needed to correctly differentiate a Dirac 4-spinor field in curved space.



