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Abstract. Presented is a type-II quantum algorithm for superfluid dynamics, used
to numerically predict solutions of the GP equation for a complex scalar field
(spinless bosons) in φ4 theory. The GP equation is a long wavelength effective
field theory of a microscopic quantum lattice gas with nonlinear state reduction.
The quantum lattice gas algorithm for modeling the dynamics of the one-body
BEC state in 3+1 dimensions is presented. To demonstrate the method’s strength
as a computational physics tool, a difficult situation of filamentary singularities
is simulated, the dynamics of solitary vortex-antivortex pairs, which are a basic
building block of morphologies of quantum turbulence.

1 Introduction

The physical behavior of a complex scalar field φ with an interaction Lagrangian density
Lint ∝ φ4 is an extremely rich scalar field theory, applicable to a phase coherent Bose-Einstein
condensate (BEC) at zero temperature. Here we study this φ4 theory with low energy dynamics
well described by the Gross-Pitaevskii (GP) equation in the mean-field limit [1,2], which is an
effective nonlinear interaction model of a BEC and also an effective low energy equation of
motion of a type-II quantum lattice gas system. In particular, we numerically demonstrate the
solitary structure of quantized vortex line solutions of the GP equation. A prevailing applica-
tion area of quantum turbulence is (1) in cold atomic gas BEC quantum systems and (2) as a
precursory theory for understanding vortex tube morphological dynamics fundamental to fluid
turbulence.

A variety of physically relevant quantum lattice gas systems have been recently developed
by us, and these type-II quantum systems have emergent nonlinear effective equations of
motion governing dynamical behavior of the low energy and low momentum modes. Satisfying
the dual purposes of computational physics and quantum computation, these numerical quan-
tum lattice models are strictly unitary and have proven useful for numerically predicting the
time-dependent solutions of a wide class of effective nonlinear quantum wave equations. The
method has previously been applied to the Korteveg de-Vries equation, a reduced set of mag-
netohydrodynamic equations, and various forms of the nonlinear Schroedinger (NLS) equation,
including the Manakov equations for optical solitons and the GP equation for BECs in 2 + 1
and 1+1 dimensions [3]. Here, we treat the subject of solitary vortices (dark solitons) governed
by the GP equation in 3 + 1 dimensions, which are one of the basic morphological structures
comprising quantum turbulence.
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1.1 GP equation for superfluids

The NLS equation, also called the GP equation [1,2], is a mathematical model of superfluids,
describing vortex nucleation and reconnections. It accurately describes the superfluid BEC
phase, a compressible nonlinear quantum fluidic phase for weak 2-body interactions. For
example, it is a good model of dilute atomic vapor BEC with vortex-sound interactions.
Recently, over the last decade, BECs have been produced using rarefied cold atom vapors
(dilute alkali gas) in magneto-optical particle traps and optical lattices (typical vapors have
106 to 107 atoms of 87Rb, 7Li, and 23Na atoms). These have a stable condensate wave function
larger than the noninteracting ground state of the trap.
Excitations of superfluid, such as 4He, include (1) maxons and rotons in the high (atomic-

scale) wave number range (short wavelength limit) and (2) phonons in the low wave number
range (long wavelength limit). The GP equation contains only phonon excitations. In a finite
temperature superfluid, such as the He II phase of 4He, there are two fluids. At finite temper-
ature there is also a normal fluid. Entangled vortex lines in the superfluid can interact with
the normal fluid; Landau’s mutual frictional process is one source of dissipation. In the GP
equation, there is only one fluid, the superfluid component. So, mutual friction is not modeled.
The Madelung change of variables of the complex wave function φ =

√
ρ eiθ, where the

condensate number density ρ = |φ|2 is the fluid density and gradient of its phase v = 2∇θ is
the velocity, maps the GP equation i∂tφ = −∇2φ+ |φ|2φ to the fluid equation ∂tv + v · ∇v =
−∇P −∇V , where P = 2ρ is the pressure and V = −2∇2

√
ρ√
ρ
is the Bohm quantum interparticle

potential. The continuity equation ∂tρ+∇· (ρv) = 0 comes from the imaginary part of the GP
equation and the Bernoulli equation −∂tθ = (∇θ)2 + V2 + ρ comes from the real part.
The vorticity, the curl of the superfluid velocity (2∇×∇θ), vanishes in a single-connected

region of the fluid. A contour enclosing a vortex line has quantized circulation in units of
2π. The vortex core size is given by the healing length 1/

√
gρ, where g is the nonlinear cou-

pling strength. Feynman proposed that the superfluid turbulent state consists of a tangle of
quantized vortices [4]. Quantized vortices can decay by sound emission through vortex recon-
nections. Vortex lines are destroyed in two ways. (1) Emission of sound waves (compressible
excitations) escape to infinity; this occurs in connection with the breaking and reconnection of
vortex lines. (2) Transverse vortex waves (helical perturbations of the vortex tube away from
it cylindrical shape) known as Kelvin waves are supported on the filamentary core with an
energy cascade (large waves coupling to smaller waves) [5]; vortices reduce in a Richardson
cascade [6] (large vortices break into smaller vortices) leading to the famous Kolmogorov spec-
trum E(k) ∝ ε2/3k−5/3. When the Richardson cascade is operative, vortex lines reduce down to
elementary excitations at the healing length scale (analogous to the viscous dissipation scale).
The topological operations are reconnection of vortices and disappearance of small vortex loops.
Previous models used to study the GP equation include the vortex-filament model [7,8] and
spectral decompositon models. The quantum lattice gas offers an alternative numerical solution
method for type-II quantum computers.

2 Quantum lattice gas method

In a quantum lattice gas, the wave function of a many-body quantum system is resolved on a
grid (a Bravais lattice), a typical type-II quantum algorithm with phase-coherent unitary oper-
ation of a small finite-quantum system at each lattice node and permutations of data between
nodes (a classical communication network) [9]. No divergences typical in quantum field theories
exist in our model because the finite grid size of the lattice provides a momentum cut-off to
the quantum theory, removing high k-modes, and the lattice provides a spatial cut-off as the
simulation is carried out in a finite-size box with periodic boundary conditions. Furthermore,
the unitary quantum evolution, represented by quantum logic gates, ensures stable dynamics.
The evolution operator governing the time-dependent behavior of the wave function is cast as
a local algorithm with three steps applied in a time-interleaved fashion: (1) a classical stream
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operator for the site-to-site hopping, (2) a quantum collision operator for the on-site interac-
tions, and (3) a state reduction operator for the φ4 self-interaction, reducing computational
expense.
With the first two homogeneous (spatially independent) stream and collide operators,

we recover linear quantum theories, both non-relativistic and relativistic theories. The third
inhomogeneous (spatially dependent) state reduction operator allows us to go further to model
nonlinear systems, a primary advantage of type-II quantum computing. State reduction is
represented by a gauge operation, related to the intrinsic nonlinear interaction potential.
To represent the GP equation, the quantum algorithm presented here uses a 2-spinor field

on a cubic lattice. State reduction is represented as a gauge operations that depends on the
wave function itself, rotating the phase of the spinor components. The usual quantum lattice
gas method of splitting the dynamics between mutually exclusive stream and collide steps
is employed, in a novel way appropriate for recovering continuous dynamics in three spatial
dimensions, with second order accuracy in the scaling limit.

2.1 Quantum algorithm for the Schroedinger equation in 3+ 1 dimensions

We consider a 2-spinor field ψ(x, t) =

(
α(x, t)
β(x, t)

)
, where α and β are complex amplitudes. The

quantum operator C = 1
2

(
1− i 1 + i
1 + i 1− i

)
acts locally at every x, entangling each pair of the

spinor amplitudes, by the map
ψ = Cψ. (1)

Because

(
1
1

)
= C

(
1
1

)
, the complex scalar density φ = (1, 1) · ψ = α + β is conserved by (1),

and consequently the probability |ψ|2 is also conserved locally. Local equilibrium occurs when
the amplitudes are equal (α = β), but in general such a local equilibrium is then broken if a
spinor component is displaced in space by the vectorial amount ∆x. To conserve probability, we
admit only complementary displacements of the spinor components, induced by the standard

stream operators of the form S∆x,0 = n+ e
∆x∂x n̄ and S∆x,1 = n̄+ e

∆x∂xn, where n =

(
0 0
0 1

)
and n̄ = 1− n. That is, the stream operators act on the 2-spinor as follows:

S∆x,0ψ(x) =

(
α(x+∆x)

β(x)

)
S∆x,1ψ(x) =

(
α(x)

β(x+∆x)

)
. (2)

Although the application of (2) usually breaks local equilibrium induced by (1), with the ap-
propriate boundary conditions, for example periodic boundary conditions, (2) is guaranteed to
conserve the total density

∫
d3xψ(x), and in turn the total probability

∫
d3x(|α(x)|2+ |β(x)|2).

To construct a quantum algorithm, any combination of the operators C and S∆x,σ, for σ = 0 or
1, and the respective adjoints, are suitable from the point of conservation. However, we restrict
our considerations to those combinations which are close to the identity operator. Our basic
approach uses the interleaved operator

Ixσ = S−∆x,σC†S∆x,σC (3)

as the basic building block of our quantum algorithm. For example, an evolution operator for
the spinor component σ is

Uσ[Ω(x)] = I
2
xσI

2
yσI

2
zσe

−iε2Ω(x), (4)

where ε ∼ 1
N
, where N is the grid resolution (i.e. N is the number of grid points along one edge

of the simulation volume). (4) represents the three aspects of a type-II quantum algorithm:
stream, collide, and state reduction. In dimensionless units (c = 1), note that ε2 ∼ ∆x2 ∼ ∆t.
This evolution operator is spatially dependent only through local state reduction Ω:

ψ(x, t+∆t) = Uσ(x, Ω)ψ(x, t). (5)
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The R.H.S. of (5) is a finite-difference of ψ, which is too long to write out here. If we Taylor
expand the R.H.S. in ε, we obtain the following quantum lattice gas equation(

α′
β′

)
=

(
α
β

)
+ i

ε2

2
∇2
(
β
α

)
− iε2Ω

(
α
β

)
+
(−1)σε3
4

∇3
(
α− iβ
−β + iα

)
+O(ε4), (6)

with

(
α′
β′

)
= ψ(x, t + ∆t) and where σ = 0 or 1. Using the Pauli matrices σx =

(
0 1
1 0

)
,

σy =

(
0 −i
i 0

)
, and σz =

(
1 0
0 −1

)
, then (6) can be written

ψ(x, t+∆t) = ψ(x, t)− iε2
[
−1
2
σx∇2 +Ω

]
ψ(x, t) +

(−1)σε3
4

(σy + σz)∇3ψ(x, t) +O(ε4). (7)

Since the order ε3 error term in (6) changes sign with σ, we can induce a cancelation of this
error term using a symmetric evolution operator

U [Ω] = U1

(
Ω

2

)
U0

(
Ω

2

)
(8a)

that is invariant under spin component interchange.1 Therefore, the following quantum map
ψ(x, t+∆t) = U [Ω(x)]ψ(x, t) leads to the quantum lattice gas equation

ψ(x, t+∆t) = ψ(x, t)− iε2
[
−1
2
σx∇2 +Ω

]
ψ(x, t) +O(ε4). (9)

Now, in the low energy scaling limit, we have ∂tψ(x, t) =
1
ε2
[ψ(x, t+∆t)−ψ(x, t)]. Therefore,

dividing both sides of (9) by ε2, the quantum lattice gas equation is

i∂tψ = −σx∇2ψ +Ωψ +O(ε2) (10)

in the low energy and low momentum limit. Finally, since φ = α+β, taking the density moment
gives the effective scalar field equation

i∂tφ = −∇2φ+Ωφ+O(ε2), (11)

which is the Schroedinger wave equation with m = 1
2 for � = 1, so long as |∆x|2 = ∆t = ε.

From the order of the error term in (11), the Taylor expansion predicts that the quantum
algorithm is second order convergent in space.
The low energy effective Hamiltonian that generates the evolution, U = ei∆tHeff/�, is the

following Heff = − �22m∇2 + �Ω(x) +O(∆t,∆x2), where we have written the quantum diffusion
coefficient as ∆x

2

∆t
= �

m
. This is the nonlinear GP Hamiltonian since �Ω(x) = g|φ(x)|2, where

g the on-site interaction energy.

3 Solitary vortex-antivortex dynamics

Here we present some simulations of vortex reconnection and break-up for the GP Hamiltonian
demonstrating the emission of Kelvin waves along the vortex tubes well before reconnection.

1 As an alternative to (8a), we can use the interleaved operator Ixσ = S−∆x,σCS∆x,σC, in terms of
which the evolution operator is cast as

U [Ω] = I2x0I
2
y1I

2
z0e

−iε2Ω(x)/2I2z1I
2
y0I

2
x1e

−iε2Ω(x)/2. (8b)

This is a direct extension to 3+1 dimensions of the quantum algorithm for the NLS equation presented
in an earlier paper [3] for the 2+1 dimensional case. (8b) also models (11).
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Fig. 1. Simulation of vortex and anti-vortex filaments, originally linear and oriented perpendicularly
on a 10243 grid. Time steps t = 1200∆t and t = 4800∆t are plotted. Kelvin waves are seen along the
vortex filaments early in the simulation. At the late stages, the filaments bend, reconnect, and exchange
vortex rings.

This kind of reconnection [10] occurs here even in the absence of viscosity and resistivity
because for quantized vortices the density vanishes, |φ|2 → 0, at the vortex core. To ensure a
perturbative phase, we consider the GP equation in the form

i∂tφ = −∇2φ+ (|φ|2 − a∞)φ (12)

with φ → √a∞ as r → ∞. The reason for choosing the bulk density of the scalar field to
be |φ|2 = a∞ is two-fold. (1) With this choice, the GP interaction term vanishes in (12).
Hence, in the bulk region away from the vortex center, the quantum fluid essentially behaves
as a free quantum field. (2) a∞ can then be factored out of the GP interaction term, so the
spacetime parabolic (non-relativistic) scaling x → √a∞x and t → a∞t provides a pathway to
normalization of the wave function, to unity say. This kind of wave function normalization is
numerically preferable, since it allows one to resolve the vortex core with an arbitrary number
of spacetime lattice points. Following Berloff [11], a Padé asymptotic representation can be
found for a simple vortex parallel to the z-axis. Using cylindrical coordinates one seeks a radial
Padé solution of in the form φ = R(r)eiθ with

R(r) =

√
r2(a1 + a∞b2r2)
1 + b1r2 + b2r4

, (13)

with the solution a1 = 11a
2∞/32, b1 = a∞/3, b2 = a1/12. Figures 1 and 2 show examples

of the reconnection processes, a view on a 10243 grid and a zoomed in view on a 2403 grid,
respectively. The smallest grid we have been successfully able to run the quantum lattice gas
model is 803. If the grid is too small, numerical artifacts occur due to the error terms in the
effective field theory, leading to unphysical oscillations of the vortex filaments.

4 Final remarks

Magnetically trapped alkali vapors, have an external parabolic trapping potential, usually of the
asymmetric form V (x) = kr2, where r =

√
γxx2 + γyy2 + γzz2, where the gamma coefficients
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Fig. 2. Time development vortex-antivortex reconnection on a 2403 grid. One octant at each time
step is shown for clarity. At t = 0 (left), two independent vortex lines, oriented perpendicularly and
separated in space (non-intersecting cores). By t = 24, the vortex-pair becomes unstable, inducing
traveling Kelvin waves along the filamentary core. At t = 48, the two vortex cores connect. By t = 116
(right), the cores are disconnected along the original orientations, and are then reconnected into two
separate filaments, each turned at right angles, with the induced Kelvin waves clearly apparent.

are not all equal. It is straightforward to add a confining potential in the model. However,
the vortex-antivortex simulations are more difficult to carryout because, without a confining
potential, perfect continuity of the wave function across the periodic boundaries must occur at
all times for both the amplitude and the phase of the BEC wave function. With an external
trapping potential, the condensate wave function need not be periodic. Hence, we chose to
demonstrate the usefulness of the quantum algorithm in 3 + 1 dimensions with a difficult test
case capturing vortex dynamics.
The algorithmic complexity of our approach is strictly a function of the grid size needed to

resolve the quantum flow. Irregular external potentials, for example those representing time-
dependent field effects, including fringe fields, can be modeled with the type-II quantum lattice
gas method without extra algorithmic complexity.
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