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Abstract. Large scale (16003-grid) entropic lattice Boltzmann (ELB) simulations
are performed on the 27-bit model at sufficiently high Reynolds numbers to find in-
termittency corrections to the Kolmogorov k−5/3 inertial spectrum. Even though
the transport coefficients in ELB and in the Large Eddy Simulation lattice Boltz-
mann (LES-LB) schemes have very different origins, there are strong similarities
in their turbulence statistics from 5123-grid simulations. A new lattice Boltzmann
moment-space boundary condition algorithm is tested on the 2D backstep prob-
lem, with excellent agreement with experimental data even up to a Reynolds
number of 800.

1 Introduction

The entropic lattice Boltzmann (ELB) scheme [1-6] permits simulation of Navier-Stokes tur-
bulence to arbitrary Reynolds numbers. Using Q velocities on a 3D unit cube (where typically
Q = 15, 19, 27), the ELB representation takes the form (in lattice units)

fα(x + eα, t + 1) = fα(x, t)− γ(x, t)
2τ

[
fα(x, t)− feq

α (ρ,u)
]

, (1)

where eα are the lattice vectors, τ is the bare relaxation rate giving rise to the molecular
viscosity [7]

ν0 =
1
6

(2τ − 1) , (2)

and the moments of the distribution function yield the macroscopic density and fluid velocity:

Q∑

α=1

fα = ρ,
Q∑

α=1

fαeα = ρu, (3)

In ELB [1-6] it is shown that there exists an entropy function

H [f ] =
Q∑

α=1

fα ln
(

fα

wα

)
, (4)
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for some weights wα, from which the collision parameter γ(x, t) is determined by enforcing
detailed balance in the local collision process: the pre- and post- collision distributions lie on
the same constant entropy surface

H [f ] = H [f − γ(f − feq)] . (5)

The ELB equation (1) yields an effective viscosity

νeff =
1
6

[
4τ

γ(x, t)
− 1

]
, (6)

In the simplest LES closure scheme [8] for the filtered Navier-Stokes equation, the Reynolds
stress tensor τij is related to the filtered mean rate of strain tensor Sij by an eddy viscosity
νt(x, t):

τij = uiuj − uiuj = −2νtSij , (7)

where the overbar represents the filtering operation and

2Sij =
∂ui

∂xj
+

∂uj

∂xi
, with νt = (Cs")2

√
SijSij . (8)

In LES-LB [9,10], it can be shown that the mean rate of strain tensor at the macroscopic level
is determined by the local moments of the non-equilibrium (filtered) distribution function at
the mesoscopic level

Sij = − 3
2ρτ

Q∑

α=1

eαieαj (fα − feq
α ), (9)

where τ is the simple Bhatnagar-Gross-Krook relaxation rate determining the molecular vis-
cosity, Eq. (2).

It should be noted that the ideal parallelization of the lattice Boltzmann algorithm is not
compromised by either the ELB nor LES-LB since all the extra computations are purely local.

2 High Reynolds number ELB simulations on the Q27 lattice

The Q27 model entails streaming velocities of speed (and number of velocities) is the following:
0 (1), 1 (6),

√
2 (12),

√
3 (8). We consider the evolution of energy spectra from an initial Kida

[11] velocity:
ux (x, t = 0) = U◦ [cos 3y cos z, − cos y cos 3z, sinx] , (10)

with cyclic permutations for ux and uy. The simulations are performed on a 16003-grid at an
initial Reynolds number of 25000. The evolution of the 1D transverse energy spectrum

Et(kx, t) =
∑

kykz

|uy(kx, ky, kz, t)|2, with Et(kx, t = 0) ≈ δ(kx − 2) + δ(kx − 4). (11)

is shown in Fig. 1 for times t = 28K to 54K. The Kolmogorov k−5/3 spectrum spectrum is
shown as a dashed line in Fig. 1a. Moreover, one can infer the slight deviation k−0.1 from the
Kolmogorov k−5/3 spectrum (Fig. 1b for times t = 28K and 38K). This deviation, first seen in
the pseudo-spectral simulations of Kaneda [12] on a 48003-grid, is attributable to intermittency.

The corresponding probability distribution functions, shown in Fig. 2, for the x-component
of velocity P (ux) and vorticity P (ωx) bear this out : P (ux) is quasi-Gaussian while P (ωx) is
quasi-exponential. The Gaussian and exponential pdfs are shown dashed in Fig. 2.
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Fig. 1. The 1D energy spectrum for various times, in lattice units (left). The dashed green line is the
Kolmogorov k−5/3 spectrum. A blow-up in kx-space of the 1D energy spectrum (right). The dashed
lines are the k−5/3 (Kolmogorov) and k−5/3−0.1 (intermittent) spectra.
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Fig. 2. The probability distribution functions for the x-component of velocity (left) and vorticity
(right) and contrasted with theoretical Gaussian and exponential pdfs (dashed).

3 A comparison between lattice Boltzmann, LES-LB and ELB models

For the Q27-model, we show the time decay of the energy moments for the various lattice
Boltzmann models for bare viscosities, Eq. (2), ν0 = 2× 10−3 and ν0 = 2× 10−4 . At this lower
viscosity, the simple lattice Boltzmann model is numerically unstable. In the LES-LB algorithm
we choose a filter width " = 1 (in LB units) and vary the Smagorinsky constant in the LES-LB
model. The simulations were performed on a 5123-spatial grid.
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Fig. 3. The decay of the kinetic energy k(t), enstrophy Ω(t) and palinstrophy P (t) for two different
bare viscosities using the Q27 model. The plots in the left column are for the low bare viscosity run
ν0 = 2×10−3, while the plots in the right column are for ν0 = 2×10−4. Very good agreement is obtained
between ELB and LES-LB for Cs = 0.11. As expected, ELB is more dissipative than standard lattice
Boltzmann.

The rapid initial rise of the enstrophy (till about t = 4000) is due to inviscid vortex stretch-
ing. This inviscid stretching time interval can also be seen in the strong flattening of the initial
kinetic energy for t = 4000 in Fig. 3. The peaking in the enstrophy is inversely proportional to
the total viscosity. As expected and seen in Fig. 3, ELB is more dissipative than LB. For higher
Reynolds numbers, lattice Boltzmann is numerically unstable. In Fig. 3b we continue to see
excellent agreement between ELB and LES-LB for Smagorinsky constant Cs = 0.11. Of course,
it should be pointed out that ELB is parameter-free while LES-LB is strongly dependent on
the Smagorinsky constant, a free parameter in the LES model.
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4 Boundary Conditions in 2D LB-Navier Stokes: Reattachment in the flow
over a backstep

Incompressible flow over a backstep is considered up to Reynolds number Re = 800. We restrict
our simulations to 2D, using the simple lattice Boltzmann 9-bit model since the Reynolds
number is sufficiently low for the model to be numerically stable. The inlet mean velocity
profile is chosen to be the standard parabolic profile for fully developed laminar channel flow,
with H2 = 2H1 and H = H1, while the outflow is handled by first order extrapolation. No-slip
boundary conditions are applied at the walls.

In the lattice Boltzmann model further boundary conditions must be specified. Here we
introduce the idea of moment-space boundary conditions. To apply boundary conditions, we
do not work in the usual {fα, α = 1 . . . 9}-space but rather in the 9-moment set

M = {ρ, ρux, ρuy,Πxy,Πyy,Πxy,N,Jx,Jy}T = {M1,M2, · · · ,M9}T, (12)

where the first 6 moments are the standard fluid moments. The pressure tensor Πij = ρ δij/3+
ρuiuj . The remaining 3 independent non-hydrodynamic moments are somewhat arbitrary and
here are chosen as follows [13]:

N =
9∑

α=1

fαgα, J =
9∑

α=1

fαeαgα, where g = {1,−2,−2,−2,−2,4,4,4,4}T. (13)

There is a 1-to-1 transformation between {f} and {M} . The evolution equations for the non-
hydrodynamic moments are readily derived using the standard Chapman-Enskog expansions.
With the usual feq, the evolution of N,J will now not influence the mean velocity (although
their evolution, of course, is affected by u). This decoupling is viewed as a strength of our new
method. The aim is to minimize artificial gradients near the boundaries. On the walls, M1 = ρ is
determined from the known distribution function set using the method outlined in Zou-He [14].
The no-slip boundary conditions determine the moments M2, M3 and the equilibrium part of
the stresses M4, · · · , M6 . The only unknowns are the non-hydrodynamic moments M7, M8, M9

at the walls. While we considered various schemes to determine these moments and the non-
equilibrium parts of the stresses at the walls, the simplest scheme that worked well for our
backstep problem was just a shift of these moments values from the spatial nodes nearest
the wall node to the wall node. This scheme yielded stable computations for the 2D backstep
flow problem to Re = 1066. Our simple application of the Zou-He boundary conditions only
permitted us to attain Re = 80.

As seen in Fig. 4, our moment boundary condition scheme yields excellent results for the
reattachment length as a function of Reynolds number all the way to Re = 800 as compared
to the experimental data of Armaly et. al. [15]. The 2D CFD simulations results yield quite
low reattachment lengths at Re = 600 and Re = 700. The Karlin groups LB data [16] is given
only up to Re = 400 and it seems to be asymptoting away from the experimental results. The
Succi groups data [17] is only presented to Re = 200. The 3D CFD simulations [18], as might
be expected, give very good results. While this is the first application of moment-methods
to boundary condition, it has been introduced here to handle the collision step in the lattice
Boltzmann algorithm [13] because of local collisional invariants.
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Fig. 4. Flow over a backstep. The reattachment length Xr/H is plotted as a function of Re. Our
moment space boundary condition method accurately predicts the reattachment length to Re = 800
[red squares]. The experimental data is presented in blue dots. Other lattice Boltzmann and CFD
results are also plotted.
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