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ABSTRACT

The quantum Boltzmann equation method is demonstrated by numerically predicting the time-dependent so-
lutions of the velocity and magnetic fields governed by nonintegrable magnetohydrodynamic equations in one
spatial dimension. The method allows arbitrary tuning of the value of the viscosity and resistivity transport
coefficients without compromising numerical integrity even near the zero dissipation and turbulent regime where
shock front discontinuities emerge.
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1. INTRODUCTION

Parallel quantum algorithms1 have been developed to numerically predict time-dependent field solutions of the
diffusion equation,2 the nonlinear Burgers equation,3, 4 the one dimensional equations for magnetohydrodynamic
turbulence,5 the Korteweg de Vries equation,6 the nonlinear Schroedinger equation,6, 7 and the Manakov
equations.8, 9 The first parallel quantum algorithms for the diffusion and Burgers equations have with success
been experimentally tested on quantum information processing prototypes of parallel quantum computers (or
type-II quantum computers10) using spatial nuclear magnetic resonance spectroscopy on a linear array (in space
and in reciprocal space) of segmented ensembles of two-qubit labeled chloroform molecules.11–13

Here, we generalize our parallel quantum algorithm for modeling magnetohydrodynamic (MHD) turbulence.
This algorithm is based upon the quantum algorithms for the diffusion2 and Burgers equations3, 4; it can be
implemented on a parallel quantum computer with pairs of labeled chloroform molecules. The intent of this pa-
per is solely to demonstrate the quantum Boltzmann equation method, so all the details about the microscopic
quantum mechanical implementation of the method have been replaced with a friendlier mesoscopic treatment.
The quantum mechanical foundation of the method lends it several advantageous features as a tool for compu-
tational physics. First, there is inherent numerical stability. Second, there is a corresponding entropy function
description of the model dynamics and an entropy theorem, although for economy and brevity the details of the
entropy function are not presented here. The Boltzmann collision function can be computed directly without the
need of root finding as is required for entropic lattice Boltzmann equation models of turbulence.14–16 Although
the quantum algorithm presented here was originally developed for a parallel quantum computing architecture,
the quantum Boltzmann equation is a practical algorithmic method for presentday classical computers.

Turbulence is plagued by spatiotemporal intermittency involving coherent structures – structures that are
at odds with the simple scale-similarity arguments. Insight into these coherent structures comes by examining
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simplified models and the simplest model exhibiting Alfvenization (the exchange of fluid and magnetic energies)
are the 1D equations17, 18
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for the velocity field �v = v(x)x̂ and the magnetic field �B = B(x)ẑ. The transport coefficient µ is the fluid
viscosity and η is the plasma resistivity. These 1D equations are derived from the full MHD equations when the
fluid density length scales are much longer than those of the B field.17, 18 To leading order, this results in a
constant density so that (1) forms a closed set of equations for v and B. Adding a y-component of the magnetic
field gives a 1D model for solar flares.19 In Elsasser variables z± = v±B, (1) can be written in symmetric form
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If the transport coefficients are equal, η = µ, then (3) reduces to two uncoupled nonlinear Burgers equations
for z±. [In the limit B ≡ 0, (1) reduces to Burgers equation for v]. The Burgers equation20 is a well-known
paradigm for Navier-Stokes turbulence and has also been studied extensively for many decades as a simplified
model for boundary layer behavior, shock wave formation, mass transport, self-organized criticality and growing
interfaces. It is also a test-bed for numerical methods since a general analytic solution exists.21, 22 In Burgers
turbulence, regions where ∂v

∂x < 0 steepen into shock singularities, while regions where ∂v
∂x > 0 become smoother.

However, with the inclusion of the B field, there is now a magnetic back-pressure in (1) that is absent from
Burgers equation. In particular, the B field will concentrate in regions of the velocity shock, softening the shock
front. For η �= µ, (1) is non-integrable.

To model (1) we use two quantum Boltzmann equations in a two step algorithm for an ordered one dimensional
array of L number of nodes, enumerated by a “spatial” integer coordinate x = 1, 2, ..., L. At each node are four
probability values 0 ≤ pa ≤ 1, for a = 1, 2, 3, 4 and they are called occupation probabilities. The first step of the
algorithm encodes the B(x) field using the probability fields p3(x) and p4(x):

p3(x) =
B(x)

2
p4(x) =

B(x)
2

(4)

The second step uses the following quantum Boltzmann equation to update these two probability fields:

p′3(x − 1) = p3(x) − [p3(x) − p4(x)] sin2 β (5)
p′4(x + 1) = p4(x) + [p3(x) − p4(x)] sin2 β. (6)

The third step assigns the new values to the B(x) field:

B(x) = p′3(x) + p′4(x). (7)

The fourth step encodes the v(x) and B(x) fields using all four probability fields:

p1,2(x) =
1
2
[1 + v(x) ± B(x)] = p3,4(x). (8)

(Only on the first pass through the algorithm, to initialize it in local equilibrium, we use the encoding:

p1(x) = d1[cot θ, 1 + v(x) + B(x)] (9)
p2(x) = d2[cot θ, 1 + v(x) − B(x)] (10)
p3(x) = d1[cot θ, 1 + v(x) + B(x)] (11)
p4(x) = d2[cot θ, 1 + v(x) − B(x)], (12)
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where the local equilibrium functions
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are the zeros of the quantum collision function.) The fifth step uses the following quantum Boltzmann equation
to update all the probability fields:

p′1(x − 1) = p1(x) − [p1(x) − p2(x)] sin θ +
√

p1(x)[1 − p1(x)]p2(x)[1 − p2(x)] sin 2θ (15)
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√

p1(x)[1 − p1(x)]p2(x)[1 − p2(x)] sin 2θ (16)

p′3(x − 1) = p3(x) − [p3(x) − p4(x)] sin θ +
√

p3(x)[1 − p3(x)]p4(x)[1 − p4(x)] sin 2θ (17)

p′4(x + 1) = p4(x) + [p3(x) − p4(x)] sin θ −
√

p3(x)[1 − p3(x)]p4(x)[1 − p4(x)] sin 2θ (18)

The final step uses an inverse of (8) to compute the updated values of the v(x) and B(x) fields from the new
occupations probabilities by the following assignments:

v′(x) =
1
2
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1
2
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At this point, one iteration of the algorithm is completed and time is advanced by one unit ∆t. In this way, a
time history of the v and B fields can be generated by looping through the enumerated steps.

2. EFFECTIVE FIELD THEORY

After some algebra for the special case where β = 0 and θ = π
4 , and with the encoding (8) and the asignment

(1) formulae, it follows that the mesoscopic transport equation (1) can be written directly as a finite difference
equation in the v(x) and B(x) fields:
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A more general set of finite difference equations than (2) can be predicted by the quantum Boltzmann equation
method for arbitrary θ, but are too lengthy to include here ∗.

The macroscopic scale effective field theory for v(x, t) and B(x, t) follows from taking the continuum limit of
(2) with the ordering ∆x ∼ O(ε) and ∆t ∼ O(ε2). We obtain (in lattice units ∆x = 1 = ∆t)
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This is just the 1D MHD (1) in the special case where the kinematic shear viscosity and resistivity transport
coefficients are equal, µ = η = ∆x2

2∆t . If we make an Elsasser variables substitution, z± = v±B, then (23) and (24)
simplify into two uncoupled nonlinear Burgers equations for z±, see (3). We now proceed from the integrable
1D MHD with µ = η to the non-integrable case of unequal transport coefficients, µ �= η.

∗The unitary collision operators are implemented with perfect control and the occupation probabilities are measured
exactly. These assumptions hold only for an ideal experimental setup. We address actual quantum control and Von
Neuman projective shot noise in our papers on experimental parallel quantum computing with NMR.11–13
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After some algebra for the special case where β = π
4 and θ = π

4 , and with the encoding formulae (4) and the
mesoscopic transport equation (1) and the asignment formula(7), and then also with the encoding formulae (8)
and the quantum Boltzmann equation (1) and the asignment formulae (1), it follows that the dynamics of the
v(x) and B(x) fields can be written directly as a finite difference equation:
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Again proceeding to the continuum limit by Taylor expanding (2), we obtain our desired 1D MHD equations with
unequal transport coefficients: viscosity µ = ∆x2

2∆t and resisitivity η = ∆x2

∆t . In the general case where π
4 ≤ θ < π

2
and π
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2 , we obtain the following effective field theory:
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with adjustable transport coefficients for the viscosity and resistivity †:

µ = cot2 θ
∆x2

∆t
η =

(
cot2 θ + cot2 β

) ∆x2

∆t
. (29)

3. NUMERICAL TESTS

The 1D MHD equations are solved using the quantum Boltzmann equation method described above for initial
profiles v(x, 0) = cos

(
2π
L

)
and B(x, 0) = 0.1 on a L = 256∆x grid. The evolution of the fields are shown in Fig. 1

(low dissipation regime) and Fig. 2 (high dissipation regime). Regions of ∂v
∂x < 0 steepen towards shocks while

regions of ∂v
∂x > 0 smooth. At first the B field rapidly increases by a factor of 10 and concentrates where velocity

shocks form. Asymptotically in time (but when the nonlinear terms are important and before the profile linearly
diffuses away) the velocity profile bifurcates and eventually becomes linear in x except at the shocks. There
is a surprising cancellation of errors. If you look at the profiles of the occupation probabilities in Fig. 1 (low
dissipation regime), they separately each have Gibbs oscillations. However, when the two occupation probability
fields are added together forming the v(x) field or subtracted forming the B(x) field, the oscillations substantially
cancel out because the oscillations are out of phase. The Gibbs oscillations subside altogether with higher grid
resolution since its source is an under resolved shock front.

The B field asymptotically tends to a constant with spatial jumps around the velocity shock fronts. The linear
sloped v field decays in time as does the constant B field. Indeed, we can check our model in this asymptotic
region. Assuming v(x, t) −→ a(t)x + b(t) and B(x, t) −→ B(t), except at isolated locations corresponding to
shock fronts, (1) yield constraint equations for a(t), c(t), and B(t):

da

dt
+ a2 = 0

db

dt
+ ab = 0

dB

dt
+ aB = 0. (30)

The analytical solution of (30) yield asymptotic v and B field profiles

v(x, t) =
x + k2

t + k1
B(t) =

k3

t + k1
, (31)

†(29) based on previous results from modeling the Burgers equation, but their exact form has not yet been confirmed.
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t=3072 t=3584 t=4096

t=1536 t=2048 t=2560

t=0 t=512 t=1024

Figure 1. Simulation results in the low dissipation regime β = 0 and θ = 1.5 radians. The blue curve is the velocity field.
The red curve is the magnetic field. The purple curves are the first and second occupation probability fields (p1 and p2).
The green curves are the third and fourth occupation probability fields (p3 and p4). There are four black curves; these
are analytical predictions, based on the computed macroscopic field profiles, of the equilibrium occupation probabilities
and they are in excellent agreement with the numerical predictions. The mesoscopic fields remain in local equilibrium.
The simulation was carried out on a lattice with 256 nodes. Snapshots are shown at every 512 time steps. In regions of
∂v
∂x

< 0, shocks tend to form in the v-field with localized enhancement of the B-field. Asymptotically, v attains a constant
slope with shock discontinuities while the B field is constant with discontinuities at the leading edges of the front. The
extent of the Gibbs oscillations at the shock front is greater at the mesoscopic than at the macroscopic scale because of
a fortuitous cancellation of errors.
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t=1152 t=1344 t=1536

t=576 t=768 t=960

t=0 t=192 t=384

Figure 2. Simulation results in the high dissipation regime β = 0 and θ = π
4
, but otherwise similar to the previous figure

(see Fig. 1 caption). No Gibbs oscillations occur since the shock front is spatially resolved.
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Figure 3. The time evolution of the B field at location x = 192 determined from the quantum algorithm (dotted curve).
Two cases are shown. For the θ = π

4
case, after the shock formation around t ∼ 200∆t. For the θ = 1.5 radians case,

shock formation occurs latter in time at around t ∼ 2500∆t. The analytical asymptotic solutions (red curves) shows the
B field decays like t−1 as expected, see (31). There is excellent agreement between theory and the numerical solution over
the whole dissipative regime from high to low resistivity.

with constants of integration k1, k2 and k3. From the quantum simulations shown in Figs. 1 and 2, we plotted
in Fig. 3 the B field at x = 192 as a time series (black dots). The solid curve is the asymptotic decay (31)
derived from (1). The decay is fast for the high resistivity case and it is slow for the low resistivity case. There
is excellent agreement after the shock has fully formed with the analytical asymptotic solutions (red curves)
validating our model for 1D MHD with unequal and arbitrary transport coefficients.

4. FINAL REMARKS

The numerical simulation results plotted in Figs. 1 and 2 manifest a characteristic property of a type-II quantum
algorithm. The expected value of the occupancy of the ground state and excited state of a microscopic qubit
contained within a quantum mechanical node of the lattice (in the 1D MHD model presented here there would
be four qubits per node) are shifted. The expectation value of the excited state is plotted in the purple and green
curves shown in in Figs. 1 and 2. Regardless of the dissipation regime (high or low viscosity and resistivity),
there is a gap in value of the occupation probabilites; hence, peq

1 �= peq
2 (two purple curves) and peq

3 �= peq
4 (two

green curves). The physical cause of this gap is the following. The microscopic dynamics is interpreted as the
motion of quantum particles moving left and right through a chain of quantum processors. If the likelihood
of a quantum particle exiting left or right from a quantum processor is equal, then the excited state energies
encoding the left- and right-going probabilities would be degenerate. The equilibrium probabilities must overlap:
peq
1 = peq

2 and peq
3 = peq

4 . This degeneracy occurs in pairs because there are four occupation probabilities and
only two macroscopic field quantities. The macroscopic effective field theory would be strictly diffusive as any
quantum particle would move up and down the one dimensional chain of quantum processors in an unbiased
random walk fashion. However, if the likelihood of a quantum particle exiting a quantum processor to the left
does not equal the likelihood it will exit to the right, then the degeneracy in the distribution functions would
be lifted and an energy gap would appear as demonstrated Figs. 1 and 2. In this case, the macroscopic effective
field theory would not be strictly diffusive; there would be an overall net advection of quantum particles in one
direction (the symmetry of the lattice is broken and this causes an energy gap in excited state energy levels).
This net advection gives rise to the nonlinear terms in (2).

The quantum Boltzmann equation is a new modeling tool for numerically predicting the time-dependent
behavior of magnetohydrodynamic turbulence and shock formation. Further tests of the algorithm will be
presented in a subsequent paper. An open problem is the extending the method to handle magnetohydrodynamic
turbulence in two and three spatial dimensions.
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