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Entropic lattice Boltzmann models are discrete-velocity models of hydrodynamics
that possess a Lyapunov function. This feature makes them useful as nonlinearly
stable numerical methods for integrating hydrodynamic equations. Over the last few
years, such models have been successfully developed for the Navier–Stokes equations
in two and three dimensions, and have been proposed as a new category of subgrid
model of turbulence. In the present work we develop an entropic lattice Boltzmann
model for Burgers’s equation in one spatial dimension. In addition to its pedagogical
value as a simple example of such a model, our result is actually a very effective
way to simulate Burgers’s equation in one dimension. At moderate to high values of
viscosity, we confirm that it exhibits no trace of instability. At very small values of
viscosity, however, we report the existence of oscillations of bounded amplitude in the
vicinity of the shock, where gradient scale lengths become comparable with the grid
size. As the viscosity decreases, the amplitude at which these oscillations saturate
tends to increase. This indicates that, in spite of their nonlinear stability, entropic
lattice Boltzmann models may become inaccurate when the ratio of gradient scale
length to grid spacing becomes too small. Similar inaccuracies may limit the utility
of the entropic lattice Boltzmann paradigm as a subgrid model of Navier–Stokes
turbulence.
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1. Introduction

Lattice Boltzmann models of hydrodynamics (Benzi et al. 1992; Succi 2001) evolve
a single-particle distribution function in discrete time-steps on a regular spatial grid.
The velocity space is discrete, comprised of (possibly linear combinations of) the
lattice vectors themselves. Though this constitutes a drastic truncation of the con-
tinuum Boltzmann equation, it has been shown that the derivative hydrodynamic
equations may emerge unscathed in the limit of small Knudsen number. It is required
only that the kinetic collision operator conserve the desired hydrodynamic quanti-
ties, such as mass, momentum and energy, and that the lattice possess sufficient
symmetry.
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In recent years it has been shown that these models may also be constructed with a
Lyapunov function—a discrete-time and discrete-velocity version of Boltzmann’s cel-
ebrated H theorem—as is appropriate for a hydrodynamic equation with dissipation.
In this case, such models are called entropic lattice Boltzmann models (Boghosian et
al. 2001; Karlin et al. 1998, 1999), and it has been proposed that they may have two
other very desirable features.

(i) First, they may suppress the growth of numerical instabilities, and thereby
make the simulation nonlinearly stable (Ansumali & Karlin 2000, 2002; Boghos-
ian et al. 2001) even for arbitrarily small viscosities. This argument is based on
the premise that numerical instabilities evolve in ways that would be precluded
by the existence of a well-behaved Lyapunov function. The upper limit to the
Reynolds numbers attainable by entropic lattice Boltzmann models is therefore
determined by loss of resolution of the smallest eddies, rather than by loss of
stability.

(ii) More recently, it has been posited that entropic lattice Boltzmann models of
the Navier–Stokes equations constitute a natural subgrid model of turbulence
(Chen et al. 2003). That is, even if the grid spacing is too coarse to resolve the
smallest eddies, the evolution of the Lyapunov function is necessarily mono-
tonic, and it is argued that this may accurately model turbulent dissipation at
subgrid length-scales.

Most lattice Boltzmann models employ a collision operator of Bhatnagar–Gross–
Krook (BGK) form, with collisional relaxation time τ (Qian et al. 1992). Since trans-
port coefficients such as viscosity are proportional to the quantity τ − 1

2 , there is
incentive to make τ as small as possible to decrease viscosity and thereby increase
Reynolds number. In non-entropic lattice Boltzmann models, stability is guaranteed
only for τ ! 1, severely limiting attainable viscosities. In entropic lattice Boltz-
mann models, by contrast, τ is made a function of the incoming state by solving
for the smallest value τ∗ < 1 that does not increase H. The value then used is
τ = τ∗ + κ(1 − τ∗), where 0 < κ < 1 is an independent variable. It has been shown
that the viscosity will be proportional to κ, and may therefore be made arbitrarily
small by the appropriate choice of κ (Boghosian et al. 2001; Karlin et al. 1998, 1999).
In this way, the entropic lattice Boltzmann methodology allows for arbitrarily low
viscosity together with a rigorous discrete-time H theorem.

In earlier papers, we constructed entropic lattice Boltzmann models for the incom-
pressible Navier–Stokes equations that are Galilean invariant to second order in Mach
number, and we showed that the requirement of Galilean invariance makes the choice
of H function unique (Boghosian et al. 2003a,b). More specifically, we showed that
the required function has the form of the Burg entropy in two dimensions, and the
Tsallis entropy in higher dimensions.

In this work, we construct an entropic lattice Boltzmann model for Burgers’s
equation. There is pedagogical value in this, since it provides a simple illustration of
the construction of such a model. More importantly, however, it provides a simple
model with which to test the above hypotheses about entropic lattice Boltzmann
models. As with entropic models of the Navier–Stokes equations, we may make the
viscosity arbitrarily small, giving rise to shock structures with large gradients. We
may thereby test whether or not the Lyapunov function truly precludes the onset of
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numerical instability, and we may investigate the utility of the model under extreme
conditions when shock widths become comparable with the grid spacing.

2. Representation of the distribution function

In the late 1980s, it was shown (Boghosian & Levermore 1987) that one-dimensional
lattice-gas models with a conserved mass, a maximum occupation number per site,
and a weak spatial asymmetry—that is, a bias for movement in one direction over
the other—would generically give rise to Burgers’s equation hydrodynamics. The
magnitude of the bias should scale with the grid spacing in the continuum limit. Here
we recast this general approach, replacing the particulate lattice-gas model with a
single-particle distribution function, and introducing the bias in the H function.

We consider a lattice Boltzmann model on a one-dimensional lattice, with a two-
component distribution function. We denote by N±(x, t) the number of particles with
velocity ±1 at site x and time t. The mass at position x and time t is then

ρ(x, t) = N+(x, t) + N−(x, t)

and this must be conserved in any collision process. We also define the kinetic degree
of freedom,

u(x, t) = N+(x, t) − N−(x, t),

which may be thought of as a non-conserved momentum. Together, ρ and u determine
the two components of the distribution function:

N±(x, t) = 1
2(ρ(x, t) ± u(x, t)). (2.1)

We demand that the components of the distribution function be positive and have
an upper bound of unity:

0 " N± " 1.

This, in turn, implies bounds on the mass and momentum,

0 " 1
2(ρ ± u) " 1,

or
0 " ρ " 2,

max(−ρ, ρ − 2) " u " min(+ρ, 2 − ρ).

}
(2.2)

3. H function and equilibrium

Our definition of the H function must be such as to allow an asymmetry in the
collision process. We suppose that the H function is of trace form, and weighted by
factors α± ≡ 1

2(1 ± α) to provide the asymmetry,

H = α+h(N+) + α−h(N−),

or

H =
1 + α

2
h

(
ρ + u

2

)
+

1 − α

2
h

(
ρ − u

2

)
. (3.1)
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The equilibrium distribution is found by extremizing H with respect to u, while
keeping ρ fixed. We have

0 =
∂H

∂u
=

1 + α

4
h′

(
ρ + u

2

)
− 1 − α

4
h′

(
ρ − u

2

)
. (3.2)

Note that if α = 0, then this is solved by u = 0. Moreover, this equation is invariant
under the substitutions u → −u and α → −α. It follows that u may be expanded
as a perturbation series in odd powers of α. To do this, we introduce an expansion
parameter ε by making the formal replacement α → εα, and expanding in powers
of ε; at the end of the calculation, we shall reset ε to unity. We find

u(eq) = εu(eq,1) + ε3u(eq,3) + · · · ,

where

u(eq,1) = −2α
h′(1

2ρ)
h′′(1

2ρ)
, (3.3)

etc. The equilibrium distribution function is then given by

N (eq)
± = N (eq,0)

± + εN (eq,1)
± + ε2N (eq,2)

± + · · · ,

where

N (eq,0)
± = 1

2ρ,

N (eq,1)
± = ∓α

h′(1
2ρ)

h′′(1
2ρ)

,

N (eq,2)
± = 0,

...

4. Collision operator

To perform a collision, we suppose that the incoming values of the mass and velocity
are ρ and u. We compute the equilibrium value of the velocity u(eq) for the mass ρ,
and then we implement the BGK collision operator by letting the post-collision value
of u be

u′ = u +
1
τ

(u(eq) − u). (4.1)

We choose

τ = τ∗ + κ(1 − τ∗), (4.2)

where κ ∈ [0, 1] is an input parameter that shall be used to control the viscosity, and
τ∗ is the relaxation time that keeps H fixed; that is

H

(
ρ, u +

1
τ∗ (u(eq) − u)

)
= H(ρ, u). (4.3)

Thus, when κ = 0, the collision keeps H fixed, and H is a constant of the motion.
When κ = 1, the collision simply replaces the incoming state with the equilibrium.
For 0 < κ " 1, H is a Lyapunov function, always decreasing under the dynamics.
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From equations (3.1) and (4.3) we get

1 + α

2
h

(
ρ + u

2
+

1
2τ∗ (u(eq) − u)

)
+

1 − α

2
h

(
ρ − u

2
− 1

2τ∗ (u(eq) − u)
)

=
1 + α

2
h

(
ρ + u

2

)
+

1 − α

2
h

(
ρ − u

2

)
. (4.4)

This must be solved numerically for τ∗. Such solution is facilitated by the certainty
that there is always a solution τ∗ ∈ (1

2 , 1). Equation (4.1) is then used to get τ ,
and equation (4.1) then gives the post-collision value of u. Finally, this is used in
equation (2.1) to get the post-collision distribution function.

The linearized collision process is obtained by expanding equation (4.4), treating
α, u and u(eq) as order ε, and simplifying the result with equation (3.3). We find
that τ∗ = 1

2 + O(ε), whence

τ = 1
2 + 1

2κ + O(ε).

Remarkably, this linearized value of τ is independent of the incoming state. It will
be useful in the Chapman–Enskog analysis presented in the next section.

5. Chapman–Enskog analysis

The lattice BGK equation is

N±(x ± c, t +∆t) − N±(x, t) = −1
τ

[N±(x, t) − N (eq)
± (x, t)],

and this may be rewritten as
{

1 + τ

[
exp

(
∆t

∂

∂t
± c

∂

∂x

)
− 1

]}
N±(x, t) = N (eq)

± (x, t),

which has the formal solution

N±(x, t) =
{

1 + τ

[
exp

(
ε2∆t

∂

∂t
± εc

∂

∂x

)
− 1

]}−1 ∞∑

j=0

N (eq,j)
± (x, t)εj .

Here we have introduced parabolic ordering with the prescription ∆t → ε2∆t and
c → εc. The distribution function is thus obtained as an expansion,

N± =
∞∑

!=0

N (!)
± ε!,

where

N (0)
± = N (eq,0)

± ,

N (1)
± = N (eq,1)

± ∓ τc
∂N (eq,0)

±
∂x

,

N (2)
± = N (eq,2)

± ∓ τc
∂N (eq,1)

±
∂x

− τ

[
∆t

∂N (eq,0)
±
∂t

− (τ − 1
2)c2 ∂2N (eq,0)

±
∂x2

]
,

...
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We immediately obtain

N (0)
± = 1

2ρ,

N (1)
± = ∓α

h′(1
2ρ)

h′′(1
2ρ)

∓ τc

2
∂ρ

∂x
,

N (2)
± = τcα

∂

∂x

[
h′(1

2ρ)
h′′(1

2ρ)

]
− τ

2

[
∆t

∂ρ

∂t
− (τ − 1

2)c2 ∂2ρ

∂x2

]

= −τcα

2

{
h′(1

2ρ)h′′′(1
2ρ)

[h′′(1
2ρ)]2

− 1
}

∂ρ

∂x
− τ

2

[
∆t

∂ρ

∂t
− κc2

2
∂2ρ

∂x2

]
,

...

where we have used the linearized value of τ in the last step.
Finally, we demand that the higher-order corrections to the distribution function

do not alter the definition of the conserved quantity ρ = N+ + N−. That is, we
demand that N (j)

+ + N (j)
− = 0 for j ! 1. We see that this is automatic for j = 1, and

that for j = 2 we get the hydrodynamic equation

∂ρ

∂t
+

cα

∆t

{
h′(1

2ρ)h′′′(1
2ρ)

[h′′(1
2ρ)]2

− 1
}

∂ρ

∂x
=

κc2

2∆t

∂2ρ

∂x2 . (5.1)

6. Recovery of Burgers’s equation

The hydrodynamic equation obtained in the last section will be of the form of Burg-
ers’s equation if we demand that the expression in brackets in equation (5.1) is a
linear function of ρ. To this end, we demand

h′(z)h′′′(z)
[h′′(z)]2

− 1 = −2az − b,

or
d
dz

[
h′(z)
h′′(z)

]
= 2az + b,

where a and b are constants to be chosen later. This integrates to yield
h′(z)
h′′(z)

= az2 + bz + c,

where c is a constant of integration. If we define g(z) = h′(z), this may be written
g′(z)
g(z)

=
1

az2 + bz + c
.

It is simplest to choose a = 1 and b = c = 0, so that this integrates to yield

g(z) = exp(−1/z)

to within an arbitrary multiplicative constant. Other choices for b and c are possible,
and may yield alternative H functions, but that is outside the scope of the present
work. Finally, we integrate one more time to obtain

h(z) = z exp(−1/z) + Ei(−1/z), (6.1)
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Figure 1. h(z) versus z.

for z > 0, where ‘Ei’ is the exponential integral function. This monotonically increas-
ing and convex function is plotted in figure 1.

Using the form of h(z) derived in equation (6.1), we find that equation (5.1) reduces
to

∂ρ

∂t
− cα

∆t
ρ
∂ρ

∂x
=

κc2

2∆t

∂2ρ

∂x2 .

If we define the rescaled dependent variable

w ≡ − cα

∆t
ρ,

and identify the viscosity,

ν ≡ κc2

2∆t
,

then this simplifies to Burgers’s equation:

∂w

∂t
+ w

∂w

∂x
= ν

∂2w

∂x2 .

Equation (6.1) for h(z) has the additional virtue of allowing for an analytic solution
for the equilibrium distribution. Inserting it into equation (3.2), we have

(1 + α) exp
(

−2
ρ + u

)
− (1 − α) exp

(
−2

ρ − u

)
= 0,

from which we may solve exactly for the equilibrium value of u:

u(eq) =
2

ln[(1 + α)/(1 − α)]

[
1 −

√

1 +
ρ2

4

[
ln

(
1 + α

1 − α

)]2 ]
. (6.2)

7. Implementation

We implemented the above-described entropic lattice Boltzmann model for Burgers’s
equation on grids of size N = 64 and N = 512, with initial conditions

ρ(x, 0) = ρ0 + ρ1 cos
(

2πx

N

)
.
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We took α = −0.1, ρ0 = 0.8 and ρ1 = 0.2 in both cases. On the N = 64 grid we took
κ = 0.05, and on the N = 512 grid we took κ = 0.01. Both of these were intended
as extreme cases, designed to test the robustness of the algorithm. The first has a
very coarse grid, while the second has a very low viscosity and hence a very narrow
shock. In both cases, the ratio of shock width to grid spacing is small.

A regula falsi root finder was used to solve for the post-collision velocity, with initial
guess 2u(eq) − u, and precautions were taken so that the iterates never left the feasible
region described by the inequality in equation (2.2). Under these circumstances,
convergence was very robust. It is likely that performance could be improved by using
the regula falsi algorithm to get in the vicinity of the solution, and then switching
over to a Newton–Raphson solver, but we did not explore this possibility.

Figure 2 shows the N = 64 simulation for time increments of 200, from t = 0
to t = 1800. This is long enough to see the formation, steepening and decay of the
shock. By t = 1000, it is clear that the advancing shock is leaving small oscillations
behind it. These oscillations remain bounded in amplitude, and eventually decay
to zero with the shock. While these oscillations are not, strictly speaking, a Gibbs
phenomenon—since that would manifest itself both ahead of and behind the shock—
they are similar in that their amplitude remains bounded, and goes to zero as the
grid is refined for fixed shock width.

Figure 3 shows the N = 512 simulation for time increments of 1024, from t = 0
to t = 1800. Once again, this is long enough to see the formation, steepening and
decay of the shock. By t = 4608, it is clear that the advancing shock is leaving small
oscillations behind it. This oscillatory tail actually grows in length, while remaining
bounded in amplitude. Once again, it eventually decays to zero with the shock. In
both cases, if the rapid oscillations were filtered out, the remaining smooth compo-
nent of the solution would match the exact solution of Burgers’s equation almost
perfectly.

8. Conclusions

We have derived an entropic lattice Boltzmann model for Burgers’s equation, and
used it to perform a fully explicit, unconditionally stable numerical integration of
these equations. The model has the virtue of allowing for an analytic solution of the
equilibrium distribution function, though it does require a numerical root-finding
procedure in order to implement the collision operator. The form of the H func-
tion that is required, presented in equation (6.1), involves the exponential integral
function.

We have also used this model to simulate Burgers’s equation in one dimension in
two extreme situations: the first with an unduly coarse grid, and the second with
a very small viscosity. Both situations give rise to small ratios of shock width to
grid spacing. In both situations, we noted the presence of oscillations of bounded
amplitude trailing the shock, and driven by the strong spatial gradients present
there. While the Lyapunov function did indeed prevent the unbounded growth of
these oscillations into a full-fledged numerical instability, their presence is nonetheless
troubling if one’s goal is to use entropic collision operators as subgrid models of
turbulence. Subgrid turbulence models endeavour to do exactly what we have done
in the simulations described herein: they use a grid spacing that is known to be
too large to resolve the gradient scale lengths present, and argue that the effect of
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Figure 2. ρ(x, t) versus x for a sequence of times t for N = 64 and κ = 0.05.
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Figure 3. ρ(x, t) versus x for a sequence of times t for N = 512 and κ = 0.01.

turbulent relaxation at finer scales is captured by the change in a suitably defined
Lyapunov function. Thus, entropic models used for this purpose may likewise be
susceptible to oscillations and other parasitic dynamics which, though bounded in
amplitude and scaling to zero in the continuum limit, may seriously undermine efforts
to use the model for the accurate quantitative study of turbulence.

Having said the above, we stop short of suggesting that these oscillations preclude
the use of entropic collision operators for subgrid studies of turbulence. To some
extent, the tests that we have conducted in this paper are unduly stringent: we
have noted inaccuracies in the evolution of the model for one particular set of initial
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conditions. Most subgrid models endeavour to achieve quantitative faithfulness only
to quantities that can be averaged robustly over ensembles of various sorts. For this
purpose, inaccuracies in any one instantiation may be unimportant as long as they
do not affect the ensemble average. Thus, a better test would be the use of the
model described herein to simulate Burgers’s turbulence over an ensemble of initial
conditions on ever coarser grids. We leave this matter to future work.
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