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We report an ensemble nuclear magnetic resonance (NMR) implementation of a
quantum lattice gas algorithm for the diffusion equation. The algorithm employs an
array of quantum information processors sharing classical information, a novel
architecture referred to as a type-II quantum computer. This concrete implementa-
tion provides a test example from which to probe the strengths and limitations of this
new computation paradigm. The NMR experiment consists of encoding a mass
density onto an array of 16 two-qubit quantum information processors and then
following the computation through 7 time steps of the algorithm. The results show
good agreement with the analytic solution for diffusive dynamics. We also describe
numerical simulations of the NMR implementation. The simulations aid in
determining sources of experimental errors, and they help define the limits of the
implementation.
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1. INTRODUCTION

The advent of fast quantum algorithms(1) has spawned a broad search for
new algorithms that utilize the novel features of quantum information.
Among the new proposals are quantum lattice gas (QLG) algorithms,
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which, in analogy to their classical counterparts, make use of arrays of
interacting sites to perform useful calculations. In the quantum case,
however, the sites behave quantum mechanically, while the site-to-site
interactions can be either classical(2) or quantum mechanical.(3) New
algorithms have been devised to solve selected computational problems
such as the diffusion equation(4,5) and the Schrödinger equation.(6) In the
case where the quantum mechanical sites (or nodes) communicate with each
other classically, the required architecture for QLG algorithms has been
termed a type-II quantum computer.(7)

A type-II device is essentially a classically parallel computer, with
the exception that the computing elements follow the rules of quantum
mechanics. The advantage gained from the classical network is completely
analogous to the improvement gained in a classical, massively-parallel
architecture. However, the use of quantum mechanical nodes introduces
several notable differences. Classical lattice gas algorithms become
unstable (and unusable) when the relevant transport coefficient is reduced
or when nonlinearities are increased. In the quantum case, the transport
coefficient and degree of nonlinearity can be varied at will using the
appropriate quantum operations at each site. In addition, the quantum
algorithms typically require a smaller number of qubits per site than do
the classical algorithms. Finally, the family of QLG algorithms can
handle increasingly complex calculations as the number of (qu)bits per
site is increased. For example, when two qubits are present in a site, the
QLG algorithms can solve the relatively simple diffusion equation in one,
two, or three dimensions(4) and the more difficult nonlinear Burgers
equation in one dimension.(25) With four qubits per site, the QLG al-
gorithms can solve coupled nonlinear field equations governing the
velocity and magnetic fields of one-dimensional magnetohydrodynamic
turbulence.(26) With six qubits per site, the QLG algorithms can model
the nonlinear Navier–Stokes equations in two dimensions governing a
viscous fluid.(8) A more complete description of type-II quantum com-
puters and their scaling properties has been given by Jeffrey
Yepez.(25,26)

Here, we present a methodology for implementing a quantum lattice
gas algorithm on a nuclear magnetic resonance (NMR)(9) type-II
architecture. In this implementation, we encode a discrete mass density
onto distinct spatial locations of a liquid-state sample. We use magnetic field
gradients to discriminate between locations in the sample, thus creating an
array of addressable ensemble NMR quantum information processors. In
addition, we use radio frequency (RF) pulses and methods learned from
previous work(10,11) to execute the necessary operations in each quantum
processor. The result is a concrete implementation examining the necessary
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control for realizing a quantum lattice-gas algorithm using NMR
techniques.

2. LATTICE GAS ALGORITHMS

The lattice gas method is a tool of computational physics used to model
hydrodynamical flows that are too large for a standard low-level molecular
dynamics treatment and that contain discontinuous interfacial boundaries that
prevent a high-level partial differential equations description.(12–15) The basic
idea underlying the lattice gas method is to statistically represent a
macroscopic scale time-dependent field quantities by ‘‘averaging’’ over
repeated instances of a system of artificial microscopic particles scattering
and propagating throughout a lattice of interconnected sites. A particular
instance of the system has many particles distributed over the lattice sites.
Multiple particles may coexist at each site at a given time, and each particle
carries a unit mass and a unit momentum of energy. Particles interact on site
via an artificial collision rule which exactly conserves the total mass,
momentum, and energy at that site. The movement of particles along the
lattice is prescribed by a streaming operation that shifts particles to nearest
neighboring sites, thus endowing the particles with the property of
momentum. The lattice gas algorithm encapsulates the microscopic scale
kinematics of the particles scattering on site and moving along the lattice. The
mean-free path length between collisions is about one lattice cell size and the
mean-free time between collision elapses after a single update. This is
computationally simple in comparison to molecular dynamics where many
thousands of updates are required to capture such particle interactions.

The mesoscopic evolution is obtained by taking the ensemble average
over many instances of microscopic realizations. At the mesoscopic scale,
the average presence of each particle type is defined by an occupation
probability. In addition, the microscopic collision and streaming rules
translate into the language of kinetic theory.(16–18) The behavior of the
system is described by a transport equation for the occupation probabilities,
and this equation is a discrete Boltzmann equation called the lattice
Boltzmann equation.(19–21)

The lattice Boltzmann equation further translates into a macroscopic,
continuous, effective field theory by letting the cell size approach zero (the limit
of infinite lattice resolution called the continuum limit). At the macroscopic
scale, partial differential equations describe the evolution of the field,
admitting solutions such as propagating sound wave modes and diffusive
modes. The passage of the Boltzmann equation to the effective field theory
begins by expanding the occupation probabilities, which have a well-defined
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statistical functional form, in terms of the continuous macroscopic variables,
such as the mass density � (and the velocity or energy field if they are defined in
the model). This expansion usually is carried out perturbatively in a small
parameter such as the Knudsen number (ratio of mean-free path to the largest
characteristic length scale) or the Mach number (ratio of the sound speed to
the largest characteristic flow speed) in a fashion analogous to the Chapman–
Enskog expansion of kinetic theory.(22–24) Conversely, and self-consistently,
the macroscopic field quantities can also be expressed as a function of the
mesoscopic occupation probabilities—for example, the mass density at some
point is a sum over the occupation probabilities in that vicinity.

Quantum lattice gas algorithms are generalizations of the classical
lattice gas algorithms described above where quantum bits are used to
encode the occupation probabilities and where the principle of quantum
mechanical superposition is added to the artificial microscopic world. In this
quantum case, the mesoscopic occupation probabilities are mapped onto the
wave functions of quantum mechanical sites. In the case where the quantum
lattice gas describes a hydrodynamic system when the time evolution of the
flow field is required, we must periodically measure these occupation
probabilities and the quantum lattice gas algorithm becomes suited to a
type-II implementation. Such type-II algorithms have been shown to solve
dynamical equations such as the diffusion equation,(4) the Burgers
equation,(25) and magnetohydrodynamic Burgers turbulence.(26) As a first
exploration of a type-II architecture using NMR, we implemented a QLG
model of diffusive dynamics in one dimension.

3. SOLVING THE 1-D DIFFUSION EQUATION

The quantum lattice gas algorithm that solves the 1-D diffusion
equation derives from a classical lattice gas of particles moving up and down
a 1-D lattice.(4) The motion of the particles occurs in discrete steps
(streaming phase), and the particles have a probability of changing
directions (collision). When the collisions are such that the particles reverse
directions half of the time, then the continuum effective field theory that
emerges obeys diffusive dynamics. In this case, the motion of an individual
particle is a random walk, and an arbitrary initial distribution of particles
will diffuse isotropically as a function of time.

The lattice gas described above is summarized by the Boltzmann
equation

f1;2ðz��z; tþ�tÞ ¼ f1;2ðz; tÞ þ�1;2ðz; tÞ; ð1Þ
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where the left-hand side denotes the occupation of the lattice as a function
of the previous lattice configuration and where the collision term is

�1;2 ¼ � 1
2 f1 1� f2ð Þ � f2 1� f1ð Þ½ � ð2Þ

The variables f1 	 f1 z; tð Þ and f2 	 f2 z; tð Þ are the occupation probabilities
for finding upward- and downward-moving particles, respectively, at the site
location z and time t: The time step is denoted by �t; while the lattice
spacing is given by �z: The collision term changes the direction of some
particles, and it is responsible for the diffusive behavior.

The interesting macroscopic quantity of the lattice gas is the mass
density field, �; defined as the sum of upward- and downward-moving
particles

�ðz; tÞ ¼ f1ðz; tÞ þ f2ðz; tÞ ð3Þ

The ambiguity in assigning the mass density between the two occupation
probabilities is resolved by a constraint for local equilibrium demanding
that the mass density be initially distributed equally

f eq1 ðn�z; 0Þ ¼ f eq2 ðn�z; 0Þ ¼ 1
2 �ðn�z; 0Þ ð4Þ

After a single time step, the occupation probabilities f1 and f2 evolve
according to (1), resulting in a new mass density

�ðz; tþ�tÞ ¼ 1
2 �ðzþ�z; tÞ þ �ðz��z; tÞ½ � ð5Þ

The first finite-difference in time of the mass density field is then written as

�ðz; tþ�tÞ � �ðz; tÞ ¼ 1
2 �ðzþ�z; tÞ � 2�ðz; tÞ þ �ðz��z; tÞ½ � ð6Þ

In the limit where the lattice cell size and the time step approach zero
(�z! 0 and �t! 0), the mass density field becomes continuous and
differentiable. The second-order Taylor expansion of Eq. (6) about z and t
can thus be written in the differential form

@�ðz; tÞ

@t
¼

�z2

2�t

� �
@2�ðz; tÞ

@z2
ð7Þ

where it is now evident that � evolves according to the diffusion equation
with a constant transport coefficient �z2=2�t: Finally, in this implementa-
tion we consider an initial mass density �ðz; t ¼ 0Þ whose evolution obeys
the periodic boundary condition �ðz; tÞ ¼ �ðzþ L; tÞ; where L is the length
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of the lattice. As a result, the initial mass density diffuses until the total mass
is evenly dispersed throughout the lattice.

The corresponding quantum lattice gas algorithm description begins
by encoding the occupation probabilities, and thus the mass density, in the
states of a lattice of quantum objects. The streaming and collision
operations are then a combination of classical and quantum operations,
including measurements. The aim of the algorithm is to take an initial mass
density field and to evolve its underlying occupation probabilities according
to the Boltzmann equation (1). A schematic of the entire quantum algorithm
is shown in Fig. 1.

A single time step of the algorithm is decomposed into four sequential
operations:

(1) encoding of the mass density
(2) application of the collision operator ĈC at all sites
(3) measurement of the occupation numbers
(4) streaming to neighboring sites.

Fig. 1. The circuit diagram shows the quantum lattice gas algorithm for solving the 1-D

diffusion equation. The algorithm employs N two-qubit sites to encode the discretized mass

density. Each site codes for a single value of the mass density using the quantum state of the

two qubits. The encoded information is subjected to a series of local transformations that

evolve the system. The collision operator C is the only potentially entangling operation in the

algorithm, and it creates quantum coherences limited to each two-qubit system. The streaming

is executed by classical communication, and it moves the occupation numbers up and down the

lattice as denoted by the arrows. The sectioned cylinder depicts the position of the adjacent sites

in the NMR sample. Each site is physically realized as an addressable slice of isotopically-

labeled Chloroform solution.
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These operations are repeated until the mass density field has evolved
for the desired number of time steps. In the first time step, the encoding
operation specifies the initial mass density profile, while in all the subsequent
steps the encoding writes the results of the previous streaming operation.
The final time step ends with the readout of the desired result, so operation 4
is not performed.

Each occupation probability is represented as the quantum mechanical
expectation value of finding a two-level system, or qubit, in its excited state
j1i: As a result, the state of the qubit encoding the value faðz; tÞ is

jfaðz; tÞi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
faðz; tÞ

p
j1i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� faðz; tÞ

p
j0i ð8Þ

It follows that a single value of the mass density is recorded in two qubits,
one for each occupation number. The combined two-qubit wave function
for a single node becomes

j ðz; tÞi ¼
ffiffiffiffiffiffiffiffi
f1f2

p
j11i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ð1� f2Þ

p
j10i

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� f1Þf2

p
j01i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� f1Þð1� f2Þ

p
j00i

The kets j00i; j01i; j10i; and j11i span the joint Hilbert space of the two
qubits, and this is the largest dimension space over which quantum
superpositions are allowed. As with the classical algorithm, the constraint
for local equilibrium (4) forces the initial occupation probabilities at a node
to be half of the corresponding mass density value.

The occupation numbers encoded in the two-qubit wave function
j ðz; tÞi can be recovered by measuring the expectation value of the number
operator n̂na; as given in

faðz; tÞ ¼ h ðz; tÞjn̂naj ðz; tÞi; ð10Þ

where n̂n1 ¼ n̂n� 1; n̂n2 ¼ 1� n̂n; where 1 is the 2� 2 identity matrix, and where
the action of the single-qubit number operator n̂n returns 1 if qubit is in its
excited state and 0 for the ground state.

The encoded occupation probabilities evolve as specified by the
Boltzmann equation by the combined action of the collision operator, the
measurement, and streaming. The collision operator contributes by taking
the local average of the two occupation probabilities. This averaging (not to
be confused with statistical coarse-grain averaging, time averaging, or
ensemble averaging) is done by choosing the the collision operator ĈC to be
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the ‘‘square-root of swap’’ gate, written as

ĈC ¼

1 0 0 0

0 1
2þ

i
2

1
2�

i
2 0

0 1
2�

i
2

1
2þ

i
2 0

0 0 0 1

0
BBBBB@

1
CCCCCA

ð11Þ

in the standard basis. The same collision is applied simultaneously at every
site, resulting in

j 0ðz; tÞi ¼ ĈCj ðz; tÞi ð12Þ

Using (10), the intermediate occupation probabilities of the wave function
j 0ðz; tÞi are

f 0aðz; tÞ ¼
1
2 f1 þ f2ð Þ ð13Þ

as required for a ¼ 1; 2: The third operation physically measures these
intermediate occupation probabilities f 0aðz; tÞ at all the sites.

If the algorithm is performed on individual quantum systems, then the
values are obtained by averaging over many strong quantum measurements
of identical instances of each step. However, when the algorithm is
performed using a sufficiently large ensemble of quantum systems, as in the
case of NMR, then a single weak measurement of the entire ensemble can
provide sufficient precision to obtain f 0aðz; tÞ:

A single time step is completed with the streaming of the occupation
probabilities to the nearest neighbors, according to the rule

f1ðz��z; tþ�tÞ ¼ f 01ðz; tÞ ð14Þ

f2ðzþ�z; tþ�tÞ ¼ f 02ðz; tÞ ð15Þ

The information on the two qubits is shifted to the neighboring sites in
opposite directions. The streaming operation is a classical step causing
global data shifting, and it is carried out in a classical computer interfaced to
the quantum processors. Together, the last three operations result in

f1;2ðz��z; tþ�tÞ ¼ 1
2 f1ðz; tÞ þ f2ðz; tÞ½ � ð16Þ

which is the exact dynamics described by the Boltzmann equation (1).
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4. NMR IMPLEMENTATION

4.1. Spin System and Control

The goal of the NMR implementation is to experimentally explore the
steps outlined by the diffusion QLG algorithm. For this two-qubit problem,
we chose a room-temperature solution of isotopically-labeled chloroform
ð13CHCl3Þ; where the hydrogen nucleus and the labeled carbon nucleus
served as qubits 1 and 2, respectively.(27) The chloroform sample was
divided into 16 classically-connected sites of two qubits each, creating an
accessible Hilbert space larger than would be available with 32 non-
interacting qubits.

The internal Hamiltonian of this system in a strong and homogeneous
magnetic field B0 is

Hinternal ¼ � 1
2 �HB0ð Þ�1z �

1
2 �CB0ð Þ�2z þ

	J

2
�1z�

2
z ð17Þ

where the first two terms represent the Zeeman couplings of the spins with
B0 and the last term is the scalar coupling between the two spins. The
operators of the form �ak are Pauli spin operators for the spin a and the
Cartesian direction k: The choice of chloroform is particularly convenient
because the different gyromagnetic ratios, �H and �C; generate widely
spaced resonant frequencies. As a result, a RF pulse applied on resonance
with one of the spins does not rotate, to a very good approximation, the
other spin. In the 7 T magnet utilized for the implementation, the hydrogen
and carbon frequencies were about 300 and 75MHz, respectively. The
widely spaced frequencies allow us to write the two RF control
Hamiltonians as acting on the two spins independently. The externally-
controlled RF Hamiltonians are written as

HaRFðtÞ ¼ � 1
2 ½w

a
xðtÞ�

a
x þ w

a
yðtÞ�

a
y � ð18Þ

The RF Hamiltonians generate arbitrary single-spin rotations with high
fidelity when the total nutation frequencies


aRF ¼
1

2	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½wax�

2
þ ½way�

2
q

ð19Þ

are much stronger than J; the scalar coupling constant. The scalar coupling
Hamiltonian and the single-spin rotations permit the implementation of a
universal set of gates, and they are the building blocks for constructing more
involved gates such as the collision operator ĈC:(10,11)
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The lattice of quantum information processors is realized by super-
imposing a linear magnetic field gradient on the main field B0; adding a
position dependent term to the Hamiltonian having the form

HgradientðzÞ ¼ �
1

2
�H
@Bz
@z
z

� �
�1z �

1

2
�C
@Bz
@z
z

� �
�2z : ð20Þ

The variable z denotes the spatial location along the direction of the main
field, while the constant @Bz=@z specifies the strength of the gradient. The
usefulness of this Hamiltonian can be appreciated by noticing that the offset
frequencies ��H;C ¼ �H;C @Bz=@zð Þz of the spins vary with position when the
gradient field is applied. Spins at distinct locations can thus be addressed
with RF fields oscillating at the corresponding frequencies. In this way, the
magnetic field gradient allows the entire spin ensemble to be sliced into a
lattice of smaller, individually addressable sub-ensembles.

Using the coupling, RF, and gradient Hamiltonians described above,
together with the appropriate measurement and processing tools, we can
now describe in detail how the four steps of the diffusion QLG algorithm
translate to experimental tasks. The lattice initialization step (1) uses the
magnetic field gradients to establish sub-ensembles of varying resonant
frequency addressable with the RF Hamiltonians. The collision step (2)
makes use of both the RF and the internal coupling Hamiltonians to
generate the desired unitary operation ĈC:(10,11) The readout (3) is
accomplished by measuring the spins in the presence of a magnetic field
gradient. And finally, the streaming operation (4) is performed as a
processing step in a classical computer in conjunction with the next
initialization step.

4.2. Lattice Initialization

The initialization of the lattice begins by transforming the equilibrium
state of the ensemble into a starting state amenable for quantum
computation. At thermal equilibrium, the density matrix is

�thermal ¼ exp �
Hinternal

kBT

� 

�

1

22
þ "

�H
�C
�1z þ �

2
z

� 

ð21Þ

where " has a value on the order of 10�5: The equilibrium state is highly
mixed and the two spins have unequal magnetizations. To perform quantum
computations, it is convenient to transform the equilibrium state into a
pseudo-pure state, (28,29) a mixed state whose deviation part transforms
identically to the corresponding pure state and, when measured, returns
expectation values proportional to those that would be obtained by
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measuring the underlying pure state. Two transformations create the
starting pseudo-pure state j00i from the thermal state. First, the
magnetizations of the two spins are equalized,

�thermal�!
Equalize

�equal ¼
1

22
þ
"

2
1þ

�H
�C

� �
�1z þ �

2
z

� �
ð22Þ

followed by a pseudo-pure state creation sequence that results in

�equal�!
Pseudo�pure

�pp ¼
1

22
þ "

ffiffiffi
3

p

4
ffiffiffi
2

p 1þ
�H
�C

� �
�1z þ �

2
z þ �

1
z�

2
z

� �
: ð23Þ

The equalization and pseudo-pure state creation sequences are described in
detail in Ref. 30. For clarity, we define the constant in front of the brackets
to be "0; allowing us to write the pseudopure state �pp in terms of the desired
spinor j00i as

�pp ¼
1
4� "

0
� �

1þ "0j00ih00j: ð24Þ

Expressed in this manner, it is now seen that a unitary transformation
applied to �pp acts trivially on the term proportional to the identity, but it
evolves the term j00ih00j as it would a pure state.

Individually addressing the sites of the lattice, as depicted in Fig. 1, is
accomplished by selectively addressing adjacent slices of the cylindrical
sample. The procedure is related to slice-selection in magnetic resonance
imaging (MRI),(31) and it works by applying the gradient Hamiltonian in the
presence of suitably shaped RF pulses. First, consider the Hamiltonian for a
one-spin system subjected to a linear magnetic field gradient in the z-
direction and to a time-dependent RF pulse applied in the y-direction. In
this case, the Hamiltonian is

HRF;Gðz; tÞ ¼ �
1

2
�
@Bz
@z
z

� �
�z �

1

2
wyðtÞ�y ð25Þ

where the �z term is the linearly-varying static field and the �y term is the
time-dependent RF. The Hamiltonian HRF;Gðz; tÞ does not commute with
itself at all times, so a closed-form and exact solution cannot be easily given
without specifying the function wyðtÞ: A valuable approach, however, is to
consider the approximate evolution generated by HRF;Gðz; tÞ during
infinitesimal periods of the RF pulse. To first order, the evolution during
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the initial period �t becomes

URF;Gðz; t ¼ �tÞ � exp i
1

2
�
@Bz
@z

�t

� �
z �z

� 

exp i

wyð�tÞ�t

2
�y

� 

ð26Þ

By defining the term in the parenthesis as �kz 	 �ð@Bz=@zÞ�t; the evolution
of an initial density matrix �z through a single period becomes

URF;G�zU
y

RF;G � exp i
�kzz

2
�z

� 

�x exp �i

�kzz

2
�z

� 

wyð�tÞ�tþ �z ð27Þ

where small angle approximations have been made. The first term is a
spatial helix of the x and y magnetizations having a wavenumber �kz: The
second term is the first order approximation to the magnetization remaining
in the state �z: Another period of evolution will affect the �z term as
described, creating a new magnetization helix with wavenumber �kz: In
addition, the initial helix will have its wavenumber increased by an amount
�kz: The final result over many periods is the formation a shaped
magnetization profile having many components

�z !
XN
n¼1

exp i
n�kzz

2
�z

� 

�x exp �i

n�kzz

2
�z

� 

wyðn�tÞ�tþ �z ð28Þ

Each term in summation can be interpreted as a cylindrical Fourier
component of the x� y magnetization weighted by the RF nutation rate
wyðn�tÞ: The RF waveform specifies the magnitude of each spatial Fourier
component, and the resulting spatial profile is the Fourier transform of the
RF waveform.(32) An equivalent description is to say that, for weak RF
pulses, the excited magnetization of the spins at a given resonance frequency
is, to first order, proportional to the Fourier component of the RF
waveform at that frequency. As a result, control of the appropriate RF
Fourier component essentially translates to selective addressing of spatial
frequencies, which in turn allows the excitation of particular spatial
locations.

The Fourier transform approximation allows encoding of arbitrary
shapes on the various spatial locations of one uncoupled nuclear species.
For QIP, however, coupled spins are required to implement two-spin
operations. In particular, the chloroform carbons and protons are coupled
together via the scalar coupling. Given that the required RF waveforms
should be weak, the coupling interferes with the desired evolution. The
effect of the coupling present while encoding on spin 1 is removed by
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applying a strong RF decoupling sequence on the second spin.(34) The
decoupling modulates the �2z operator in the interaction Hamiltonian,
making its average over a cycle period equal to zero. As a result, the second
spin feels an identity operation during the decoupling. Figure 2 shows the
complete RF and gradient pulse sequence. As can be seen from the diagram,
the first encoding on qubit 1 was subsequently swapped to qubit 2, followed
by a re-encoding of qubit 1. We chose this method because the smaller
gyromagnetic ratio of 13C causes a narrower frequency dispersion in the
presence of the gradients, making the carbon decoupling simpler.

As described above, the encoding process writes the desired shapes in
the spatial dependence of each spin’s x-magnetization. The occupation
numbers, however, are proportional to the z-magnetization, as can be seen
when the number operator in the equation

faðn;mÞ ¼ h ðn;mÞjn̂naj ðn;mÞi; ð29Þ

is replaced with n̂na ¼
1
2 ð1þ �

a
z Þ resulting in

faðn;mÞ ¼
1
2 1þ h ðn;mÞj�az j ðn;mÞi
� �

ð30Þ

Fig. 2. The NMR implementation consists of four main sections, each corresponding to the

prescribed QLG algorithm step. The top two lines in the diagram correspond to RF pulses

applied to the proton and carbon qubits, respectively. The third line shows the application of

magnetic field gradients. In the encoding section, the initial carbon magnetization is recorded on

the protons before being transferred to the carbons. The starting magnetization is specified by

using a RF pulse shaped as the Fourier transform of the desired magnetization. The shaped

pulses are applied in the presence of gradients so that each site can be addressed. A carbon

decoupling sequence prevents the scalar coupling from interfering with the low power shaped

pulses. The 	=2 at the end of the encoding move the information form the x-axis to the z-axis, as

required by the QLG algorithm. The collision operator follows the encoding, and it is

implemented without gradients to ensure that all of the sites in the sample feel the same

transformation. The results are observed in two experiments, each time using the more sensitive

proton channel. A swap gate is added when measuring the carbon magnetization. Finally, the

streaming operation is applied by shifting the frequencies of the carbon and proton shapes in

opposite directions.
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where second term in the brackets represents the z-magnetization. The
encoding process is followed by a 	=2 pulse that rotates the excited x-
magnetization to the z direction.

4.3. Collision and Swap Gates

After initialization, the next step is to apply the collision operator. For
the QLG algorithm solution to the diffusion equation, the collision operator
ĈC is the square-root of swap gate. Expressed in terms of the Pauli operators,
it is

ĈC ¼ exp �i
	

8
�1x�

2
x þ �

1
y�

2
y þ �

1
z�

2
z

� �h i
ð31Þ

where an irrelevant global phase has been ignored. Written in this form, the
operation ĈC can be decomposed into a sequence of implementable RF
pulses and scalar coupling evolutions(10,11) by noticing that the product
operators in the exponent commute with each other, resulting in

ĈC ¼ exp �i
	

8
�1y�

2
y

h i
exp �i

	

8
�1z�

2
z

h i
exp �i

	

8
�1x�

2
x

h i
ð32Þ

Expanding the first and last exponentials as scalar couplings sandwiched by
the appropriate single-spin rotations results in

ĈC ¼ exp i
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The exponents of terms proportional to �1z�
2
z represent internal Hamiltonian

evolutions lasting for a time tcolzz ¼ 1=ð4J Þ: The exponents of terms with
single-spin operators are implemented by 	=2 rotations. They were
generated by RF pulses whose nutation rate was about 50 times greater
than J: All of the pulses and delays were applied without a magnetic field
gradient in order to transform all of the sites identically.

As shown in Fig. 2, swap gates were utilized both in the lattice
initialization and in the measurement of the carbon magnetization. The
pulse sequence for the swap gates was almost identical to the sequence for ĈC:
The only difference was that the internal evolution delay was set to
tswapzz ¼ 1=ð2JÞ:
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4.4. Measurement

The occupation numbers resulting from the collision were obtained by
measuring the z-magnetizations and using Eq. (30). Since only the �ax and �

a
y

operators are directly observable, a ‘‘read out’’ 	=2 pulse transformed the z-
magnetization into x-magnetization. The proton magnetization was
measured directly after the collision, while the carbon magnetization was
first swapped to the protons before observation. Measurements of both the
13C and 1Hmagnetizations were carried out separately, and in both cases via
the more sensitive proton channel. The measurements were made in the
presence of a weak linear magnetic field gradient, causing signals from
different sites to resonate with distinguishable frequencies. The observed
proton signal was digitized and Fourier transformed to record an image of
the spatial variation of the spin magnetization. The observed spectrum was
then processed to correct the baseline and to obtain the resulting
magnetization at each site. Because each site is composed of a slice of the
sample with spins resonating in a band of frequencies, the occupation
number for each site was obtained by averaging over all spins in the
corresponding band.

4.5. Streaming

The final step involves classically streaming the results of the
measurements according to Eqs. (14) and (15). The streaming operation is
applied in conjunction with the next lattice initialization step by adding a
linearly varying phase to the Fourier transform of the desired shape. The
added phase causes a shift in the frequency of the pulse determined by the
slope of the phase. When the frequency-shifted pulse is applied in the
presence of the magnetic field gradient, the shift results in spatial translation
of the encoded shape. The streaming operation is thus implemented as a
signal processing step in the lattice initialization procedure.

5. RESULTS AND DISCUSSION

The results of the experiment are shown in Fig. 3, together with plots
of the analytical solution and of numerical simulations of the NMR
experiment. In total, 7 steps of the algorithm were completed using a parallel
array of 16 two-qubit ensemble NMR quantum processors. The observed
deviations between the data points and the analytical plots can be attributed
to imperfections in the various parts of the NMR implementation.
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To explore the source and relative size of these errors, we simulated
perfect experiments, each time adding controlled errors in four sections of
the implementation:

. Fourier transform approximation in the initialization

. Decoupling during the initialization

. Encoding swap gate and 	=2 pulse errors

. Collision gate errors

The Fourier transform approximation executes a correct writing of the
desired magnetization to first order in the overall flip angle. To explore
errors introduced by the approximation, we simulated NMR experiments
using nutation angles ranging from 	=2 to 	=20: In this range, angles smaller
than 	=4 resulted in accurate encodings of the desired Gaussian shapes
through the ten steps of the implementation. The errors in the three
remaining sections were simulated by using RF pulses with the actual time
and nutation rate that were used on the spectrometer. By using a finite
power, errors from imperfect averaging of the scalar coupling could be
observed. Errors in the collision gate caused the least impact to the mass
density, followed by errors originating from the imperfect decoupling
sequence. The largest deviations originated from realistic simulations of the

Fig. 3. The experimental mass densities are plotted in the figure, together with plots of the

analytical solution and the numerical simulation of the NMR experiment. The normalized,

dimensionless mass densities are plotted as they were encoded on the lattice. Seven steps of the

algorithm were implemented on 16 two-qubit sites. The simulations were performed using the

actual RF nutation rates and times of the experimental setup. The calculations closely match the

data, suggesting that the deviation between the analytical results and the data can be attributed

imperfections in the methodology. As a result, the simulations promise to be useful in exploring

the errors from alternate methods.
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swap gate and the 	=2 pulses in the encoding. It is important to note that the
simulated gate fidelities for the swap and collision gates, although imperfect,
are still about 0.995. This suggests that the observed deviations are caused
by the coherent buildup of errors through a few iterations, and not just by
the individual errors from a single gate. The complete simulation, using
realistic RF pulses and a shaped pulse nutation angle of 	=4; is plotted in
Fig. 3. The calculated mass densities closely match the experimental results,
suggesting that the observed errors are accurately modeled.

Other potential sources of errors include the finite signal to noise, the
state fidelity of the starting pseudo pure state, and gradient switching time.
In addition, spin relaxation, random self-diffusion of the liquid molecules,
and RF inhomogeneity can all cause attenuations in the strength of the
signal. In our experiments, these last three mechanisms manifested
themselves indirectly through reduced signal to noise. However, given that
this attenuation was present in all of the experiments, any direct results were
mostly normalized away in the data processing. Although none of the above
errors contributed significantly to our implementation, they are likely to
become important as more complicated algorithms are executed on larger
lattices.

In particular, molecular diffusion over the time of an operation places
a lower bound on the physical size of the volume element corresponding to
each site in the computation. In the 1-D case discussed here, the root-mean-
squared displacement (�z ¼

ffiffiffiffiffiffiffiffi
2Dt

p
) for chloroform (D ¼ 2:35� 10�5 cm2=s)

is about 10:8�m over the 25ms needed for encoding and the collision
operator. Since the actual volume element were about 625�m across, this
resulted in a negligiable mixing of the information in adjacent sites.
However, it is clear that for this approach to type-II quantum computer to
remain viable for large matries and more complex collision operators the
physical size of the sample must grow with the size of the problem.

6. CONCLUSION

Ensemble NMR techniques have been used to study the experimental
details involved in quantum information processing. The astronomical
number of individual quantum systems (� 1018) present in typical liquid-
state spin ensembles greatly facilitates the problem of measuring spin
quantum coherences. In addition, the ensemble nature has been successfully
utilized to create the necessary pseudopure states(28,29) and to systematically
generate nonunitary operations over the ensemble(33). In this experiment, we
again exploit the ensemble nature, but this time as a means of realizing a
parallel array of quantum information processors. The novel architecture is
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then used to run a quantum lattice gas algorithm that solves the 1-D
diffusion equation.

The closeness of the data to the analytical results is encouraging, and it
demonstrates the possibility of combining the advantages of quantum
computation at each node with massively parallel classical computation
throughout the lattice. Currently, commercial MRI machines routinely take
images with 256� 256� 256 volume elements. As a result, the large size of
the NMR ensemble provides, in principle, sufficient room to explore much
larger lattices. However, in moving to implementations with more
computational power, several challenges remain. The limited control em-
ployed here is sufficient for a few time steps of the algorithm, but re-
finements are necessary to increase the number of achievable iterations. In
addition, although complicated operations have been done in up to 7NMR
qubits,(35–37) the problem of efficiently initializing a large lattice of few-qubit
processors still remains. Our results provide a first advance in this direction,
and they provide confirmation that NMR techniques can be used to test
these new ideas.
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