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Foreword

One of the most famous American physicists of the
twentieth century, Richard Feynman, in 1982 was the
first to propose using a quantum mechanical comput-
ing device to efficiently simulate quantum mechanical
many-body dynamics [1–3], a task that is exponen-
tially complex in the number of particles treated and
is completely intractable by any classical computing
means for large systems of many particles. In the two
decades following his work, remarkable progress has
been made both theoretically and experimentally in the
new field of quantum computation [4,5]. Ironically,
however, most of the theoretical progress in quan-
tum computing has developed within the purview of
the computer scientist with the principle applications
of efficient quantum information processing related to
cryptography and secure quantum communication.1 In
an effort return to Feynman’s original direction, the
Air Force Research Laboratory and the Air Force Of-
fice of Scientific Research has established a multidis-
ciplinary basic research theme calledQuantum Com-
putation for Physical Modelingto explore quantum al-
gorithms to model dynamical physical systems. Our
goal is to establish a practical and generic means by
which the power of quantum mechanics (that is, quan-
tum parallelism due to the superposition and entangle-
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1 References to specific publications in these subjects are so
ubiquitous in the quantum computing literature that we do not
include any here. Comprehensive collections of quantum computing
papers have been recently published [4,5].

ment of states) can be used to speedup numerical sim-
ulations of interest to computational physicists.

Notwithstanding the veritable stampede towards
computer science related applications by most re-
searchers in the field of quantum computing, a few
maverick physicists have developed some quantum
algorithms to model quantum mechanical systems.
A starting point for this development was a prob-
lem posed by Feynman himself to show that the one
dimensional Dirac equation could be modeled by a
single-speed particle traveling in a two-dimensional
space-time as a sum over zigzag paths of straight line
elements [6], with the amplitude of a particular path
contributing to the kernel by the number of “colli-
sions” or corners along that zigzag path. Thisquan-
tum lattice gasrepresentation of quantum mechanics
is equivalent to the well known path integral repre-
sentation.2 A quantum lattice gas accounts for all con-
tributing paths by simultaneously evolving many par-
ticles in a unitary fashion. Therefore, instead of sum-
ming (or integrating over) paths as individual entities,
all contributing paths are effectively simulated in one
fell swoop as a combined field quantity. In the end, the
collisional interaction between particles in the quan-
tum lattice representation can be described by an ef-
fective field theory (the Dirac equation in this particu-
lar case) at the large-scale called thecontinuum limit.

Beginning in the mid 1990’s, a contemporaneous
series of quantum lattice-gas algorithms to model
the relativistic Dirac equation, equivalent to Feyn-

2 A solution to Feynman’s “quantum lattice gas” problem was
published in 1984 by Jacobson and Schulman [7].
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man’s original algorithm, were published by Succi [8,
9], Bialynicki-Birula [10], and Meyer [11–15]. Fur-
thermore, a series of papers on modeling the non-
relativisitic Schröedinger equation were published by
Boghosian and Taylor [16–18] and by Yepez and
Boghosian [19], the latter article appearing in this is-
sue. Our present goal in the Quantum Computation for
Physical Modeling project is accelerate this algorith-
mic developmental effort that has occurred over the
past decade.

In fact, we hope to go further in the application of
this quantum algorithmic method. We have developed
new efficient quantum lattice-gas algorithms to model
classical dynamical systems [20–23]. Meyer also ad-
dresses this subject in his article on physical quan-
tum algorithms contained in this issue [24]. In the
past, we have considered quantum algorithms suited
to globally phase-coherent quantum computers [25],
however our focus is presently on those quantum al-
gorithms suited to implementation on locally phase-
coherent quantum computers that are technologically
much simpler to experimentally implement [26]. This
program to use one quantum mechanical system to
model another quantum mechanical system or clas-
sical system can perhaps best be described as effi-
cient analog computing, which in this context may be
termedanalog quantum computing.

The principle technological obstacle to globally
phase-coherent quantum computation is the problem
of the uncontrolled decoherence of the quantum com-
puter’s wave function. The quantum computing com-
munity at large, following the traditional computer sci-
entist’s mindset for correcting bit-flip errors using re-
dundancy, has been investing much theoretical work
in attempts to develop generalized methods for quan-
tum error correction of bit-flip and phase-change er-
rors [27–29]. As an expedient alternative to this cum-
bersome approach, as demonstrated by the advent of
several nuclear magnetic resonance quantum comput-
ing experiments [30–33], it is possible to avoid bit-flip
and phase-change errors altogether:Keep the individ-
ual quantum computing elements small enough so that
all computation occurs within a single spin-spin deco-
herence time where bit-flip and phase-change errors
are irrelevant.

Given this possibility of avoiding errors, it is nat-
ural to consider building a large-scale quantum com-
puting system by connecting many small ones together

in an array interconnected by nearest-neighbor clas-
sical communication channels. We call this type of
quantum mechanical device atype-II quantum com-
puter [26]. This hybrid architecture, combining clas-
sical massively parallelism and quantum parallelism,
is suited to modeling dynamical physical systems,
such as turbulent Navier–Stokes fluids [21–23,25]. In
collaboration with the Nuclear Engineering Depart-
ment of MIT, we have developed a prototype type-II
quantum computer based on spatial nuclear magnetic
resonance spectroscopy. We use a gradient magnetic
field to distinguish individual layers in a liquid sam-
ple so that each layer effectively becomes an indi-
vidual quantum computing node comprising an en-
semble of molecules. The first simulation of a quan-
tum lattice-gas model for the one-dimensional diffu-
sion equation [22] has been carried out on this quan-
tum computer prototype using the atomic spin-state of
Carbon-13 and Hydrogen nuclei within a linear array
of chloroform molecules [34]. This milestone repre-
sents the first physical simulation to date on a quantum
computer and is contained in this issue. A subsequent
paper presenting an improved version of our type-II
quantum computer prototype, that corrects for various
implementation errors and uses better quantum con-
trol, is also in preparation [35].

The rather rapid proof-of-concept achieved by spa-
tial nuclear magnetic resonance spectroscopy of a
type-II quantum computer has led to interest in the
subject by the Office of the Secretary of the Air Force
and the House Appropriations Committee of the US
Congress leading in turn to a strong commitment to
the field of quantum computation for physical mod-
eling by the Department of Defense. Our new quan-
tum computing research theme is supported by sev-
eral directorates of the Air Force Office of Scientific
Research with about two dozen university research
projects across the country to date. The design and
construction of several new type-II quantum computer
prototypes are now underway using various technolo-
gies including superconducting electronics and quan-
tum optics for example.

We have established a new annual workshop se-
ries dedicated to this subject of quantum compu-
tation for physical modeling (see our web site at
http://qubit.plh.af.mil for more details). The first work-
shop in this series was held in the fall of 2000 in North
Falmouth in Cape Cod, Massachusetts and the fol-
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lowing collections of articles contained in this issue
were contributed from this workshop. Our goal for this
workshop series is to annually publish a collection of
such contributed articles, to review our progress, and
to provide an open forum for new collaborators to join
us in this activity.
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