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Abstract

Introduced is a lattice-gas with long-range 2-body interactions. An
effective inter-particle force is mediated by momentum exchanges. There
exists the possibility of having both attractive and repulsive interactions
using finite impact parameter collisions. There also exists an interesting
possibility of coupling these long-range interactions to a heat bath. A
fixed temperature heat bath induces a permanent net attractive interpar-
ticle potential, but at the expense of reversibility. Thus the long-range
dynamics is a kind of a Monte Carlo Kawasaki updating scheme. The
model has a PρT equation of state. Presented are analytical and numeri-
cal results for a lattice-gas fluid governed by a nonideal equation of state.
The model’s complexity is not much beyond that of the FHP lattice-gas.
It is suitable for massively parallel processing and may be used to study
critical phenomena in large systems.

1 Introduction

Nonideal fluids, with dynamics governed by reversible physical laws, undergo
phase transitions. This fact about fluids indicates the possibility that lattice-gas
fluid models, with dynamics governed by reversible rules [1], may also undergo
phase transitions. The Ising model is the most well known computational model
with an order-disorder transition. Reversible Ising models using energy bankers,
in a microcanonical ensemble, are known [2, 3]. Yet it is an open question as to
whether or not there exists a reversible momentum-conserving lattice-gas model
of a multiphase fluid.

In molecular dynamics one simulates a many-body system of particles with
continuous interaction potentials where the particles have continuous positions
and momenta. In lattice-gas dynamics the particles’ positions and momenta are
discrete and motion is constrained to a spacetime lattice. Interparticle potentials
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can be modeled by including long-range interactions in the lattice-gas dynamics
with a discrete momentum exchange between particles. The use of momentum
exchange was introduced by Kadanoff and Swift in a Master-equation approach
[4]. The use of negative momentum exchanges in long-range interactions was
first done in a lattice-gas model by Appert and Zaleski [5]. This nonthermal
model has a liquid-gas coexistence phase; there is a Pρ equation of state. A
method for modeling interparticle potentials using only local interactions was
introduced by Chen et al. [6]. There is an Ising interaction between the rest
particles of the FHP lattice-gas model[7] with rest particles at the neighbor-
ing sites. In this way a local configurational energy is associated with the rest
particles. Speed one particles can transition to a rest state with a certain Boltz-
mann probability, e−β∆E . The inverse transition is also possible and the model
obeys detailed-balance. Chen et al. observed an order-disorder transition as
the system has a nonideal equation of state. It is a purely local model being a
combination of a lattice-gas automaton and a Monte Carlo Ising lattice gas. In
this way momentum conservation is added to Ising dynamics so the model can
therefore be used to view the kinetics, even near the critical point.

The lattice-gas model with long-range interactions presented here is a finite
temperature extension of Appert and Zaleski’s zero temperature model. The
first ingredient added is repulsive long-range collisions. Both discrete negative
and positive momentum exchanges occur between particles. The second ingre-
dient added is a finite temperature heat-bath, that is a heat-bath with a certain
non-zero fractional occupation. It is possible to bias the finite impact parame-
ter collisions so there is a net attractive interparticle potential. This is done by
coupling the long-range collisions to a heat bath — attractive collisions cause
a transition from a high potential energy state to a low one and emit units of
heat whereas repulsive collisions cause the opposite transition and absorb heat.
When a disordered lattice-gas state is in contact with a low temperature bath,
spinoidal decomposition occurs. The fractional occupation of the heat-bath de-
termines the likelihood of long-range interactions in a simple way. The phase
separation occurs if the heat bath filling fraction is held fixed1. Its nonideal
PρT equation of state is derived and compared to numerical simulation.

When the lattice-gas dynamics is strictly reversible, there exists an inherent
limitation that the phase separation process can occur only for a short period
of time. The lattice-gas fluid quickly becomes a neutral fluid, with finite impact
parameter collisions. So added to the usual FHP type on-site collisions are an
equivalent set of finite impact parameter collisions. Balancing the interactions
ensures detailed balance, and in the context of the multiphase model presented
below, this is like the infinite temperature limit. The appendix contains a
description of the reversible lattice-gas with balanced attractive and repulsive
collisions and a numerical result illustrating the characteristic transient time.

This paper is organized into three main sections. §2 very briefly describes
the local particle dynamics of the lattice-gas method. §3 describes the long-

1Note that holding the heat bath at fixed fractional occupation below 0.5 breaks detailed
balance.
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range lattice-gas and offers a simple theoretical result in the Boltzmann limit.
Finally, §4 presents some numerical results obtained with the model. A closing
discussion of the main points of this paper is given in §5. The appendix contains
a formal construction of a long-range lattice-gas with a single species of particles
obeying detailed balance.

2 Lattice-Gas Automata

An extremely abridged description of local lattice-gas dynamics is given here
since descriptions can be found elsewhere [8, 9]. Particles, with mass m, prop-
agate on a spacetime lattice with N spatial sites, unit cell size l, time unit τ ,
with speed c = l

τ . A particle’s state is completely specified at some time, t,
by specifying its position on the lattice, x, and its momentum, p = mcêa with
lattice vectors êa for a = 1, 2, . . . , B. The particles obey Pauli exclusion since
only one particle can occupy a single state at a time. The total number of con-
figurations per site is 2B . The total number of states available in the system is
2BN . The lattice-gas cellular automaton equation of motion is

na(x + lêa, t+ τ) = na(x, t) + Ωa(~n(x, t)), (1)

where the particle occupation variable and collision operator are denoted by na

and Ωa, respectively.
For a two-dimensional hexagonal lattice, the spatial coordinates of the lat-

tice sites may be expressed as follows xij =
(√

3
2 j, i−

1
2 mod 2j

)
where i and j

are rectilinear indices that specify the memory array locations used to store the
lattice-gas site data. Given a particle at site (i, j), it may be shifted along vector
~r = rêa to a remote site (i′, j′)a by the following mapping:

(
i+ r+1

2 − mod2j mod 2r, j ∓ r
)
1,4

,(
i− r

2 − mod2j mod 2r, j ∓ r
)
2,5

, (i∓ r, j)3,6. These streaming relations are
equivalent to memory address offsets. The modulus operator is base 2 because
even and odd rows must be shifted as a hexagonal lattice is embedded into a
square lattice.

3 Long-Range 2-Body Interactions

An interparticle potential, V (x − x′), acts on particles spatially separated by
a fixed distance, x − x′ = 2r. An effective interparticle force is caused by a
non-local exchange of momentum. Momentum conservation is violated locally,
yet it is exactly conserved in the global dynamics.

For the case of an attractive interaction, there exists a bound states in which
two particles orbit one another. Since the particle dynamics are constrained
by a crystallographic lattice we expect polygonal orbits. In figure 1a we have
depicted two such orbits for a hexagonal lattice-gas. The radius of the orbit is r.
Two-body finite impact parameter collisions are depicted in figures 1b and 1c.
Momentum exchanges occur along the principle directions. The time-reversed
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Figure 1: (a) Bound state orbits where the dotted path indicates the particle’s closed
trajectory; (b) |∆p| = 1 with one unit of angular momentum, a counter-clockwise attractive
collision and its repulsive conjugate; and (c) |∆p| = 2 with zero angular momentum collision
conjugates. Not included in the figure are the time-reversed partners of (b).
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partners of the collisions in figures 1b are included in the model. The interaction
potential is not spherically symmetric, but has an angular anisotropy. In general,
it acts only on a finite number of points on a shell of radius r. The number of
lattice partitions necessary per site is half the lattice coordination number, since
two particles lie on a line. Though microscopically the potential is anisotropic,
in the continuum limit numerical simulation done by Appert, Rothman, and
Zaleski indicates isotropy is recovered [10].

Constraint equations2 for momentum conservation and parallel and perpen-
dicular momentum exchange are respectively

êα − êβ + êµ − êν = 0 (2)
(êα − êβ − êµ + êν) · r = 2∆p (3)

(êα − êβ − êµ + êν)× r = 0 (4)

where ∆p is the momentum change per site due to long-range collisions. The
sum and difference of (2) and (3) reduce to

(êα)y − (êβ)y = ∆p (êµ)y − (êν)y = −∆p. (5)

The possible non-zero values of a site’s momentum change may be ∆p = ±1
and ±2. As mentioned, the cases for ∆p < 0 led to bound states with angular
momentum 0 and 1. To satisfy (5), consider the case where (êα)y = −(êµ)y

and (êβ)y = −(êν)y. 3 The possible collisions where r̂ = ê3 are depicted in
figure 1. The reversible interactions are 2-body collisions with a finite impact
parameter of 2r. For r = 0, they reduce to the 2-body collisions in the FHP
lattice-gas: the |∆p| = 1 collisions reduce to ± 2π

3 rotations of momenta states,
and the |∆p| = 2 collisions reduce to the identity operation.

Let V [d(x)] represent the potential energy due to long-range interactions,
where d(x) is the probability of finding a particle at position x. For a 2-body
interaction to occur at x and x′, one must count the chance of having two
particles and two holes at the right locations, so in the Boltzmann limit one
may write a probability of collision, P (x, x′; v, v′), as

P (x, x′; v, v′) = d(x)(1− d(x))d(x′)(1− d(x′))δ(|~v′ − ~v|) (6)

and if the system is uniformly filled, this simplifies to

P (x, x′; v, v′) = d2(1− d)2δv′v. (7)

Letting m, c, r = |x − x′|, and l denote the particle mass, particle velocity, 2-
body interaction range, and lattice cell size, one may write the potential energy
as

V (d) =
α

2
mc2B

(r
l

)
P (x, x′; v, v′) (8)

=
α

2
mc2B

(r
l

)
d2(1− d)2δv′v, (9)

2We are simplifying this development by assuming a single speed lattice-gas. Consequently
we do not have to explicitly write a term to conserve energy since here energy conservation
follows by default.

3Alternatively one could have chosen (êα)y = (êν)y and (êβ)y = (êµ)y .

5



0

0.1

0.2

0.3

0.4

0.5

0.6

0 1

Po
te

nt
ia

l E
ne

rg
y

Particle Density

Mean Field Theory

Liquid Gas 

Figure 2: Potential energy versus particle density in the zero temperature limit. Letting
d→ ψ − 1

2
, then V (ψ) = 1

16
− 1

2
ψ2 + ψ4 which has a Landau-Ginsburg form.

where the value of the coefficient α depends on the magnitudes of momenta
exchanged. Here d ranges from 0 to 1, and is just the particle filling fraction.
V (d) has two minima, at d = 0 and d = 1, see figure 2.

One may consider a slightly more complicated interaction, where the 2-body
collisions are coupled to a second kind of particle whose filling fraction is denoted
by h. In the slightly more complicated interaction, the form of V (d) given still
holds, but only for h = 0. Here is the slightly more complicated version of
things. The complete form of the interaction energy is

V (d, h) =
α

2
mc2B

[
d2(1− d)2(1− h)2 − d2(1− d)2h2

]
. (10)

The first term is two d’s transitioning to a lower configurational energy state
and thus emitting two h’s to conserve energy. The second term is two d’s
transitioning to a higher configurational energy state by absorbing two h’s.
Local conservation of momentum and energy is recovered. For convenience we
write

V (d, h) =
α

2
mc2B

[
d2(1− d)2(1− 2h)

]
. (11)

From (11), V (d, h) = 0 for h = 1
2 . Since the hath-bath particles are fermi-dirac

distributed, we define the effective temperature as kBT = εo(log 1−h
h )−1, and

h = 1
2 corresponds to T = ∞ and h = 0 corresponds to T = 0. Numerical

simulation corroborates this. The pressure, p, in the gas is written

p(d, h) = mc2sBd+ V (d, h) (12)
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Figure 3: Examples of long-range collisions that locally conserve mass, momentum, and
energy. |∆p| = ±1 interactions along the r0-direction coupled to a heat bath: (a) attractive
case; and (b) its adjoint, repulsive case. Transitions probabilities for these collisions have a
Monte Carlo form as they are biased by the density of heat-bath particles, rendered here with
wavy lines. Head of the gray arrows indicates particles entering the sites at r0 and −r0 at
time t. Tail of the black arrows indicates particles leaving those sites at time t+ τ .

where cs c√
D

is the sound speed. This is the non-ideal equation of state that is
responsible for the liquid-gas phases observed in numerical simulations of this
system.

4 Simulation Results

The dynamics of the model in contact with a fixed temperature heat bath is
tested by numerical simulation. A coarse-grained mass frequency distribution is
measured after the system has evolved for a fixed amount of time. The lattice-
gas is initialized with a random configuration and allowed to evolve for 500 time
steps for several bath filling fractions: 30% to 20%, 19%, 18%, 5%, and 0%.
Resulting system snapshots are illustrated in figure 4.

If the lattice-gas is above the transition temperature, the particles are uni-
formly spread over the lattice. As the system evolves while in contact with a
finite temperature heat bath coarse-grained 4×4 block averages over a 256×256
lattice are taken over the lattice-gas number variables to produce a mass fre-
quency distribution for a large number of temperatures and the liquid and gas
densities are found. A mass frequency distribution obtained by this coarse-
grained block averaging procedure is a Gaussian with its mean located exactly
at the initial particle density. A normalized Gaussian fit, centered at particle
density 0.3, is shown in figure 5 as is cross-section plots of the distribution at
different temperatures. As the temperature decreases, the distribution widens
and becomes bimodal. The mean of the low density peak gives the gas phase
density and the mean of the high density peak gives the liquid phase density.
The order parameter for the liquid-gas transition is the difference of the liquid
and gas densities, ψ = ρL − ρG [11].

If the heat-bath temperature is held constant, the dynamics is no longer

7



0% 5% 

30% 20% 

18% 19% 

Figure 4: Several lattice-gas configurations obtained after 500 iterations starting from ran-
dom initial 256×256 configurations with 30% particle filling. The six configuration are coupled
to a heat-bath with 0, 5, 18, 19, 20, and 30% heat bath filling.

8



0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 10 20 30 40 50 60 70

O
cc

up
at

io
n 

De
ns

ity
 (3

0%
 M

ea
n)

Number of Particles Per Block (96 Bins)

Long-Range Interaction Coupled to a Heat Bath (4x4 Coarse-Graining)

30% Gaussian
30%
20%
19%
18%

5%
0%

Figure 5: Mass frequency distributions obtained by course-grained averaging over the lattice-
gas number variables. 4 × 4 blocking is used on a 256 × 256 hexagonal lattice. Result for
particle filling fraction of 0.3.

reversible. The ordered phase persists and the simulation method becomes
like a Monte Carlo Kawasaki updating scheme (i.e. the exchange of randomly
chosen spins). However, using this long-range interaction method, momentum
is exactly conserved and kinetic information retained. Therefore, the dynamical
evolution of the finite temperature multiphase system is accessible, even near the
critical temperature. Figure 6 shows a comparison of numerical simulation data
obtained by this procedure to an analytical calculation done in the Boltzmann
limit by analytically carrying out a Maxwell construction. The Gibbs free energy
of the lattice-gas can be written analytically since the pressure’s dependence on
density and temperature is known. With (12) and defining the free energy as

F (d, h) =
∫ d dn

n

∂p(n, h)
∂n

, (13)

a Maxwell construction then correctly predicts the liquid and gas phase densi-
ties at any given heat-bath temperature, see figure 6. This mean field type of
calculation itself is very interesting and is a good example of how analytical cal-
culations are possible in simple discrete physical models like lattice-gases. The
result shown in figure 6 is similar to the order parameter curve, magnetization
versus temperature, of an Ising model. Spin up, 〈M〉 = +1, and spin down,
〈M〉 = −1, domains are analogous to the liquid and gas phases.

5 Discussion

The model is a simple discretization of molecular dynamics with interparticle
potentials. Because of the model’s small local memory requirement, the dynam-
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ics of large systems can be implemented on a parallel architecture, as has been
done on the cellular automata machine CAM-8 [12].

The main points of this paper are:
1. Coupling the particle dynamics to a fixed temperature heat-bath sets the

transition probabilities and causes a net attractive interparticle potential in the
macroscopic limit. The heat-bath is comprised of a set of lattice-gas particles
encoding a unit of heat. The heat bath density, h, controls the heat-bath’s
temperature by the fermi-dirac distribution, kBT = εo(log 1−h

h )−1. The system
possesses a nonideal PρT equation of state. With the model in contact with a
fixed heat-bath, one should classify it as finite temperature model with heat-bath
dynamics similar to a Monte Carlo Kawasaki updating, yet retaining essential
kinetic features. It is a step toward a more complete long-range lattice-gas that
preserves an interaction energy.

2. The equation of state is known in the Boltzmann limit. A Maxwell
construction predicts the liquid-gas coexistence curve. Van der Waal coefficients
could be determined to map the simulation on to a particular physical liquid-gas
system.

3. With the single speed particles species coupled to a heat-bath in the fash-
ion described above, there is an imperfect tracking of interaction energy. This is
a limitation of this reversible lattice-gas. An improved version of this reversible
lattice-gas model with long-range interactions perhaps could be implemented
(likely with a species of “bound state” particles included) so that simulations
are carried out in a microcanonical ensemble analogous to Ising models with
auxiliary demons introduced by Creutz [3], and Toffoli and Margolus [2].

It is hoped that a lattice-gas model, of the kind presented here, will become a
valuable new tool for analytically and numerically studying the dynamic critical
behavior of multiphase systems.
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A Reversibility-Neutrality Statement

The main thrust of this paper has been to describe a momentum conserving
multiphase lattice-gas. In this appendix a reversible, momentum-conserving
lattice-gas with long-range interactions is analysized. A formalism is presented
for describing the unitary evolution of a lattice-gas with long-range interactions.
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For any reversible computational model a unitary operator maps the compu-
tational state at some time to the state at the next time iteration. This unitary
matrix can be expressed as the exponential of a hermitian operator, a kind of
computational Hamiltonian4.

Using the notation of multiparticle quantum mechanical systems in the sec-
ond quantized number representation [14], all states of the system are enumer-
ated sequentially by αx = 1 . . . Ntotal where Ntotal = BN . For each α there is
an associated site x that is indicated by a subscript. Denote the vacuum state
of the system by |0〉 where all nαx

= 0 for all states α. Using creation and an-
nihilation operators â†αx

and âαx
to respectively create and destroy a particle

in state α at lattice position x, any arbitrary system configuration ψ with P
particles can be formed by their successive application on the vacuum

|ψ〉 =
P∏

p=1

â†αp |0〉, (14)

where particle one is in state α1 at lattice node x1, particle two is in state α2

at lattice node x2, etc. The number operator is n̂αx = â†αx âαx . To completely
specify the dynamics the local anticommutation relations are required. Since
there is exclusion of boolean particles at a single momentum state, we have

{âα, â
†
α} = 1 (15)

{âα, âα} = 0 (16)
{â†α, â

†
α} = 0. (17)

However, the boolean particles are completely independent at different momen-
tum states, and so the nonlocal operators commute[

âα, â
†
β

]
= 0 (18)

[âα, âβ ] = 0 (19)[
â†α, â

†
β

]
= 0 (20)

for α 6= β.
A unitary evolution operator that describes the complete evolution of the

lattice-gas may be partitioned into a streaming and collisional part, Û
o

and
Û

int
respectively. The full system evolution operator is a product of these two

operators Û = Û
o
Û

int
. The operator Û

o
is constructed using a unitary single

exchange operator denoted by χ̂
(1)
αβ′ . All permutations of single boolean par-

ticle states may be implemented by successive application of this momentum-
exchanger. We will use the same symbol, χ̂(1)

αβ′ , to denote the permutations
between state α at site x and states β′ at site x′. We wish to construct χ̂(1)

from the boolean lattice-gas creation and annihilation operators.
4This mathematical construction is similar to a quantum mechanical description [13].
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We require that χ̂(1) is unitary, (χ̂(1))2 = 1, that it conserve the number of
particles, [χ̂(1), N̂ ] = 0, and that χ̂(1)| 0〉 = | 0〉. It has the form

χ̂
(1)
αβ′ = â†αâβ′ + â†β′ âα + 1− â†αâαâβ′ â

†
β′ − â†β′ âβ′ âαâ

†
α. (21)

This can be written in the form

χ̂
(1)
αβ′ = 1− 2N̂

(1)

xx′ = eiπN̂
(1)
xx′ . (22)

For a set of N states, {1, 2, . . . , N − 1, N}, two CN rotation operators can be
implemented

R̂CN = χ̂
(1)
N−1,N χ̂

(1)
N−2,N−1 · · · χ̂

(1)
12 =

N−1∏
i=1

χ̂
(1)
N−i,N−i+1 (23)

R̂CN−1
N = χ̂

(1)
12 χ̂

(1)
23 · · · χ̂(1)

N−1,N =
N−1∏
i=1

χ̂
(1)
i,i+1 (24)

that are rotations by ± N
360

◦
. Suppose we pick a subspace to be the set of states,

Pa, with momentum mcêa. Then following our construction, we have found a
method to implement a unitary streaming operator, Ŝa, along direction-a

Ŝa =
∏

{α,β}∈Pa

χ̂
(1)
αxβx+lea

. (25)

The free part of the evolution is then simply

Û
o

=
B∏

a=1

Ŝa =
B∏

a=1

∏
{α,β}∈Pa

χ̂
(1)
αxβx+lea

. (26)

The corresponding kinetic energy part of the Hamiltonian to leading order is

Ĥ
o

=
∑
〈xx′〉

â†αx
âβx′ + â†βx′ âαx

+ · · · (27)

where the sum is over all bonds of the lattice taken over partitions along principle
lattice directions and where for brevitity the following short-hand notation is
used:

∑B
a=1

∑
{α,β}∈Pa

→
∑

〈xx′〉 when x+ lea → x′.

The operator Û
int

is constructed using a unitary double exchange operator,
denoted by χ̂(2)

αβµ′ν′ , a generalization of the single exchange operator. All permu-
tations of two boolean particles may be implemented by successive application
of this momentum-exchanger, where the permutations for particle one occurs
between states α and β at site x and for particle two between states µ′ and ν′

at site x′.
We require that χ̂(2) is unitary, (χ̂(2))2 = 1, that it conserve the number

of particles, [χ̂(2), N̂ ] = 0, and that χ̂(2)| 0〉 = | 0〉. A relation identical to (22)
exists for the double boolean exchange operator

χ̂
(2)
αβµ′ν′ = 1− 2N̂

(2)

xx′;vv′ = e
iπN̂

(2)
xx′;vv′ . (28)

13



Let us assume we have a two-particle state |γσ′〉 = â†γx â
†
σx′ | 0〉, where

γ = α or β, and σ′ = µ′ or ν′. It has the form

χ̂
(2)
αβµ′ν′ = â†αâβ â

†
µ′ âν′+â†β âαâ

†
ν′ âµ′+1−â†β âβ â

†
ν′ âν′ âαâ

†
αâµ′ â

†
µ′−â†αâαâ

†
µ′ âµ′ âβ â

†
β âν′ â

†
ν′ .

(29)
Suppose we pick a subspace to be the set of states, Va, where moment exchanges
±mcêa can occur between two particle pairs. Then a unitary collision opera-
tor, Ca, in this subspace (with momentum exchanges along a principle lattice
direction) is

Ca =
∏

{α,β µ,ν}∈Va

χ̂
(2)
αx+rea βx+rea µx−rea νx−rea

. (30)

The interaction part of the evolution is then simply

Û
int

=

B
2∏

a=1

Ca =

B
2∏

a=1

∏
{α,β µ,ν}∈Va

χ̂
(2)
αx+rea βx+rea µx−rea νx−rea

. (31)

The corresponding potential energy part of the Hamiltonian to leading order is

Ĥ
int

=
∑

〈xx′;vv′〉

â†αx
âβx

â†µx′ âνx′ + â†βx
âαx

â†νx′ âµx′ + · · · , (32)

where for brevity the following short-hand notation is used:
∑B

2
a=1

∑
{α,β µ,ν}∈Va

→∑
〈xx′;vv′〉 when x+ rea → x and x− rea → x′. (27) and (32), imply to leading

order, the full lattice-gas Hamiltonian will have the form

Ĥ = Ĥ
o
+Ĥ

int
+ · · · =

∑
〈xx′〉

â†αx
âβx′ +

∑
〈xx′;vv′〉

â†αx
âβx

â†µx′ âνx′ +c.c.+ · · · (33)

The complex conjugate terms arise in (33) because of reversibility and ensure
the hermiticity of the Hamiltonian. If the interaction term in the Hamiltonian
covers all possible attractive interactions, its complex conjugate then covers all
possible repulsive interactions. (33) is a completely general way of specifying
any set of 2-body collisions, and it necessarily describes invertible lattice-gas
dynamics because of the unitarity of the evolution operator.

As the dynamics is reversible, the system quickly moves to a maximal entropy
state where the net attractive interparticle potential vanishes. The liquid-gas
coexistence phase may persist indefinitely given a net attractive interaction. In
a reversible system a net attraction exists for a short while, only so long as
most heat bath states are not populated. Once the heat bath gains a significant
population, only the local interactions remain and consequent diffusion drives
the system back to a disordered phase. The maximal entropy state of the
heat bath occurs at half-filling, h = 1

2 , and consequently at this heat bath
density it cannot encode any more information about heating from the lattice-
gas so the effect of the long-range interaction must become non-existent. This
is consistent with (11), since V (d, h) = 0 for h = 1

2 . The heat bath population

14



0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70

He
at

 B
at

h 
Fi

llin
g 

Fr
ac

tio
n

Time (interations)

Simulation Data
Exponential Fit with Time Const = 16.5

Figure 7: Transient behavior of a reversible lattice-gas with long-range interactions. Particle
density at approximately 1

6
-filling. An exponential increase to half-filling with a time constant

of 16.5τ is observed.

exponentially approaches its maximal entropy state, see figure 7, starting from
a density initially zero; h(t) = 1

2 (1 − e−t/τ ) with the observed time constant,
τ = 16.5, obtained by fitting. The time constant, τ , can be increased by raising
the number of heat bath states.
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