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tion processors and quantum algorithms used for physical modeling applica-
tions and efficient numerical simulations. The workshop was an outstanding
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ward achieving a practical quantum computer using state-of-the-art nanotech-
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Implementation Schemes for the Factorized Quantum
Lattice-Gas Algorithm for the One Dimensional
Diffusion Equation Using Persistent-Current Qubits

David M. Berns1' 3 and T. P. Orlando 2

Received January 14, 2005; accepted May 4, 2005

We present two experimental schemes that can be used to implement the Factor-
ized Quantum Lattice-Gas Algorithm for the ID Diffusion Equation with Persis-
tent-Current (PC) Qubits. One scheme involves biasing the PC Qubit at multiple
flux bias points throughout the course of the algorithm. An implementation analo-
gous to that done in Nuclear Magnetic Resonance (NMR) Quantum Computing
is also developed. Errors due to a few key approximations utilized are discussed
and differences between the PC Qubit and NMR systems are highlighted.

KEY WORDS: Quantum Lattice-Gas; flux qubit; diffusion; quantum
computation.

PACS: 03.67.Lx; 85.25.Cp.

1. INTRODUCTION

Most algorithms designed for quantum computers will not best their clas-
sical counterparts until they are implemented with thousands of qubits.
For example, the factoring of binary numbers with a quantum computer is
estimated to be faster than a classical computer only when the length of
the number is greater than about 500 digits.(') Accounting for error cor-
rection circuitry(2) would bring the size of the needed quantum computer
to be in the thousands of qubits. In contrast, the Factorized Quantum
Lattice-Gas Algorithm (FQLGA)(3 ) for fluid dynamics simulation, even
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Technology, Cambridge, MA 02139, USA.
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when run on a quantum computer significantly smaller than the one just
discussed, has significant advantages over its classical counterparts.

The FQLGA is the quantum version of classical lattice-gases (CLG).(4)
The CLG are an extension of classical cellular automata with the goal of
simulating fluid dynamics without reference to specific microscopic inter-
actions. The binary nature of the CLG lattice variables is replaced for the
FQLGA by the Hilbert space of a two-level quantum system. The results of this
replacement are similar to that of the lattice-Boltzmann model, but with a few
significant differences.(5) The first is the exponential decrease in required mem-
ory. The second is the ability to simulate arbitrarily small viscosities.

As of today there is a plethora of qubits to choose from when designing a
quantum computer, and a promising class is superconducting qubits based
on Josepshon junction circuits.(6-10 ) One major advantage of any of these
superconducting systems is the ability to precisely engineer the quantum
Hamiltonian, which extends from single qubit design to multi-qubit coupling
arrangements to measurement engineering. The quantum computer consid-
ered here will be built using the Persistent-Current Qubit (PC Qubit).(6)

The goal of this paper is to show how one can implement a I D
version of the FQLGA with the PC Qubit. To this end we will begin
by reviewing the algorithm, specifically the one that simulates the diffu-
sion equation, without a loss of generality in understanding the essence
of the algorithm or its general requirements. We will then review the PC
qubit and show explicitly how to implement the algorithm with this sys-
tem. Some important differences between the PC qubit and the two-state
system studied in Nuclear Magnetic Resonance Quantum Computation
(NMRQC)(') will be shown to allow for some interesting new techniques
in implementing quantum logic. We will also show how to implement
the algorithm with the PC qubit in a very analogous way to NMRQC
schemes('2) with a few significant differences.

2. FQLGA FOR THE ID DIFFUSION EQUATION

The first thing one must do in the FQLGA is to define a lattice. Each
lattice point n will represent a unique position in the simulated fluid. The
simulation will contain a finite number of lattice points, hence space is dis-
cretized in the simulation.

Next one must encode the mass density p of the fluid at each lat-
tice site. In the FQLGA this is done by building at each lattice site a set
{i} of coupled qubits. Each qubit represents the motion of particles on
the microscopic level in one of a finite set of directions. For the diffusion
equation in one dimension, at any point in your fluid, there are only two
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possible directions for each particle to be moving, to the left and to the
right. Hence, only two qubits are needed to specify the mass density p"
at each lattice site. This intuitive reasoning does not extrapolate to higher
dimensional simulations because even in two dimensions there would be
an infinite number of directions particles could travel in. In higher dimen-
sions one must adhere to much more mathematical conditions to decide
on the small set of directions one must include for a faithful simulation.(4 )
The probability P of a particle to be participating in the motion assigned
to each qubit will be encoded in the probability amplitude of the qubit
being in its excited state I1). The state of a qubit is thus set to

I ýPi ) =v/ Vý- P/' 10) + V/Ti_ I 11),(1

where i is the qubit index, n is the lattice site index, and 10) is the ground
state of the qubit. For the 1D problem considered here, i = {1, 21 and
n = { 1, N}, where N is the number of lattice sites used in the simulation.
One can easily conceive of fluids of multiple phases with multiple types of
interactions even in one dimension, in which the size of {i} would be much
larger, but this will not be considered here. The mass density p is then cal-
culated by summing the occupation probabilities for all qubits at a node.
At time t=0 in a ID simulation the occupation probabilities Pl" and P2'
are set to p'/ 2 , which is the condition for local equilibrium in the fluid.(13)

Now that the fluid is initialized, one must account for the interaction
of particles in the fluid. These collisions are encoded by the application of
a unitary transformation to the coupled systems at each lattice site. For
the 1D diffusion equation this unitary transformation is2 0 0)

_ p 1 0 1)+i i (2)s 2g• 0 1 -i 1+ i 0

(0 0 0 2

The basis for computation is the set of four product states: 10)10), rep-
resenting no particles at the site, 10)11), representing the existence of only
a particle moving to the right at the site, 11)10), representing the existence
of only a particle moving to the left at the site, and 11)11), representing
particles moving in both directions at the site. To conserve particle num-
ber there can be coupling only between the middle two states. The identity
transformation on the first and last states corresponds to no collisions and
a perfectly elastic collision, respectively. Transformation of the middle two
states was something that never existed in the classical algorithm because
there was no superposition of these two states.
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After collision the states of the qubits at each lattice site are in
general entangled, and we denote that state as IT"). The state of each
qubit is then measured, and the process described thus far is repeated
many times to achieve an ensemble average. Upon completion of these
measurements one will have found the post-collision outgoing occupation
probabilities, denoted by Pi" once again, and hence the post-collision state
of each qubit, denoted by Ixin). Note that the occupation probabilities
now represent something very different than before the collision. The par-
ticles have now interacted and are ready to move to the next lattice site.

One must now "stream" the occupation probabilities to their new lat-
tice sites. This is done in a classical computer by storing the occupation
probabilities at each lattice site that are coming from adjacent lattice sites
due to collisions. More precisely, P1 " becomes P 1n+l and P'2" becomes
P2"- 1 . Periodic boundary conditions are assumed when streaming at the
edges of the fluid.

To find the mass density p, at t = 1 one simply adds the occupation
probability for both qubits at site n once streaming has been done. One
time step of the algorithm has now been completed. To simulate the next
time step simply start the above procedure all over again except now set-
ting the initial states with the new occupation probabilities just found.

The algorithm can be summarized by four major steps, which are
illustrated in Fig. 1. The first step encodes the initial state of the fluid by
quantum mechanically setting the state I %Pi") of each qubit at each lattice
site. The second step transforms the two-qubit product state at each lattice
site to in general an entangled state, whose state is denoted by IVT). Third
one makes a projective measurement of the post-collision states IXi"), and
one must repeat the first three steps to find the outgoing occupation prob-
abilities Pi". In the fourth and final step one streams the mass density
with the appropriate post-collision occupation probabilities, from the left
with particles representing positive momentum, and from the right with
particles representing negative momentum, and the mass density is calcu-
lated. Subsequent time steps are identical except for a change in the initial
mass density profile, i.e., initial qubit states in the first step.

3. PERSISTENT-CURRENT QUBIT

The fundamental unit of quantum logic we will use to implement the
algorithm is the PC Qubit.(14) It consists of a superconducting loop that is
interrupted by three Josephson junctions, pictured as x's in Fig. 2(a). The
magnetic flux cD is the only control field for our qubit, and as shown in
the figure, is usually denoted by f = c/(o,, where 4Do=h/2e is a single flux
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1i TJ! 2 TNl... 3 TN N-2 TJ! N-1 T 1 N
1. Initialize Ensemble

T21 T2 2 T21 3 .. T2N-2 T2" N-1 T2 N

2. Collide y 1 y 2 y 3 ... Y N-2 Y N-1 Y N

"3. Measureen

3. Measure x1  2 X2 X23 ... XN-2 kN-1 X2N
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P 2 1. P2 2* 2 p2 3___ ... 3 p 2 N-2 _> p 2 N-1 -. p2 N

Fig. 1. General summary of the four major steps that comprise one time step of the ID
FQLGA fluid dynamics simulation. The sequence of initialization of mass density, collision
of particles, and measurement of post-collision states is repeated many times to make an
ensemble measurement. Propagation between collisions is accomplished by storing the adja-
cent occupation probabilities for a given site in a classical computer, where the mass density
is then calculated for this time step. Subsequent time steps utilize these "streamed" occupa-
tions when initializing again for the next set of collisions and "streaming".

quantum, h is Planck's constant, and e is the magnitude of the charge of
an electron. Physically, a Josephson junction is a small layer of insulator
sandwiched between superconductors, so our system is a superconducting
loop interrupted by three layers of insulator about 1 nm thick. For single
qubit manipulation the magnetic flux through the loop will be modified.
The flux seen by a DC SQUID magnetometer, a combination of applied
flux and qubit-induced flux, will serve as our measurement variable.

The Hamiltonian of the qubit is derived by considering a circuit ele-
ment model of our system, which consists of three Josepshon junctions,
where two junctions have the same cross-sectional area, and the third is
smaller by a factor of a. The constituent relations for an ideal Josephson
junction are

I,=l sin(ýp), (3a)

27r dt (3b)

where I is the current through the junction, V the voltage across the junc-
tion, I, the maximum current the junction can hold without a voltage
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Fig. 2. (a) Schematic drawing of the PC Qubit. The x's represent Josephson junctions, with
all connecting leads made of the same superconductor that is part of the junctions. The sign
conventions chosen when summing phases are shown, and the magnetic flux penetrating the
loop (in units of 4)o) is labeled by f. (b) The potential energy of the full Hamiltonian for
the PC Qubit is plotted when the system is biased at f =0.495qDo. The phase particle sees an
infinite 2D lattice with unit cells resembling a double well potential.

appearing across it, = 01- 02, and 01,2 is the gauge-invariant phase that
characterizes the superconductor condensate on the +, - side of the junc-
tion, respectively. Note that I, is a function linear in the cross-sectional
area of the junction, and hence the third junction has a lower 1, by a fac-
tor of a.

The energy associated with an ideal Josephson junction is found by
integrating the power from time t=0 to some final time to, which is equiv-
alent to an integral from zero phase to some phase (p. The energy it takes
to set the phase of a Josephson junction to qo is

(IoO ( Ood~ "' dt o, I fh
E to (I sin c) dOt) -d sinmo'do'=Ej(l-cosso), (4)0 2r d-t ,/ 27r

where Ej =(DoIc/27r.
By including the charging energies due to the capacitance of the junc-

tions, the Hamiltonian of our circuit is(14)

p2  p2

H= 2Mp -•M + Ej[2 + a - 2cos(ýpp) cos(O.m).-c cos(27rf + 2(pm)], (5)

where (Ppp=(P+l 2, (Pm = I-2, Pp=Mp dop/dt, Pm=Mmdvpm/dt, Mp=

(4 0 /27r) 22C, and Mm =@(Po/2,r)22C(l + 2a). The number of degrees of
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freedom in the problem was reduced by the fluxoid quantization condi-
tion(15 )

27rcPD
(P1 + ý03 - (P2 = 2frn + D, (6)

which forces the sum of the gauge invariant phases to be proportional to
the amount of flux quanta modulo an integer multiple of 27r.

We have chosen to associate the capacitive energy, the first two terms
in (5), with the kinetic energy, and the ideal Josephson energy, the last four
terms in Eq. (5), with the potential energy. The potential energy is that of
an infinite lattice of double wells, as seen in Fig. 2(b). The arrow in the
plot shows the direction one would take to traverse from one side of a
double well to another.

Although quantum mechanics plays a foremost role in deriving the
constitutive relations for the superconducting circuit elements, the Hamil-
tonian for the circuit itself so far has been classical. The quantum version
of the circuit can be understood by imagining a phase "particle" in the
potential shown in Fig. 2(b). The behavior of this "particle" is analogous
to a particle with an anisotropic mass moving in a 2D periodic potential,
and so there exist energy bands in a k-space, which is here related to the
charge stored capacitively by the Josephson junctions. By properly choos-
ing EjIEc, where E,=e2/2C, one can remove any k (and hence charge)
dependence in the energy of the system, and hence can reduce the problem
to that of an effective double well. What we have done is choose param-
eters such that tunneling between adjacent double wells can be neglected
relative to the tunneling within a double well in the tight-binding solu-
tion(intra-well tunneling typically about 104 times more likely), making the
solution effectively that of a single double well.

By considering only the lowest two levels of the double well, the
equivalent Hamiltonian is

4v (7)P., (f - &) - &
where ±Ip are the eigenvalues of circulating current for the two &z eigen-
states and r is the tunneling element from one side of the double well to
the other. The energies of the two eigenstates along with a sketch of the
double well as a function of applied flux are shown in Fig. 3. One sig-
nificant difference between this qubit and the one used in NMRQC is the
presence of the 6, term. The implication of such a term is that the energy
of the eigenstates as well as the eigenstates themselves change as the bias
field is modified. In Fig. 3 we see that at the classical degeneracy point
f = 1/2 the qubit's eigenstates are &x eigenstates, while far from f = 1/2,
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\v/2

PO A P)0' "

Fig. 3. The energy levels of the PC Qubit are

shown as a function of f. The eigenstates of the

system change with f and are labeled on the plot.
The change in the potential of the phase particle
is also depicted at the top of the plot. The energy
difference between the states at f = 1/2 is seen to
be twice the intra-well tunnelling.

but still far from f = 1, the eigenstates are those of &z. The same thing
happens for f < 1/2, but now the eigenstates have switched energies, i.e.,
the ground state here is the first excited state of &z and vice versa.

The PC Qubit has some advantages over other superconducting
qubits.(14,16) Charge fluctuations, a consequence of trapped substrate
charge, are deemed inconsequential through the choice of parameters used
when designing the PC Qubit circuit. Also, flux noise has been reduced in
this system over other flux qubits since this system has a smaller loop.

A typical conceptual misconception can be addressed at this point.
The two different states used in computation are not related to sin-
gle Cooper pair behavior. Rather, they are macroscopically distinct states
described by the circulating current due to millions of Cooper pairs, char-
acterized by different average induced fluxes when in a magnetic field.

As seen in Sec. 2, the qubits will need to be coupled. For the PC
Qubit we have discussed thus far, just as microwaves can only be coupled
in through &,, coupling between qubits can only be of the form &z7z.
Slight modifications of the aforementioned qubit design does allow for
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different coupling, despite the fact that the structures are still completely
planar.(14)

4. IMPLEMENTATION WITH THE PC QUBIT

We now show how one can use the PC Qubit to simulate the 1 D diffu-
sion equation. In Sec. 4.1, we elaborate on a scheme based upon changing
the flux bias points of the qubits during the algorithm, which will lead to
a very general initialization scheme, but a less general collision. In Sec. 4.2,
we discuss a more general collision, analogous to that done in NMRQC,
and how to initialize the qubits before this general collision. Note that the
two implementations differ solely in the way single lattice sites are treated.
In both cases one has N qubit pairs fabricated monolithically that are ini-
tialized, transformed, and measured simultaneously.

4.1. The Multiple Bias Point Implementation

The first of the four steps of the algorithm is initializing each qubit
at each node. As discussed in Sec. 2, each qubit must be initialized into a
state of real and positive phase in its own Hilbert space. This set of states
consists of all those lying on the real phase geodesic between the ground
and first excited states on the Bloch sphere. The ground state of the PC
Qubit as a function of applied flux coincidentally also occupies exactly this
geodesic on the Bloch sphere, as discussed in Sec. 3. Initialization can thus
be accomplished while staying in the ground state by adiabatically chang-
ing the applied magnetic flux, as depicted in Fig. 3.

The flux used to set the state of one qubit will be affected by the state
of the other qubit and its bias current. This permanent inductive coupling
can be accounted for by slightly adjusting the applied flux to compensate
for the flux introduced by the other qubit and its bias line. On the other
hand, by initializing into the ground state we have avoided the detrimen-
tal effects of dephasing and relaxation, as well as the errors found in a
typical NMR initialization scheme.(12) We emphasize that the initialization
portion of the algorithm is identical for any simulation, whether it be for
a different equation, a multi-phase simulation, or in a different number of
dimensions.

The second step of the algorithm is the collision. Here we study a
very specific unitary transformation, the , described in Sec. 2. This
matrix simply "half-way" swaps the middle two (first and second excited)
computational states of the coupled system. In NMRQC, the coupled
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eigenstates are exactly those computational states, but there are no direct
matrix elements connecting these states.(1 7) When the PC Qubits are cou-
pled, the first and second excited states of the four-level system, denoted
as 11) and 12), respectively, are in general not the same as the computa-
tional basis states the s-wap intends to affect. However, the DC bias fields
of each qubit can be tuned to make these two sets of eigenstates coincide.
Once this is done, one can then implement the , by simply oscillat-
ing the magnetic field bias at the frequency corresponding to the energy
difference between the middle two eigenstates. This is just a Rabi oscil-
lation between the middle two eigenstates, and since one wants to only
"half-way" swap the states, the radiation should only be left on for a quar-
ter of a Rabi period.

Besides finding the appropriate bias points such that the middle two
eigenstates of the coupled system are very similar to the middle two com-
putational states, one must also verify that the coupling between these
states in the presence of an oscillating magnetic field is non-zero. The
results of these calculations are shown in Fig. 4. The bias point of qubit
1, fl, must be chosen to be far from 1/2, but not too far. In these calcula-
tions we take fl =0.508. In the figure, we see that when qubit 2 is biased
at around f2 = 0.51, the first two system excited states are very similar to
the middle two computational states, with overlap elements of about 0.97.
At this same bias point one sees a Rabi matrix element of about 0.02,
which is more than sufficient for our purposes.

This approximate swap has been incorporated into simulation of the
FQLGA for the 1D diffusion equation and the results are pictured in
Fig. 5. Snapshots of three different times have been shown, for both an
ideal simulation and one including the error introduced due to the approx-
imate collision. At time t = 0 one can see that we have initialized our
fluid to a gaussian profile. Later time steps of the ideal implementation
show the expected spreading due to diffusion, while conserving the total
number of particles. Increase in the diffusion constant of the approxi-
mate collision when compared to the ideal simulation results from the
enhanced population in the 100), 101), and 110) states relative to the Ill)
state due to extra matrix elements in the approximate swap that couple
the four states. The matrix elements are actually enhanced more in the
upper triangle elements than in the lower triangle elements(with respect to
the anti-diagonal), which gives rise to the slight drift to the right that is
observed in the simulation.

Even with an ideal swap operator, an interesting timing issue arises
upon non-adiabatically switching the bias fields from the initialization set-
tings to the proper settings to do a Rabi oscillation between the two
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Fig. 4. The overlap between the first (second) excited state I1) (12)) of the PC Qubit cou-
pled system and the 101) (110)) computational state are plotted when qubit I is biased at f =
0.508. The coupling between I1) and 12) in the presence of an AC magnetic field is also plot-
ted. Qubit coupling equal to r (same for both qubits) was assumed in the calculation.

middle product states. We first illustrate this timing issue and then show
how it can be made negligible by making a larger ensemble measurement.

Once the applied fluxes are changed to those appropriate to perform
the approximate swap, the initialized states will most likely not be eigen-
states anymore, and hence will begin to precess due to a time-independent
perturbation. Assuming things can not be accurately controlled at these
timescales, one will have now introduced a random phase difference
between the two qubits due to this Larmor precession. This effect is pic-
tured in Fig. 6. The states before the bias fields are switched lie along the
same geodesic. Upon changing the magnetic flux seen by each qubit, the
qubits begin to precess, out of phase.

The effect of this phase difference 6 on the algorithm will be to
alter the fraction of particles at each lattice site, post-collision, that are
"moving" to the right and to the left. The results of measuring the
post-collision occupation probabilities having accounted for a constant
phase difference is summarized by

P =P1= , s= + y sin(G), (8a)

P2 = P2, s=o - y sin(b). (8b)
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Fig. 5. The results of the FQLGA are simulated having accounted for the
approximate nature of the collision proposed in Sec. 4.1 (+). Qubit coupling
equal to r (same for both qubits) was assumed in the approximate swap simula-
tion. The ideal results of the FQLGA are also shown (o).

The effect of this error on the simulation is effectively averaged away when
an ensemble is measured, since 6 is randomly different for each member
of the ensemble. These results are shown in Fig. 7. One can see small
random deviations from the ideal simulation that can be made infinitesi-
mally small by measuring a larger ensemble (an ensemble average of 1000
repeated measurements was simulated here).

In summary, an initialization scheme has been developed that is not
available to qubits with only one term in their Hamiltonian. This initiali-
zation scheme is limited only by the precision of the current source used
to create the magnetic field that biases the qubit. The scalability of this
scheme relative to those used in NMRQC is an interesting question, but
is not resolved here. The collision implementation is also unique to qubits
with multiple term Hamiltonians, but the unitary transform implemented
is unique to the diffusion equation, and fortuitously simple. A collision
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Fig. 6. The unfilled circle and triangle represent two typical initialized states at
one lattice point, both on the same north pole to south pole geodesic, before their
flux bias is changed to perform the collision. The filled circle and triangle repre-
sent the same states after imprecise bias changing has occurred. Imprecisely timed
Larmor precession introduces a random phase difference S between the two states.
The unfilled triangle corresponds to the -ax ground state.

scheme that could be generalized to any unitary transformation would be
much more useful.

4.2. Generalized NMRQC-like Implementation

Generalization of the above implementation to any fluid dynamics,
i.e., any unitary transformation, can be done in an analogous way to
NMRQC schemes. Generalization of the collision transformation consists
of using a universal set of quantum computation gates, and decompos-
ing all transformations into a sequence of these.(2) In NMRQC collision
is performed by a sequence of single qubit unitary transformations and
coupled free evolution. In this section, we will begin by discussing the sin-
gle qubit rotations needed for a general decomposition, and briefly men-
tion the role they could play in initialization. We will then explore the
free evolution of a coupled PC Qubit system, and then show how to com-
bine the single and coupled pulses to implement the collision of the 1D
FQLGA for the diffusion equation.
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Fig. 7. The results of the FQLGA are simulated having accounted for a random
phase difference introduced before the collision for each member of the measure-
ment ensemble (+). The ideal results of the FQLGA are also shown (o).

Single qubit transformations can most easily be achieved in a rotat-
ing frame, since here the frequency of precession can be much lower than
the Larmor timescale. For this implementation we will only study the case
where our qubit is biased at f = 1/2. This discussion is easily generalized
to any bias point, but the mathematical notation can get quite cumber-
some. The Hamiltonian of the PC Qubit in an applied AC field is

h =woIx + go cos(Wot +±I)fz, (9)

where wo is the frequency of the applied field, go is proportional to the
amplitude of the applied field, 0 is the phase of the applied field, and 1i =
-hai /2.

In the frame rotating about ix this Hamiltonian becomes

H = ½go[cos(4)Iz + sin(0)Iy]. (10)

The quantum state will now precess in this frame about the axis defined
by 0, with the angle through which the state has precessed given by
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0 = got/2. It will be convenient to only consider the set of two rotations
defined by 0 =0 and 7r/2, which are rotations about Iz and Iy, respectively.
These rotations, denoted as RJ(O) and Ry(O), respectively, can be used in
conjunction to bring the qubit state to any point on the Bloch sphere in
the rotating frame.

One can use these single qubit rotations not only as part of the colli-
sion, but also for initializing, since they can bring the qubit state to any-
where on the Bloch sphere. As already discussed in Sec. 4.1, the ground
state of a coupled PC Qubit system is not in general the product of single
qubit ground states. Thus, when initializing a qubit via Rz(O) and Ry(O),
one is not starting rotation from the single qubit ground state. However,
since the ground state is very close to a product of single qubit ground
states, this difference is nearly negligible. In Fig. 8, we show the effects of
incorporating this error into the algorithm when the coupling constant is
taken to be 1/10 of the qubit resonant frequencies, a rather exaggerated
estimate since the coupling is usually much smaller. The diffusion constant
is decreased by this approximation, due to the enhanced population in the
11) state relative to the 100) state from the coupling.

The other gate operation needed to form a universal set for general
decomposition is coupled free evolution. It is easiest to go to a co-rotat-
ing frame where one can have a coupled Hamiltonian only, i.e., no single
qubit terms, that is time-independent. In NMRQC this is done by going
to the frame where both qubits are rotated around the 2 axis. However,
since our coupling does not commute with our single qubit terms, a differ-
ent method will be used. For notational convenience only, we consider the
case where both qubits are biased at f = 1/2, where our Hamiltonian is

1=WoIx q-1 2 ^2I 27r (11)
+ WI, 121I1I

In the co-rotating frame where both qubits are rotating around the
axis, one has the Hamiltonian

1 71 " N Jl[i 2 -1 ̂ 2
H= -- 'IyIl (12)

as long as wI = W2. This constraint of W1o= w2 imposes limitations on
some NMRQC initialization schemes which use frequency selective initial-
ization.

One can now rewrite the unitary collision transformation in the fol-
lowing suggestive way:

= [ 1-2 -y)ex[2 1 (123,/-wap= xp 8(O'z ^1^2 + y-O')]ex O' X J. (13)
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Fig. 8. The results of the FQLGA are simulated for NMR-like single qubit pulse
initialization, where errors arise from initializing a coupled ground state that is not
a product state (+). The ideal results of the FQLGA are also shown (o).

The first term is just free evolution in the co-rotating frame. The second
term can be written as:

exp ioxx R

x exp [ _i 78.1 -&2] R 2 (_T (14)
zj~y-2)Ry(-5),(14)

where the middle term can be written as:

exp IT- 1&aZJ =exp 78 1 (^Z12 +a&y)] RZ1 (r)

xexp [iTf (-1&2 &12)R1 (7Rzr). (15)

Hence one can perform a decomposition of the collision transformation
into a sequence of single qubit rotations and coupled free evolution.

In summary, we have shown that the PC Qubit can implement the
unitary transform that performs collisions in the ID FQLGA for the
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diffusion equation by a single and coupled qubit evolution decomposition.
The single qubit rotations were shown to be feasible for qubit initialization
as well, with a slight approximation due to the coupled ground state that
is not a product state. The coupled free evolution was seen to require iden-
tical qubit frequencies over a lattice site, making initialization a bit more
challenging.

5. CONCLUSIONS

In this paper, we have shown that the implementation of the FQLGA
for the 1D diffusion equation is feasible with PC Qubits. We began by
considering the simplest scheme possible using the PC Qubit. This con-
sisted of first initializing the qubits while keeping them in their ground
state, and then performing the collision by quickly changing their flux bias
points and then performing a single 7r/2 pulse. This initialization tech-
nique could prove useful, but the way we have implemented the collision
is not easily generalized to other collisions. We needed to develop a more
general collision scheme, and then see how we could initialize in conjunc-
tion with that new scheme.

A more general collision transformation was then discussed by decom-
posing the unitary matrix into a sequence of single qubit rotations and
coupled free evolution. We first developed single qubit rotations for the PC
Qubit that could be used as part of the collision decomposition as well
as for initializing the occupation probabilities. The initialization was con-
sidered only approximate due to the permanent non-commuting coupling
between qubits. For the coupled free evolution we saw that transform-
ing to a rotating frame analogously to NMRQC set a strong but feasi-
ble constraint on the frequencies of our qubits. Ultimately one would like
to remove the constraint of equal frequencies, so that frequency-selective
initialization can be done analogously to the NMRQC implementation,
alongside the very general collision scheme. One would then also need to
account for initialization pulses rotating states from a non-product ground
state.
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Over the last few decades, developments in the physical limits of computing and
quantum computing have increasingly taught us that it can be helpful to think about
physics itself in computational terms. For example, work over the last decade has
shown that the energy of a quantum system limits the rate at which it can perform
significant computational operations, and suggests that we might validly interpret
energy as in fact being the speed at which a physical system is "computing," in
some appropriate sense of the word. In this paper, we explore the precise nature
of this connection. Elementary results in quantum theory show that the Hamilto-
nian energy of any quantum system corresponds exactly to the angular velocity of
state-vector rotation (defined in a certain natural way) in Hilbert space, and also
to the rate at which the state-vector's components (in any basis) sweep out area
in the complex plane. The total angle traversed (or area swept out) corresponds
to the action of the Hamiltonian operator along the trajectory, and we can also
consider it to be a measure of the "amount of computational effort exerted" by
the system, or effort for short. For any specific quantum or classical computational
operation, we can (at least in principle) calculate its difficulty, defined as the mini-
mum effort required to perform that operation on a worst-case input state, and this
in turn determines the minimum time required for quantum systems to carry out
that operation on worst-case input states of a given energy. As examples, we calcu-
late the difficulty of some basic 1-bit and n-bit quantum and classical operations in
an simple unconstrained scenario.
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1. INTRODUCTION

Over the years, the quest to characterize the fundamental physical limits of
information processing has also helped to give us a deeper understanding of
physics itself. For example, Shannon's studies of the limits of communica-
tion(M taught us that the entropy of a system can also be considered to be
a measure of the expected amount of unknown or incompressible informa-
tion that is encoded in the state of that system. Landauer's(2) and Bennett'sP3 )
analyses of the lower limit to the energy dissipation of computational opera-
tions led to Bennett's resolution(4) of the famous Maxwell's demon paradox,
via the realization that the demon's record of its past perception is a form
of physical entropy, which must be returned to the environment when that
information is erased. More recently, Margolus and Levitin(5) showed that
the energy of a quantum system limits the rate at which it can perform com-
putational "operations" of a certain type, namely, transitions between distin-
guishable (orthogonal) quantum states. In the last few years, several articles
by Lloyd and colleagues( 6-8) have elaborated on this theme by suggesting
that we can think of all variety of physical systems (ranging from particles
and black holes to the entire universe) as comprising natural computers,
with each system's "memory capacity" given by its maximum entropy, and
its "computational performance" given by its total energy. We should also
note that Ed Fredkin has been promoting a universe-as-computer philoso-
phy for many decades.

The concept of interpreting physics as computing is certainly an excit-
ing theme to pursue, due to its promise of conceptual unification, but we
would like to proceed carefully with this program, and take the time to
understand the details of this potential unification thoroughly and rigor-
ously. While taking care to get all of the details exactly right, we would
like not only to establish that a given physical quantity "limits" or "relates
to" a given informational or computational quantity, but also justify the
even stronger statement that the physical quantity actually is, at root, a
fundamentally informational or computational quantity, one that has been
traditionally expressed in terms of operationally defined physical units for
reasons that can be viewed as being merely historical in nature.

As one the most famous examples of this type of conceptual progres-
sion, Rudolph Clausius(9) first defined (differential) entropy as the ratio of
differential heat to temperature, dS=dQ/T, and at the time, entropy had
no further explanation. Later, Ludwig Boltzmann°10 ) proposed the relation
S oc -H = f f log f dý (where f is a probability density function ranging
over particle energies or velocity vectors ý), which was backed up by his
"H-theorem" showing that H spontaneously decreases over time for sta-
tistical reasons. In subsequent decades, this relation for entropy evolved
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and was generalized to become Boltzmann's eventual epitaph S = k log W,
which related entropy to the logarithm of the number of ways W of
arranging a system.0 1) Boltzmann's logarithmic quantity H (in a discrete
and negated form) was later recognized by Shannon and others to also
be an appropriate measure of the information content of a system. But,
Boltzmann's fundamental insight regarding the nature of entropy can be
viewed as having gone far beyond just relating a physical quantity to an
information-based one. Rather, it can be viewed as telling us that physi-
cal entropy, at root, is really nothing but an informational quantity, one
which merely manifests itself in terms of measurable physical units of heat
and temperature due to the fact that these quantities themselves have an
origin that is ultimately of a statistical nature, e.g., heat as disorganized
energy.

Indeed, the long-term quest of physics to eventually create a grand
unified "theory of everything" can be viewed as the effort to eventually
reveal all physical concepts, quantities, and phenomena as being manifes-
tations of underlying structures and processes that are purely mathematical
and/or statistical in nature, and that therefore have an informational/com-
putational flavor, at least insofar as the entire realm of formal mathe-
matics can be viewed as being a fundamentally "computational" entity.
As one interesting logical conclusion of this conceptual progression, if
all observed phenomena are indeed eventually explicable as being aspects
of some underlying purely mathematical/computational system, then we
can argue that in the end, there really is no need for a separate physi-
cal ontology at all any more; we could instead validly suppose that the
entire "physical" world really is nothing but a certain (very elaborate and
complex) abstract mathematical or computational object. Such a viewpoint
has many attractive philosophical features, at least from the perspective
of a hard-core rationalist. One prominent proponent of such musings is
Tegmark, e.g., see Ref. 12. Another proposal for unifying mathematics and
physics was recently made by Benioff.(13)

However, regardless of one's personal feelings about such far-ranging
philosophical agendas, if we can at least show that it is consistent to say
that a given physical quantity can be exactly identified with a given math-
ematical or computational quantity, then, as scientists, we can certainly all
agree that the most parsimonious description of physics will indeed be one
that does make that identification, since otherwise our description of the
world would be burdened with an unnecessary proliferation of artificially
distinct concepts, in violation of Ockham's razor, the most fundamental
principle of scientific thought.

'The references to Clausius and Boltzmann in this paragraph are also taken from Ref. II.
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In this paper, we will primarily concern ourselves with just one small
aspect of the grander theme of interpreting physics as information process-
ing. Specifically, we focus on the idea of interpreting the physical energy
content of a given system as being simply a measure of the rate at which
that system is undergoing a certain ubiquitous physical process-namely,
quantum state evolution-which can also be viewed as a computational
process, as we do in quantum computing. In other words, the premise is
that physical energy is nothing but the rate of quantum computing, if the
meaning of this phrase is appropriately defined. This paper will clarify pre-
cisely in what sense this statement is true.

We'll also see that the concept of physical action, in a certain (some-
what generalized) sense, corresponds to a computational concept of the
amount of computational effort exerted, which we'll call effort for short.

Of course, it is not necessarily the case that a given system will have
been prepared in such a way that all of its physical computational activity
will actually be directly applied towards the execution of a target appli-
cation algorithm of interest. In most systems, only a small fraction of
the system's energy will be engaged in carrying out application logic on
computational degrees of freedom, while the rest will be devoted to vari-
ous auxiliary supporting purposes, such as maintaining the stability of the
machine's structure, dissipating excess heat to the environment, etc., or it
may simply be wasted in some purposeless activity.

For that part of energy that is directly engaged in carrying out desired
logical operations, we will see that one fruitful application of the compu-
tational interpretation of energy will be in allowing us to characterize the
minimum energy that must be harnessed in order to carry out a given com-
putational operation in a given period of time. In Sec. 12, we will show
how to calculate this "difficulty" figure for a variety of simple quantum
logic operations, and we briefly discuss how to generalize it to apply to
classical reversible and irreversible Boolean operations as well.

2. BACKGROUND

Of course, the earliest hints about the relationship between energy
and the rate of computing can be found in Planck's original E = hv rela-
tion for light, which tells us that an electromagnetic field oscillation having
a frequency of v requires an energy at least hv, where h 2- 6.626 x 10-34 J s
is Planck's constant. Alternatively, a unit of energy E, when devoted to a
single photonic quantum, results in an oscillation (which can be consid-
ered to be a very simple kind of computational process) occurring at a
cycle rate of v = E/h.
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Also suggestive is the Heisenberg energy-time uncertainty principle
AEAt >_h/2, which relates the standard deviation or uncertainty in energy
AE to the minimum time interval At required to measure energy with that
precision; the measurement process can be considered a type of computa-
tion. However, this relation by itself only suggests that the spread or stan-
dard deviation of energy has something to do with the rate of a process of
interest; whereas we are also interested in finding a computational mean-
ing for the absolute or mean value of the energy, itself.

More recently, in 1992, Tyagi( 14) proposed a notion of "computational
action" that was based on the amount of energy dissipated multiplied by the
elapsed time (a quantity which has the same physical units as action) and pro-
posed a theory of optimal algorithm design based on a "principle of least com-
putational action." However, Tyagi's analogy with Hamilton's principle was
still a long way from indicating that physical action actually is computation in
some sense, or that physical energy itself (which is, in general, not necessarily
dissipated) corresponds to a rate of computation. Still, it was suggestive.

Going much further, in 1998 Toffoli(15 ) argued that the least-action
principle in physics itself can be derived mathematically from first princi-
ples (rather than as an ad hoc physical postulate) as a simple combinato-
rial consequence of counting the number of possible fine-grained discrete
dynamical laws that are consistent with a given macroscopic trajectory.
In Toffoli's model, which intriguingly even captures aspects of relativistic
behavior, the energy of a state is conjectured to represent the logarithm
of the length of its dynamical orbit. Toffoli also gives a correspondence
between physical action and amount of computation that is more explicit
than Tyagi's, and in which the path with the least Lagrangian action is
the one with the greatest amount of "unused" or "wasted" computational
capacity. In later papers following up on the present one, we will show that
indeed, Lagrangian action corresponds negatively to the portion of the
computational effort that does not contribute to an object's active motion.

At around the same time as Toffoli's work, Margolus and Levitin(5)
showed that in any quantum system, a state with a quantum-average
energy E above the ground state of the system takes at least time At >
t-= h/4E to evolve to an orthogonal state, along with a tighter bound
of At > t- = (N - l)h/2NE that is applicable to a trajectory that passes
through a cycle of N mutually orthogonal states before returning to the
initial state. In the limit as N-+ oc, tN -+ h/2E, twice the minimum time of
t-= t2 which applies to a cycle between 2 states. Both bounds are achiev-
able in principle, in freely constructed quantum systems.

In a widely-publicized paper in Nature in 2000, Lloyd(6) used the
Margolus-Levitin result to calculate the maximum performance of a 1 kg
"ultimate laptop," in a hypothetical limiting scenario in which all of
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the machine's rest mass-energy is devoted to carrying out a desired
computation.

Two years later, Levitin et a(1'6) investigated the minimum time to
perform a specific quantum logic operation, namely a CNOT (controlled-
NOT) together with an arbitrary phase rotation, in systems of a given
energy E.

In 2003, Giovannetti et al.( 17' 18 ) explored tighter limits on the time
required to reduce the fidelity between initial and final states to a given
level, taking into account the magnitudes of both E and AE, the system's
degree of entanglement, and the number of interaction terms in the system's
Hamiltonian.

Results such as the above suggest that energy might fruitfully be
exactly identified with the rate of raw, low-level quantum-physical "com-
puting" that is taking place within a given physical system, in some appro-
priate sense, if only the quantity "amount of computing" could be defined
accordingly. We would like to show that some well-defined and well-
justified measure of the rate at which "computational effort" (not neces-
sarily useful) is being exerted within any quantum system is indeed exactly
equal to the energy of that system.

3. PREVIEW

In subsequent sections of this paper, we address the aforementioned
goal by proposing a well-defined, real-valued measure of the total amount
of change undergone over the course of any continuous trajectory of a
normalized state vector along the unit sphere in Hilbert space. This mea-
sure is simply given by the line integral of the magnitude of the imaginary
component of the inner product between infinitesimally adjacent normal-
ized state vectors along the given path. This quantity is invariant under
any time-independent change of basis, since the inner product itself is. As
we will show, it is also numerically equal to twice the complex-plane area
(relative to the origin) that is circumscribed or "swept out" by the coeffi-
cients of the basis vector components, in any basis. For closed paths, this
quantity is even invariant under not only rotations but also translations
of the complex plane. Finally, our quantity can be perhaps most simply
characterized as being the action of the Hamiltonian along the path; this
is to be contrasted with the usual action (of the Lagrangian), whose pre-
cise computational meaning will be addressed in later work.

We propose that the above-described measure of "amount of change"
is the most natural measure of the amount of computational effort exerted
by a physical system as it undergoes a specific trajectory. For any pair of
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trajectory endpoints, the effort has a well-defined minimum value over possi-
ble trajectories which is obtained along a "geodesic" trajectory between the
endpoint states, thereby inducing a natural metric over the Hilbert space.

We will show that in any quantum system, the instantaneous rate at
which change occurs (computational effort is exerted) for any state, under
any time-dependent Hamiltonian operator, is exactly given by the (Hamil-
tonian) instantaneous average energy of the state. Thus, the state's energy
is exactly its rate of computation, in this sense.

We use the word "effort" here rather than "work" both (a) to dis-
tinguish our concept from the usual technical meaning of work in physics
as being directed energy, and also (b) to connote that effort is something
that can be ineffectually wasted; i.e., it does not necessarily correspond to
useful computational work performed. In fact, we will see that indefinitely
large amounts of effort could be expended (inefficiently) in carrying out
any given quantum computational task, i.e., in accomplishing a given piece
of computational work.

Despite having no upper bound, our concept of effort turns out to
still be meaningful and useful for characterizing computational tasks, since
(as we will see) any given quantum or classical computational opera-
tion does have a well-defined and non-trivial minimum required effort for
worst-case inputs, which we will call the difficulty of the operation. As we
will see, for any pair of unitaries U1, U2, the difficulty of the operation
U2 tU1 that takes us from U1 to U2 gives a natural distance metric over U,
the Lie group of rank-n unitary operators.

The difficulty of a computational operation, according to our defini-
tions, determines the minimum time required to perform it on worst-case
inputs of given energy, or (equivalently) the minimum worst-case energy
that must be devoted to a system in order to perform the operation within
a given time. The difficulty thus directly characterizes the computational
complexity or "cost" of a given operation, in the same "energy-delay prod-
uct" units that are popular in electrical engineering, but where the energy
here refers to the average instantaneous energy that is invested in carrying
out the computation, rather than to the amount of energy that is dissipated.

4. A SIMPLE EXAMPLE

In this section, we start by presenting a simple, concrete example in
order to help motivate our later, more general definitions. Consider any
quantum system subject to a constant (time-independent) Hamiltonian
operator H. Let IG) and IE) be any normalized, non-degenerate pair
of the system's energy eigenstates. The labels G and E here are meant
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to suggest the ground and excited states of a non-degenerate two-state
system, but actually it is not necessary for purposes of this example that
there be no additional states of higher, lower, or equal energy.

Since the Hamiltonian is only physically meaningful up to an addi-
tive constant, let us adjust the eigenvalue corresponding to vector IG) to
have value 0 (i.e., let HIG) =0), and then let E denote the eigenvalue of
IE) (i.e., HIE) = EIE)). For example, for a two-state system, we could let
H = (1 + az)E/2 with the usual definition of the Pauli z-axis spin operator

z:=[o -01; and let IG)=[O] and IE)-=[1], thus we have that H=IE)(EI

and so E = 1.
Now, consider the initial state I' 0)= (IG)+ IE))/V/-2 at time t=0, and

let it evolve over time under the influence of the system's Hamiltonian,
with I* (t)) =eiHt/l I'0) denoting the state vector at time t. 2 Let CIG)(t)

and CIE)(t) denote (GI4'(t)) and (Elr(t)) respectively, i.e., the components
(complex coefficients) of the state vector 1If(t)) when decomposed in an
orthonormal basis that includes IG), IE) as basis vectors.

Initially, CIG)(t) =CIE)(t) = 1/,/2. Over time, CIE) phase-rotates in the
complex plane in a circle about the origin, at an angular velocity of w1E) =

E/h. In time t-=2E/h, it rotates by a total angle of 0=7r. The area swept
out by the line between CIE) (t) and the origin is alE) = l7r IcE)12 = 7r/4.
This is the area of a semi-circular half-disk with radius rIE) = ICE)I = 1//2
Meanwhile, cIG) (t) is stationary and sweeps out zero area. The total area
swept out by both components is thus a = 7r/4. This evolution is depicted
in Fig. 1.

Does the area swept out by the complex components of the state
vector depend on the choice of basis? We will answer this question in
a much more general setting later, but for now, consider, for example, a
new basis that includes basis vectors 10), 11) where 10) = (IG)+ ±E))/,/2
and I1) = (IG) - IE))/,V2. Consider the evolution again starting from the
same initial state as before, I o0)= 10). Note that the final state after time
t=2E/h is 1). In the new basis, the coefficients clo)(t) and c1l)(t) respec-
tively trace out the upper and lower halves of a circle of radius 1/2 cen-
tered at the point 1/2+iO. The total area swept out by both components
(on lines between them and the origin) is the area of this circle, namely
a=7r(1/2)2 =-r/4. (See Fig. 2.) Note that the total area in this new basis
is still 7r/4.

At this point we may naturally ask, is the area the same in any fixed
basis? Later we will show that the answer is yes; in general, the area swept

2For convenience, we use the opposite of the ordinary sign convention in the time-evolution
operator.
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\-Y-- -- C 'E

r = 2-1/2

Fig. 1. Under the Hamiltonian H = EjE) (El, starting from the ini-
tial state IJo) = (IG) + IE)) • 2-1/2, the complex coefficient CIE) =

(El(t)) of IE) (the excited state) in the superposition sweeps out
a half-circle in the complex plane with area 7r/4 in time t = 2E/h,
while the ground-state coefficient ClO) remains stationary.

out is independent of the basis for any trajectory of any initial state. The
area swept out will be (proportional to) our proposed measure of the
amount of computational effort exerted by a system in undergoing any
specific state-vector trajectory.

5. GENERAL FRAMEWORK

In this section we proceed to set forth the general mathematical defi-
nitions and notations to be used in the subsequent analysis.

5.1. Time-independent Case

Let R be any Hilbert space. Any linear, norm-conserving, invertible,
continuous and time-independent dynamics on such a space must proceed
via the application of a unitary time-evolution operator, expressible as



292 Frank

r a= n/4

Fig. 2. The evolution from Fig. 1, re-plotted in the basis
10) = (IG) + IE)) .2-1/2, I1) = (IG) + IE)) .2-1/2. The coeffi-
cients of 10) and I1) together sweep out a full circle, but
the total area swept out is still 7r/4.

U -- U(At) -- eiA(At) =-eiHAt,(1

where At is the length of a given time interval, A(At) = HAt maps the
interval to an Hermitian operator A that is proportional to At, and H
is an Hermitian operator with units of angular frequency. For any two
times tl, t2 E R, and for any initial state vector 14) = IV'(t 1)) at time tl, the
implied state at any other time t2 is given by I4*(t 2 ))=U(At) I*(tl)), where
At = t 2 - t]. We will sometimes also write U and A as functions of the
directed pair of times, written tl --- t2 . We will sometimes call the U and
A operators "cumulative" when the interval At is not infinitesimal.

Note that in Eq. (1) we are using the opposite of the usual (but arbi-
trary) negative-sign convention in the exponent; this is an inessential but
convenient choice, in that later it will let us automatically associate posi-
tive energies with positive (i.e., counter-clockwise) phase velocities for the
coefficients of state components.

For convenience, for any operator 0 and vector v, we will sometimes
use the notation O[v] as an abbreviation for the expectation value (viOlv).

Now, of course, the eigenvectors of U are also eigenvectors of A
and H, so H's expectation value H[4r] for any initial vector Vf(tl) E R is
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preserved by the time-evolution V'(ti) --+ r(t 2 ). This conserved quantity
(whose existence follows from time-independence even more generally,
via NMther's theorem) is called the Hamiltonian energy of the system.
Although in our expressions it has the dimensions of angular velocity,
this is the same as energy if we choose units where h = 1, as is custom-
ary. Thus, H is called the Hamiltonian operator. We will call the operator
A = A(tl -- t2 ) the cumulative action of the Hamiltonian from time t, to t2,
where some of the qualifying phrases may be omitted for brevity. The rea-
sons for the use of the word "action" will be discussed later.

For convenience in the subsequent discussions, we will often just set
t= 0 (without loss of generality) and write U = U (t) = U (0 -+ t)= eiHr. We
refer to the complete operator-valued function ).t.U(t) for all t values in
some range (which usually includes t=0, for which U(0)=I) as a unitary
trajectory over that time interval. Also, for any t we write A (t):=A (0 -- t)
for the cumulative action from 0 to t.

Differentiating U(t) with respect to time and applying the result to an
initial state VIr(0)) then yields us Schr6dinger's equation in various forms
that we'll use,

dU(t)_ d eiHt = iHeiHt =iHU(t) (2)
dt dt
d
1--=U(t) I(O)) = iHU(t)14(O)) (3)

dt
14') = -jIi•f(t)) = inkli'(t)) (4)

d
dtil, (5)

where again, note that we are using h = 1 and the opposite of the usual
sign convention. Note also that we are able to differentiate eilt in Eq. (2)
because d/dt commutes with H, since H here is a constant.

5.2. Time-dependent Case

The natural generalization of Eq. (5) (the operator form of
Schr6dinger's equation) to a system with a time-dependent Hamiltonian
H(t) is of course just

d
- =ilH(t), (6)
dt

where now H(t) is permitted to vary over time, though often with a
constraint that it be differentiable, smooth, or analytic.
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One may at first think that in this time-dependent context, we could
appropriately generalize the time-evolution operator equation (1) by sim-
ply changing the definition of the action operator A (as a function of t)
from the original A(t) = Ht to what one might naively think would be the
obvious generalization to a time-dependent H,

A 1( =0 H(r)dr, (7)

while still keeping the relation U(t) = eiA(t). But in fact, the definition
(7) does not work for this purpose, since in general the values of H(r)
at different times r will not commute with each other; taking the inte-
gral loses all information about their relative time-ordering, and the time-
derivative of U(t) will no longer be equal to iW(t) as required, since d/dt
will no longer commute with H(t).

The standard way to repair this problem (discussed in almost any
quantum field theory textbook, e.g., Ref. 19) is to define a time-ordering
meta-operator T, which takes a given operator expression and reorders its
internal operator products so that operators associated with earlier time
points are applied first in all products (reading right-to-left). For example,
as a matter of definition,

T[H @ )H (t2)]= H(tl)H(t2 ) if t) > t2 (8)
[ H(t 2)H(tl) otherwise

With this notational convention, we can write
U (t) = T"eit, (9)

where A(t) is as defined in Eq. (7), and the meaning of this meta-
expression will be well-defined and consistent with Eq. (6) applied to U(t).
But the problem with this approach is that the expression A(t) in (9) no
longer denotes a "first class object" of our language, but rather is a sort
of meta-mathematical place-holder to be manipulated via a rather complex
interpretational procedure, which involves applying Eq. (8) to uncountably
many infinitesimal pieces of the integrals appearing in the Taylor-expanded
version of Eq. (9). There is no longer any simple, direct relationship between
the properties of the linear operator A(t) defined in Eq. (7) (e.g., its eigen-
values and eigenvectors) and the properties of U(t).

Thus, in what follows we will find it more useful to instead abandon
Eq. (7), and take the rather more concrete approach of simply redefin-
ing A(t) for a given unitary trajectory U(t) to be the unique continuously
time-dependent Hermitian operator such that A (0)= 0 and

U(t) = eia(t) (10)
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(with no time-ordering operator!) for all t. To see that such an A indeed
exists and is unique, note that since each particular U = U(t) (at a given
moment) is unitary, it is a normal operator and can thus be given a
spectral decomposition

U=L uilui)(uiI (11)

where {lui)} and {ui} respectively comprise an orthonormal eigenbasis
of U and the corresponding unit-modulus eigenvalues. We can therefore
define the multi-valued logarithm of U by

lnU = lnTuiu1 )(u1i
i

E(lnui)Iui)(uil
i

= ]iarg(ui)Ju i )(uiJ (12)
i

= Ti[Arg(ui)+27rni]ui)(ui1i, (13)
i

where in step (12) we have used the fact that lul = 1, and where in
line (13) Arg(ui)E [0, 27r) denotes the principal value of the multivalued
function arg(ui), while the ni values may be any integers. Although we see
that there are infinitely many values of (In U) for any individual U in iso-
lation, nevertheless there is a unique single-valued definition of the entire
function L(t)=InU(t), given the function U(t), that is continuous over t
and where L (0) =0.

The uniqueness is due to the fact that U(t) varies continuously in t,
and thus, if we like, the eigenbasis {lui(t))) that we choose for U at each
moment (which has k free gauge-like parameters determining the ui, where
k = dimT-t) can vary continuously as well. Given basis vectors Jui) (and
thus ui values) that change continuously, it follows that at any moment,
only one assignment of values to the ni parameters can possibly yield con-
tinuity with the logarithm value L(t - dt) at the previous moment, since
any other choice would (discontinuously) change one of the phase angles
Arg(ui)+27rni in the expression (13) by an amount that is (infinitesimally
close to) a multiple of 27r. The ni parameters can (and must) change by
±1 from their preceding values (while leaving L(t) continuous) only at a
discrete set of time points, namely those where the continuously changing
ui value crosses the branch cut of the ArgO function (in some direction),
and Arg(ui) jumps by T 2 7r.
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Now, given this uniquely defined unitary trajectory logarithm L(t) =
In U(t), we simply define our action operator as A(t)=-iL(t), and then
trivially we have that U(t) = eiA(t) holds for all t, where the exponential
can be defined via the spectral decomposition of A (equivalently to the
standard Taylor-series definition), thereby inverting the logarithm.

Meanwhile, the entire unitary trajectory U(t) itself is derived from the
Hamiltonian trajectory H(t) by setting U(0) = I and applying the oper-
ator form (6) of the time-dependent Schr6dinger equation to U(t). So
(d/dt)U(t) =iH(t)U(t), and we are thereby guaranteed that in fact

deia(t) = iH(t)eia(t) (14)
dt

as desired, which (recall) failed to be true (in the absence of a time-ordering
operator) for the A(t) defined in Eq. (7).

For reasons we will explain, we will refer to a complete function
)At. A(t) as defined by Eq. (10) as the cumulative Hamiltonian action tra-
jectory implied by the Hamiltonian trajectory H(t).

In cases where H(t) = H is constant over time, note that this defini-
tion of A(t) reduces to the simple Ht form that we used back in Eq. (1).
This follows from the observation that the definition A(t) = Ht indeed
solves Eq. (10) when H is constant, and the fact that (as we just showed)
the A(t) implied by Eq. (10) is unique under the continuity constraint.

Later, we will see the importance of the Hamiltonian action trajectory
A(t), and discuss the precise meaning and computational interpretation of
its expectation value when applied to a given state.

To clarify our terminology, note that in this document we are using
the word action in a somewhat more general sense than is usual; typically
in physics (e.g., in Hamilton's principle) "action" just refers to the quan-
tity having units of action that is obtained by integrating the Lagrangian
L = pv - H along some path. However, it is also perfectly valid and rea-
sonable to consider the more general notion of the action that is associated
with any quantity that has units of energy, by setting the time-derivative of
that action along some path to be equal to that energy.

Indeed, we will see later that the time-derivative of the cumulative
Hamiltonian action A(t) (as we have defined it) along a given trajectory
is in fact exactly the instantaneous Hamiltonian energy H(t), i.e.,

d dtA() = 0]- H(t)[4r(t)], (15)

similarly to how the time-derivative of the ordinary (i.e., Lagrangian)
action along a given trajectory is the instantaneous Lagrangian energy
L (t).
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As a final piece of notation which will help us generalize our results
to the time-dependent case, we will sometimes write U'(t) to refer to the
"instantaneous" unitary transformation that applies over an infinitesimal
time interval dt at time t, that is,

U'(t) U(t---÷t+dt)

=I +iH(t)dt. (16)

Note also that any larger transformation U(t -). t2) can be expressed as
the time-ordered product of all the infinitesimal U'(t) over the continuum
of times t in the range from t, to t2 . That is, we can write

12

U(t -- t2 ) =r I IU'(t) (17)
t=tI

with the opposite ordering if t 2 < ti. Thus, U'(t) uniquely defines U(t), so
we will sometimes refer to U'(t) as the unitary trajectory also.

We should keep in mind that although the complete unitary trajectory
U(t) (or U'(t)) between tl and t2 determines the overall transformation
U(t --* t2 ), the converse is not true: Knowing the cumulative U = U(t1 --*
t2) for a particular pair of times t1, t 2 is of course insufficient to determine
a unique unitary trajectory U(t), since in general infinitely many cumu-
lative action operators A = A(t--. t2) can exponentiate to yield the same
cumulative U (since expression (13) is multivalued), and furthermore, in
the time-dependent case, a continuum of different Hamiltonian trajectories
H(t) (which determine U'(t)) could implement a given cumulative action
operator A.

We will similarly use the notation A'(t) = H(t)dt to denote the infini-
tesimal action operator that applies from time t to t +dt; note that U'(t)=
eiA'(t) = 1 + iH(t)dt.

6. DEFINING COMPUTATIONAL EFFORT

With the above general definitions and observations aside, let us now
proceed to define our concept of the amount of computational effort
exerted by a system in undergoing a state trajectory 1*(t)) between two
times.

We will find it easiest to define this quantity first for the case of a sys-
tem with a time-independent Hamiltonian H(t) = H =const. Later, we will
show how our results can be generalized to the time-dependent case.
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Let Iv) be any eigenvector of H, and w the corresponding eigenvalue,
which is real since H is Hermitian. That is, let HIv) =wlv). Thus, Iv) is
also an eigenvector of the cumulative action operator A(t) = Ht for any t,
with eigenvalue a = cot.

First, when t is an infinitesimal dt, consider the instantaneous U'=-
1 +iHdt. Clearly, Iv) is an eigenvector of U', since U'Iv)=(l+iHdt)Iv)=
(1 + iwdt)Iv) = u Iv), where the scalar u = 1 + iodt = eiwdt -- eida. Thus, under
application of U', the eigenvector Iv) transforms to Iv') :=_eiwdt Iv) =eida Iv),

that is, it phase-rotates in the complex plane at angular velocity w through
an infinitesimal angle da. Note also that

ý5(vlIv') = 23(v I(I + ida) Iv) = ý(1 + idt) (v Iv)

= da = (vlcodtlv) = (vIa'Iv) = A'[v]. (18)

That is, when Iv) is an eigenvector of H, the magnitude of the imaginary part
of the inner product between infinitesimally adjacent state vectors is equal
to the expectation value A'[v] of the infinitesimal action operator A'= Hdt
applied to the state. As we go on, we will extend the relationship (18)
to non-infinitesimal trajectories, non-eigenvectors, and time-dependent
Hamiltonians.

Next, note that the eigenvectors I v) of H are also eigenvectors of
the cumulative action operators A(t) = Ht and cumulative unitaries U(t) =
eiA(t) =eiHt, and vice-versa. Let A(t)lv) =a(t)lv), with Iv) a fixed eigen-
ket of A(t), and with a(t) = wt as its eigenvalue. Then, U(t)Iv) = eiA(t) v) =
ei0()Iv) =u(t) I v) where u (t)=e"(0. Thus, upon the application of U, Iv)
gets multiplied by the phase factor u(t), or (we can say) rotated by a total
phase angle of a(t) = ot, which could be much greater than 27r in long
evolutions, as can also be seen by integrating da over t. Note also that if
we integrate Zs(vlv') along the trajectory, we still get the cumulative action
A(t)[v(O)]:

t t

,= (v (r) Iv'(r)) = ] Z(v(r)I(I +iwdr)Iv(r)) (19)

-ot =1=a(t) = (v(O)IA(t)Iv(O)). (20)

Next, consider an arbitrary pure state I Vf(0)) = E ci(0)1vi), where the
I vi) are normalized eigenstates of H with eigenvalues wo, and the ci (0) are
the initial coefficients of the I vi) in the superposition. The state at time t
can be expressed as
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1 *(t)) = exp[iai]ci (0)1 vi)

= Z exp[icoi t]ci (0) 1vi )

= ZciW)Ivi), (21)

where we see that each coefficient ci (t) = exp[ioi tjco(t) (in the fixed basis
I vi) }) simply phase-rotates with angular velocity wi along an origin-

centered circle in the complex plane with constant radius ri = Ici 1 . Over
any amount of time t, we see that ci rotates in the complex plane by a
total angle of ai =ooit, while the line in the complex plane that joins ci to
the origin sweeps out an arc with an area of ai = ½jitr2. (See Fig. 3 for
an illustration of the area swept out in the infinitesimal case.) For exam-
ple, in time t = 27r/ooi, coefficient ci sweeps out a complete disk of area
ai = 7rr2 as it traverses an angle of a = 27r. For consistency, in the case of
clockwise rotations (negative wi), we will consider the area swept out to
also be negative.

Now, let 4'(t)= Vf(t+dt). Then

ft ft

ý5f('T') 1 '(0) = (0ci()ci(r +dr) (22)=0 =0

]- fL-2r2{e-i(r)ei[Oi(r)+widr] (23)

= f pis(l +iwidr) (24)

-f 1 pidoi (25)

f fda =a(t) = A(t)[V/i(0)], (26)

where the overbar denotes complex conjugation, ri =I ci I as before, 0i(r)=
arg(ci (r)), and at is now the weighted-average value of ai.

Now, consider the total area a (t) swept out by all coefficients ci over
time t. Note that r2 = Ic, 12 is also the probability pi of basis state vi, and
so the total area swept out is always exactly half of the average angle a(t)
of phase rotation (weighted by the state probability), or in other words,
half of the expectation value of the A(t) operator applied to the state
i(0). That is,
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Fig. 3. In the energy eigenbasis, a complex coefficient ci of a basis
state sweeps out a small wedge-shaped area (shown exaggerated) in
the complex plane over an infinitesimal time interval dt.

a(t) = Z 2

2

Pia

2 i

1 1
= -A(t)[Vi(0)] = (t). (27)

2 2

Thus we have shown that for time-independent Hamiltonians, the
expectation value of the action operator A(t) applied to any initial state
*(0) is equal to the integral over the state trajectory of the inner prod-
uct between infinitesimally adjacent states * (t) and *{'(t) = V(t +dt) along
the trajectory, as well as to the average phase angle a accumulated and to
twice the complex-plane area a swept out by the state's coefficients, when
the state is decomposed in the energy eigenbasis.
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Of course, the inner product between two state vectors is a pure geo-
metric quantity, and so is basis-independent. Therefore, the integral of
Z1(V1JI') over the state trajectory does not depend at all on the (fixed)
choice of basis under which states are decomposed into components. Like-
wise, the operator A(t) itself is a geometric object not inherently associ-
ated with any particular basis. Therefore, the identity

j •(4 (r)Ir'(r)) =A(t)[4'(0)] (28)

that we proved above is a fundamental one whose truth does not rely on
any particular basis or coordinate system.

However, it is perhaps somewhat less obvious that the average angle
ot of phase rotation and the complex-plane area a swept out by the state
coefficients should also be basis-independent quantities, since their original
definitions explicitly invoked a choice of basis (the energy basis). However,
in the next section we will show that in fact, these quantities are basis-
independent as well. Thus, all of the following identities still hold true,
regardless of basis: t

2a =o = f ( I V') = A(t)[Vf (0)], (29)

where a is the total complex-plane area swept out by the state coefficients
in any fixed basis, a = f wdt is the time-integral of the expected value a)
of the angular velocity woi of the state coefficients in any fixed basis (not
necessarily the same one), VV = * (r) is the state trajectory, with a' =4* (r +
dr), A(t) is the action operator as we defined in Eq. (10), and we are
using our mean-value notation A(t)[V1(0)]= (4(0)IA(t) I (0)).

Our proposed measure of the amount of change undergone (and com-
putational effort exerted) along a state trajectory 4(t) generated by a con-
stant H will then just be the ot value for that trajectory.

Later, in Sec. 8, we will show that the above identities also still hold
even when H(t) varies over time, and so our measure will generalize to
that case as well.

7. GENERALIZING TO ARBITRARY BASES

The above discussion made use of a set of basis vectors {1vi)} which
were taken to be orthonormal eigenvectors of the (temporarily presumed
constant) Hamiltonian operator H. Now, we will show that this particu-
lar choice of basis was in fact unnecessary, and that the same statements
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concerning the relationship between the area swept out, the average phase
angle accumulated, and the action A(t) would remain true in any fixed
(time-independent) basis.

At first, it may seem very non-obvious that the area swept out should
still be exactly half of the action. Note that our previous arguments for
this relied on the fact that in the energy basis { vi)), the coefficients ci
all rotate at uniform angular velocities wi in circles in the complex plane,
while their individual magnitudes remain constant. In a different basis Ivj)
(distinguished by using a different index symbol j), this will no longer be
true. Each basis vector Iv j) in the new basis is in general some superposition
of the {Ivi)}, such as

Iuj) =L1u1 lvi), (30)
i

where the matrix U = [u.] of complex coefficients (with the subscript j
indexing rows, and the superscript i indexing columns) is, most generally,
any unitary matrix. We can also write this equation in matrix-vector form
as Iv) = U I vi), where the over-arrow here denotes that we are referring

to the entire column-ordered sequence of basis vectors, [i7= [IV.i) 1. Of

course, a general state vector 4' can equally well be expressed as a finear
superposition of either set of basis vectors, that is,

I V) = ciIvi) (31)

i4'P) = Zcj Iv j). (32)

But now, we can substitute Eq. (30) into Eq. (32) and rearrange, as
follows:

i i

Now, since the Ivi) are linearly independent, the expansion of I*) in terms
of them must be unique, so we can equate the coefficients on Ivi) in Eqs.
(31) and (33) to get

Ci = L UCj

J
-7/ ~uw c-- (34)
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where T is matrix transpose. We can easily solve this equation for the c1
coefficients as follows:

(UT)- 7t c-= =

U T1, = -Cj

cj = Lici. (35)

In other words, each complex coefficient in the new basis is just a partic-
ular linear combination of what the various complex coefficients were in
the old basis.

If the coefficients ci in the old energy basis are describing perfect cir-
cles around the complex origin at a variety of radii and angular veloci-
ties, there is no guarantee that the coefficients cj in the new basis will still
be describing circular paths centered on the origin, although their paths
will of course still be continuous and smooth if the original ci trajecto-
ries were. In general, the cj will follow complicated looping trajectories in
the complex plane, generated as if by Ptolemaic planetary epicycles, i.e., as
a sum of circularly rotating vectors. A given cj will in general return to
its initial location in the complex plane only when its components ci that
have non-zero values of ui. all simultaneously return to their initial loca-
tions exactly, which might even take infinitely long, if the corresponding
wi values were relatively irrational.

Anyhow, the important point for our present purposes is that the cjs
do not, in general, maintain a constant magnitude (distance from the ori-
gin), and so the area swept out by the cj over a given time is no longer
just a section of a circle, which was very easy to analyze. Instead, while
cj's phase angle Oj is rotating, simultaneously its magnitude rj may also
be growing or shrinking. Figure 4 illustrates the situation.

To clarify what we mean by the phase angle Oj(t) a bit more carefully,
let us use daj (t) - 0 to denote the infinitesimal increment of phase angle
from times t to t + dt such that

daj = arg(c) -arg(cj) (mod 27r), (36)

so that dctj remains infinitesimal even when cj crosses a branch cut of the
ArgO function. Then, let aOj(t) be the total accumulated phase angle over
time t, that is, the integral of dotj over time,

1j(t) = f=0dj (37)



304 Frank

Imag. c(t + dt) 4  c.(t)
axis

dr

0 Real axis

Fig. 4. Area swept out (exaggerated) by a coefficient cj (in a basis other

than the energy eigenbasis) over an infinitesimal time interval dt. Note
that both its phase and its magnitude change, in general.

so that 1j(0) = 0. Now, just let Oj(t) = Arg[cj(0)] + otj(t). Thus also
dOj = dotj.

What, now, is the area swept out in our new basis? First, notice that
in the infinitesimal limit, it is exactly half of the area of the parallelogram
that is spanned on two adjacent sides by cj =cj(t) and c' =cj(t +dt), con-
sidered as vectors in the complex plane. See Fig. 5.

The parallelogram area, itself, is daj =rj r' sin(d0j), where rj and r'
are the magnitudes of the old and new coefficients, respectively. However,
note that the area daj of this parallelogram is also the signed magnitude

C'

da.
I

r
0'1

0J
Fig. 5. The infinitesimal area daj swept out
approaches one-half of the parallelogram area
rj r' sin d0j,.
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of the scalar "cross product" cj x c'. between the coefficients, considered
Jas vectors in the complex plane. (The traditional cross product, defined in

three dimensions, would be a vector perpendicular to the complex plane
having this value daj as its length.) There is a nice identity(20 ) connecting
the scalar cross product and dot product with the conjugate multiplication
of complex numbers, namely:

ýd=c-d+ i(c x d), (38)

where J means the complex conjugate of c, and c d denotes the real
scalar "dot product" between c and d considered as vectors, namely
Icl dl cos[arg(d) - arg(c)], and c x d denotes the real scalar "cross product"
previously mentioned, namely Icl Idl sin[arg(d) - arg(c)].

Applying this identity to our situation, we can see that the area swept
out, since it is half the cross product, is half of the imaginary part of the
conjugate product Ejc'j between the old and new coefficients, and also to
half of sin(daoj)-=doj;

daj = (dot = Z(Jjc'). (39)

Now, this is just the area swept out by a single component cj. To find
the total area da swept out by all coefficients, we merely sum over com-
ponents:

da =

I J
1 1= j2(V1iW) = do (40)

In other words, just like in the energy basis, in an arbitrary basis, it is
still true that the infinitesimal increment da in the area swept out by the
coefficients is exactly one-half of Z(ri•'), the imaginary component of
the inner product between infinitesimally adjacent vectors Vr = Vr(t) and

'= Or(t +dt) along the trajectory, and further that this is equal to half
of da = dO, the average increment of the continuously varying phase angles
Oj(t) of the coefficients.

Now, we saw earlier that •(•J1I') is also equal to the expectation
value A'[*r] = (VIA'IV') of the infinitesimal action operator A' = Hdt
applied to the state *', for any state *'. So in connection with the result
(40) that we just obtained, this means that A'[*r] gives exactly the average
phase angle accumulation da of the coefficients cj of 4' in any basis, and
twice the complex-plane area da swept out by those coefficients. We can



306 Frank

thus think of A' as being the operator representation of a fundamental,
basis-independent concept of "average angle accumulated" or "total area
swept out" over infinitesimal intervals.

8. GENERALIZING TO TIME-DEPENDENT HAMILTONIANS

In the previous section, we established the basis-independence of the
identities 2da = da = Zý(4 10) = a)dt = A'[0] = ( IHdt I4') for infinitesimal
changes of the state vector (4 -- 4') along its trajectory over infinitesimal
time intervals dt, under any constant Hamiltonian H.

But, as long as the Hamiltonian H(t) only changes in continuous
fashion, it can always be considered essentially "constant" throughout any
infinitesimal interval dt, even if it is varying over non-infinitesimal time-
scales. Therefore, the above identities will still hold true instantaneously
even for a time-dependent Hamiltonian H(t), which is what we originally
started out our discussion with. Thus, when we integrate the above Eq.
(40) over time, it remains true that:

2a =c = j Z(* (t)I4(t +dt)) (41)
tl

= 112t w(t)dt 
(42)

tlftL
= (4(t) I-H(t) I4(t))dt (43)

t=l

= 2, A'(t)[ (t)]. (44)

In words, this says that for any initial state 4', we have that 2a (twice
the complex-plane area swept out by the coefficients of 4', in any basis)
is equal to a, the average phase angle swept out by the state coefficients,
as well as to (41) the integral along the trajectory 4'(t) of the imaginary
component of the dot product between neighboring vectors along the tra-
jectory, and also to (42) the integral of the average phase velocity of the
coefficients, weighted by the instantaneous basis state probabilities pi(t)-=
ri(t) 2 , which is (43) the time-integral of the instantaneous Hamiltonian
energy E(t)=H(t)[4'(t)] of the instantaneous state 4(t), which (finally) is
(44) the integral of the infinitesimal actions da (t) = (4'(t)IA'(t)I4*(t)) on
the instantaneous states *'(t).

The natural next question to ask is, given that A'[4] = du remains
true over infinitesimal intervals dt in the general time-dependent case,



On the Interpretation of Energy as the Rate of Quantum Computation 307

and given that cumulatively, A(t)[*f(O)] = a in the time-independent case
(H(t) = H =const.), does this cumulative relation still hold true in the gen-
eral time-dependent case? That is, for A(t) (as defined in Eq. (10)) is it still
true that

A(t)[*(0)]=- (45)

even if the phase angle ot was accumulated under the influence of a vary-
ing H(t)?

If this Eq. (45) is universally correct, then we will have a very nice,
simple interpretation for the general action operator A(t) even in the case
of a time-dependent H(t), namely that, when applied to any initial state
*(0), it simply gives the angular length ot of the trajectory that will be tra-
versed by that state, a quantity which obeys all of the identities (41)-(44).

Actually it seems that this is true, and the proof is quite elegant.
First, from Eq. (17) and the boundary condition U(0) = 1, fix U = U(t),
the overall unitary transform operating between times 0 and t that is
implied by the values of the time-dependent Hamiltonian H(r) for all 0<
r <t. Fix then also A = A(t) by using Eq. (13) and the associated discus-
sion, using the continuity requirement on A(r) and the requirement that
A(0) =0.

Now, consider any eigenvector 10i) of U, which is a state that under-
goes a cyclic evolution (in the projective Hilbert space) under H(z) or any
other process (Hamiltonian trajectory) that implements U, since U10) =
/til4)i), with Aui being the associated unit-modulus eigenvalue. Of course,
10'i) is then also an eigenvector of A, with an eigenvalue ai such that
A 10i) =Oti 10i) and i =eiai.

To see that this ai must indeed be the same as the total phase angle
a accumulated by 14i) as defined in e.g. Eq. (44), consider that once the
overall operator A has been determined, we can simply divide it by t to
find an alternative time-independent H, =A/t that would also generate the
very same action operator A and the same unitary U when applied over
the same time interval t. From the discussion in Sec. 6, its easy to see
that the value of a is then indeed exactly the phase angle accumulated
from the initial state I10i) when implementing A via this (alternative) time-
independent Hc.

Now, does every Hamiltonian trajectory that implements A (including
our original time-dependent H(r)) involve the same total accumulation at
of phase angle? We can see that it must, because any trajectory H(r) can,
it seems, be continuously deformed into the constant trajectory H,(r) = H,
while maintaining the same overall A (and thus U) throughout the deforma-
tion process. At no point during this continuous deformation process can
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the total phase a that is accumulated ever change, since, to produce the same
U, the total phase ot must always remain congruent to ai (mod 27r), and it
would be impossible for the total phase accumulated to jump by a multiple
of 27r at any point during any continuous deformation of the trajectory.

To see that this is true, recall from Eq. (13) and the associated dis-
cussion that any continuous A(r) can be characterized by a continu-
ously varying eigenbasis {Iui(r))} of U(r) (with a sort of k-dimensional
continuous gauge freedom, where k is the Hilbert space dimension), and
by implied integer parameters ni (r) that select which of the logarithm val-
ues must be used at each time point r. As we continuously deform the
Hamiltonian trajectory H(r) as well as the eigenbases flui(r))1 (and thus
the gauges of the associated eigenvalues ui(r)), the set of time points r at
which the ni(r) values change also changes continuously. Nowhere during
this continuous, local process can the total angle a accumulated along the
trajectory possibly change discontinuously by a multiple of 2rr.

Thus, our arbitrary time-dependent H(r) takes the eigenstate 10i)
through the same total angle a as would the constant H, for which we
already know that (0~iIAI1i>) =a.

The above discussion establishes that (regardless of the dynamics
H(t)) the A operator that we derive from it always gives the correct accu-
mulated angle a for all eigenstates 0i of A; therefore it is also correct for
arbitrary initial superposition states *(0) (and for mixed states as well).

For a final interesting observation, let et(*(0), t) denote the angle at
accumulated from the initial state J*(0)) over time t, and note that since

*(0) 1 A(t)IV(0)) = ao(*(0), t) (46)

for all initial Vf (0), the time-derivative of the operator A(t) must satisfy
d B<Vf(0) 1 d A(t)l (0)) = a ce (* (0), t). (47)

Recall meanwhile that da(t) is given by applying A'(t) = H(t)dt to the
state V(t); i.e., da(t)=A'(t)[*(t)]. Of course, *(t)=U(t)4(O), so we have
that

dA A'(t) [U(t)v(0)] (48)
dt dt

= 1 (O)lUt(t)H(t)U(t)lI*(O)). (49)

and thus

dA (t) Ul(t)H(t)U(t)

dt
Se-iA(t) H(t)eia(t). (50)



On the Interpretation of Energy as the Rate of Quantum Computation 309

Now, note that applying the time-dependent operator form (6) of the
Schr6dinger equation to U(t)=eiA t, we get

deiAt) = iH(t)eiAt
dt

= ieiA(t)e-iA(t) H(t)eia(t)

e e [(t) [iA(t)], (51)
d t

where we have used (50) in the last step. In other words, the ordinary rule
def = efdf for the differential of an exponential of a function f actually
turns out to be true when f = iA(t), despite the fact that the Hamilto-
nian may be time-dependent and that A(t) doesn't necessarily even com-
mute with its time-derivative! This is due to the special way in which we
defined our A(t) function, and would not be true for more general time-
dependent operators.

9. DISCUSSION OF EFFORT

Although a choice of a particular cumulative action operator A still
gives us freedom to choose any number of different Hamiltonian trajecto-
ries H(r) for implementing it, over various total amounts of time t, we
have seen above that all such trajectories are equivalent in terms of the
total amount a of phase angle that is accumulated starting from any fixed
initial state JV(0)).

As hinted previously, we might even consider the quantity a (or, more
properly, its absolute value) to be a reasonable definition of the geomet-
ric length of the path that a normalized state vector IV'(t)) describes as it
moves along any continuous path (parameterized by any real variable t)
along the unit sphere in Hilbert space, since (note) a depends only on the
shape of the state trajectory itself, and not on any other properties of the
Hamiltonian trajectory, such as the energy of other orthogonal states.

As a result, an intrinsic metric on the normalized Hilbert space is
provided by the distance function

d(l1*1), J•f2)):-_min Jutl, (52)

where a is the accumulated phase angle along a given trajectory, and the
minimum is taken over all normalized, continuous paths from I4'i) to
41V2), or a subset of such that is deemed available. The absolute-value oper-
ator is required in order to obtain a proper (positive) metric, since trajec-
tories with unboundedly negative values of a could exist if we allow states
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to have negative energy. Paths having the minimum absolute a between a
given pair of states can be considered to be (sections of) geodesics on the
normalized Hilbert space.

In Ref. 21, Wootters introduced a statistically motivated distance met-
ric between quantum states which he called "statistical distance," and
showed that it was identical to the ordinary Hilbert-space distance func-
tion d(*i, 4'2) = arccos 1411 142)1. It turns out that our distance function
d above is in fact exactly the same as this also, if all Hilbert-space tra-
jectories are considered. However, if the space of allowed trajectories is
restricted (for example, if the Hamiltonians are forced to be local) then
a different distance measure results. In Wootters' metric, the distance
between any two distinguishable states (e.g., two different randomly cho-
sen computational basis states) is only arccos 0=7r/2, whereas if we define
distance by minimizing over allowed trajectories, we could obtain a much
greater figure.

Later, we will see that our distance measure will also allow us to
derive a natural metric on unitary operations, telling us the "distance"
between two unitaries, as measured by the difficulty of getting from one to
the other, in terms of the minimum distance traversed by worst-case states.

Anyway, noting that this measure ot of trajectory length which we
have explored above is stable with respect to changes of basis, that there
are multiple simple ways of defining it, and that it connects strongly with
fundamental physical concepts such as action and energy, as well as with
primitive geometric concepts such as angles and areas, and that it forms
a natural metric on the Hilbert space, all of these facts together moti-
vate us to propose this measure as being the most natural and genuine
measure of the total "amount of change" that is undergone by a physical
quantum state vector I Vf(t)) as it changes dynamically under a (possibly
varying) physical influence H(t).

Insofar as we can consider all dynamical evolution and change to be
forms of "computation," where this word is construed in a very general
sense, we can also accept this measure as being an appropriate measure of
the amount of computational effort exerted by the system as it undergoes
the given trajectory.

Thus, from here on, rather than calling our quantity "action" (which
would lead to confusion with the action of the Lagrangian), or "accumu-
lated phase angle" (which is awkward) we will refer to our quantity as
simply the effort when we wish to be concise, and abbreviate it with the
symbol -F. That is,

'Ftl---t2 [f (t)] f- ý{S(t*w¢v(t)) (53)
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is a real-valued functional of a state vector trajectory 4r(t) taken between
two times tl and t 2 . Note that the value of F depends only on the shape
of the path. It is independent of the absolute time, the speed at which the
trajectory is traversed, and on various other details of the Hamiltonian
that generates the trajectory (such as its eigenvalues for eigenstates that are
not components of *); in general, many different Hamiltonian evolutions
can generate the same path, which will always have the same total effort.
So, in the above equation, we can consider *b(t) to just be a parameterized
curve where t is now just any arbitrary real-valued parameter, not neces-
sarily even corresponding to physical time. In other words, the effort quan-
tity does not depend on the precise system of coordinates that is used for
measuring the passage of time, but rather only on a pure geometric object,
namely the path taken through Hilbert space.

Note that to say that the path length corresponds to computational
effort is not to imply that all of the physical computation that is occurring
in the given system is necessarily being harnessed and applied by humans
to meet our calculational needs, only that this is the total amount of raw
computational work that is occurring "in nature." The choice of the word
"effort" is intended to evoke the commonsense realization that effort may
be wasted, i.e., not used for anything useful.

Note also that the action operator A (as we have defined it) gives a
concise yet particularly comprehensive characterization of a given compu-
tational process, in the sense that it determines not only the overall unitary
operation U = eiA that will be performed, but also the amount of effort
that will be expended in getting to the final result from any given initial
state.

The primary caveat to the above conception of computational effort
seems to be that the quantity F (together with the rate of phase rotation,
and the path length in Hilbert space) is dependent on where we choose
to draw our zero of energy. As is well known, absolute energies are only
physically defined up to an additive constant, and so the total Hamilto-
nian action or effort is only well defined up to this constant multiplied by
the elapsed time t.

A natural and widely used convention is to define the least eigenvalue
of the Hamiltonian (the "ground state" energy) to be the zero of energy.
In a similar fashion, we can choose to additively shift the Hamiltonian so
that the least eigenvalue of the cumulative action operator A(t) is taken
to represent zero effort. (Note that this approach can even be used when
the Hamiltonian itself is time-dependent.)

However, this choice is by no means mandated mathematically, and
in fact, in certain pathological cases (such as an infinite-dimensional
or time-dependent Hamiltonian with unboundedly negative eigenvalues),
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there might not even be any minimum eigenvalue for the resulting action
operator over a given interval. One needs to keep these caveats in the back
of one's mind, although they seemingly end up not very much affecting the
potential practical applications of this concept, which we will address in a
later section.

Another reason that we might not want to consider the ground state
energy to always be zero is if the ground state energy varies, especially if it
includes energy that had to be explicitly transferred into the system from
some other external subsystem. Thus, energy that is present in a given sys-
tem, even if that system is in its ground state, may still represent energy
that was transferred from elsewhere and isn't being used for other pur-
poses; i.e., it may represent "wasted" computational effort, and we may
wish to count it as such, rather than just counting it as zero effort.

Another possible convention would be to count a system's energy as
being its total (gravitating) mass-energy, or rest mass-energy, if we want it
to be independent of the observer's velocity. One might think this choice
is a somewhat less arbitrary than the ground state convention, since mass
is a physical observable, but unfortunately, in general relativity, the contri-
bution to the total mass-energy of a local system that is due to its gravita-
tional self-energy isn't actually independent of the coordinate system that
is used (Ref. 22, p. 62). However, this caveat is usually only important in
extreme systems such as neutron stars and black holes, where the gravita-
tional self-energy contributes significantly to the system's total mass.

In any case, for now, we propose to just make a "gentlepersons' agree-
ment" that we will always make sure that the energy eigenvalues of the
systems that we consider are always shifted so as to be positive, so that the
total effort is always positive, and we don't have to worry about what would
be the meaning of a negative "amount of computational effort." Unfortu-
nately, this strategy rules out considering certain classes of systems, such
as bottomless potential wells, or the infinite Dirac sea of negative-energy
fermion states. But resolving this issue will have to wait for future work.

10. MORE ABSTRACT SCENARIOS

In the above, we have specified a well-defined (at least, up to an addi-
tive constant) positive, real-valued measure _F of the amount of compu-
tational effort represented by any trajectory of a state vector in Hilbert
space.

This raises the question of whether we can assign a measure of com-
putational effort to other physical situations that may be less completely
specified. For example, we may be given a cumulative action operator A,
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but not know the detailed Hamiltonian trajectory H(t)Jt~tt that generated
it, and we may be given only a set V of possible initial states (rather than
a single definite state), or we may have a probability distribution or den-
sity function p: V -* [0, 1] over initial states. In such more abstract situa-
tions, can we still meaningfully define the amount of computational effort
exerted by the system as it undergoes the evolution specified by its Ham-
iltonian over a given time interval?

Of course we can. Given a cumulative action operator A and given
any specific state 4,=*(tl) at the initial time t1, the value of Ft,-[t2[1*(t)]

is independent of the details of the Hamiltonian trajectory H(t) and is
given simply by

•"A (Ur) := A[Vf] = (VJAI*), (54)

which can be called the effort undergone by 4, under A.
We can therefore also naturally express the average or expected effort

over V exerted by the action operator A as:

F'v(A)=Exv[[FA]= p P(*).FA(,) = (A)=Tr(pA), (55)
1/EV

where the density operator p describing the initial mixed state is con-
structed from the probability distribution over pure states 4, in the usual
fashion, that is, with P=FZ4 EV P(V)IM)(4I. If no probability distribution
p has been provided, we can use a uniform distribution over some natural
measure on the set V.

This then gives us a workable definition of the mean effort exerted by
a system over time under a given Hamiltonian, even when the initial state
is not exactly known.

In some situations, we might also be particularly interested in the
maximum effort over the set V of possible initial states. For example, sup-
pose we are preparing the initial state of the system, and we want to ini-
tialize the system in such a way that it will exert the maximum effort
possible. Given A and maximizing over V, we define the maximum effort
exerted by A over V as

-F+ (A) :max YA(4). (56)

This can be considered to be a measure of the potential computational
"strength" of the given action operator A, expressing that any Hamiltonian
H(t) that implements A over some arbitrary interval tl -+ t2 could exert
an amount .F+(A) of computational effort over that same interval, given
a suitable initial state. Insofar as the actual state that we end up getting
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might be the one that undergoes the maximal amount of effort, we can
say that a system with an unknown or unspecified state is, at least, exert-
ing this much "potential" computational effort.

Even if the actual state turns out not to be the maximal-action
one, the system could still be thought of as having "done the work" of
determining that the actual state is not the one that should have transi-
tioned through the given maximum Hilbert-space distance. This particular
thought should really be credited to Seth Lloyd, who pointed out to me in
personal discussions, as an analogy, that an ordinary Boolean gate opera-
tion can still be thought of as doing computational work even if the out-
put bit that it is applied to is not actually changed; namely, it is doing the
work of determining that the bit should not change.

Similarly to how we defined the maximum effort, we can likewise
define the minimum effort of A over V as .FT(A) := min*Ev)TA(V),
although we should keep in mind that if the ground state of the action
operator A is an available initial state in V, and if we use the convention
that the ground state action is defined to be zero, then JFv(A) will always
be 0, and so will not be very useful.

11. DIFFICULTY OF PERFORMING AN OPERATION

Suppose now that we are given no information about the situation
to be analyzed except for a unitary operator U on the Hilbert space 'H,
and we want to address the following question: How much computational
effort, at minimum, is required to physically implement U? By "imple-
ment" we mean that U is the time evolution operator that ends up being
generated by the dynamics over some interval, according to U = eiA for
some action operator A. We can call this minimum required effort the
difficulty D of implementing the unitary operator U. Our framework gives
us a natural way to formalize this notion.

Assuming we have some freedom of choice in the design of the sys-
tem, then among the set A of all Hermitian operators A on H-, or among
at least a set _ C A of available or implementable action operators, we
might want to choose the operator A that generates U that has the small-
est value of the maximum or worst-case effort JF+(A) over the set V of
possible initial state vectors. This A can be considered to be the "best"
action operator for generating the given unitary U, in the sense that the
length of the longest trajectory that would be undergone by any possible
state vector V' E V is minimized. This strategy is analogous to what we
do in traditional algorithm design, where we usually choose the algorithm
that has the minimum time complexity on worst-case input data. In our
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case, A can be considered to abstractly represent the algorithm selected,
while the initial vector V1 represents the input data. Rather than time com-
plexity, we focus on effort or Hamiltonian action, since (as we will see)
this translates directly to time when a given supply of energy is available
to be invested in the system.

In some situations, it may be preferred to choose A so as to mini-
mize the expected effort rather than the worst-case effort, for example, if
we want to minimize the total effort exerted over an arbitrarily large set of
computations with randomly chosen input states selected from some distri-
bution.

We can thus define the maximum (D+v) and expected (D5,v) diffi-
culty of a desired unitary transform U under the available action set t and
initial-state set V as follows:

Dt+,v(U) :=min.F+(A)
AEK

= min maxY•FA(,) (57)
AEtA VEV

DN. v (U) :-=min.FV (A)
AER

=min P(*).FA () (58)
A E K E

Note that in all cases we still want to minimize over the available action
operators A E K, because there is usually no physical reason why indefi-
nitely large action operators (which waste arbitrarily large amounts of
effort) could not be constructed to implement a given unitary; thus, maxi-
mizing over action operators would thus always give oo and would not be
meaningful.

A remark about the set N of available action operators. Typically it
would be constrained by what constitutes an "available" dynamics that
we are free to choose within a given theoretical, experimental, or manu-
facturing context. For example, N might reasonably be constrained to
include only those action operators that are obtainable from time-dependent
Hamiltonians H (t) which are themselves constructed by summing
over local interaction terms between neighboring subsystems, or by inte-
grating a Hamiltonian density function that includes only local terms on
a field over some topological space, e.g., to reflect the local structure
of spacetime in a quantum field theory picture. Or, we might constrain
ourselves to action operators that are obtainable from time-independent
Hamiltonians only, e.g., if we are designing a self-contained (closed) quan-
tum system. Finally, practical considerations may severely constrain the
space of Hamiltonians to ones that can be readily constructed in devices
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that can be built using a specific manufacturing process, although we
should note that if scalable universal quantum computers can be built,
then any desired local Hamiltonian could be straightforwardly emulated
on these machines.

As a brief aside, it is also interesting to note that a given difficulty
function D(U) (either the worst-case or average-case version, and whatever
R and V are) also induces an intrinsic metric on the space of unitaries of a
given rank; we can define a suitable distance function between unitaries by

d(U1, U2) = T(U 2 U) (59)

that is, the distance between Ul and U2 in this metric is just the diffi-

culty of performing the relative unitary U1• 2 := U2U7 that is equivalent to

undoing U1 (using U1 = U-1) and then doing U2 . A unitary trajectory for
implementing U1 , 2 that actually minimizes the effort will then form, when
right-multiplied by U1, a (section of a) geodesic in the space of unitaries
passing between the unitaries U1 and U2 (since U1I 2UI = U2). Of course,
in general, the shortest unitary trajectory for implementing UJ, 2 will not

actually work by doing U- followed by U2; for example, if U1 and U2 have
high difficulty but are very close together, then the shortest unitary trajec-
tory between them will be much more direct than this.

Now, given our notion of the computational difficulty of a given
unitary U, we can now reinterpret previous results (such as(5,16)) regard-
ing "quantum speed limits" or minimum times to implement various spe-
cific unitary transforms of interest, or classes of transforms, given states
of specified average energy above the ground state, as follows: These anal-
yses are implicitly specifying an t (usually, just all Hermitian operators)
and a V (usually, just the entire Hilbert space), and showing that the
worst-case difficulty D+(U) for the transform U has a specific value (or
lower bound), assuming the presence of a time-independent Hamiltonian
where the ground state energy is usually set to 0. In other words, such
analyses show that a certain minimum worst-case effort or Hamiltonian
action is required to implement the particular U in question.

As an example, Margolus and Levitin's result(5) can be interpreted as
telling us that any U that rotates some state * to an orthogonal state has a
worst-case difficulty of D+(U) > h/4, since their result shows that any state
of energy E takes time at least h/4E (no matter what the Hamiltonian) to
accumulate the action needed to take it to an orthogonal state; thus the
Hamiltonian action A = Et that is required to carry out such a transition
is at least h/4.



On the Interpretation of Energy as the Rate of Quantum Computation 317

Another result in Ref. 5 implies that if there is a *' such that (I4*), U 14V),
U214'), ... , UN-I 1), UNI*')= 4')) comprises a cycle of N states, with
each orthogonal to the preceding and succeeding states in the cycle, then
D+ (U)> ht N-I--, even if we are given complete freedom in constructing the
Hamiltonian, aside from a requirement that it be time-independent. For
N = 2, this expression reduces to h14, while for N -) oo, it goes to h12.
Thus, any physical computation that proceeds autonomously though an
unbounded sequence of distinct states must exert at least h/2 effort per
state transition.

Notice that the Margolus-Levitin theorem is, strictly speaking, only
giving us a lower bound on the worst-case difficulty, since it is consid-
ering only a particular state 4' of interest (namely, one that actually
undergoes a transition to an orthogonal state), rather than finding the
worst-case potential effort to perform the corresponding U, maximized
over all possible initial 4 in the Hilbert space. Later, we will see that the
actual worst-case effort for an orthogonalizing transformation is actually
h/2= r even in the N =2 case, and possibly even higher in cases that go
through more states.

We anticipate that, armed our definitions, it would be a highly use-
ful and worthwhile exercise to systematically go through a variety of the
quantum unitary transforms that have already been identified in quan-
tum computing as comprising useful "quantum logic gate" operations,
and quantify their worst-case and average difficulty, according to the
above definitions, under various physically realistic sets of constraints. This
would directly tell us how much physical Hamiltonian action is required
to carry out those operations (given a best-case Hamiltonian implemen-
tation, while operating on a worst-case or average-case input state). We
can likewise do the same for classical reversible Boolean logic opera-
tions embedded within unitary operations, as well as classical irreversible
Boolean logic operations embedded within classical reversible operations,
with ancilla bits used as needed for carrying away garbage information to
be discarded.

Such an investigation will, for the first time, give us a natural and
physically well-founded measure of the physical complexity of logic oper-
ations, in terms of Hamiltonian action. This in turn would directly
tell us the minimum physical time to perform these operations within
any physical system or subsystem using a set of states having a given
maximum energy about the ground state, given the known or prespeci-
fled constraints on the system's initial state and its available Hamiltonian
dynamics. This new quantification of computational complexity may also
allow us to derive lower bounds on the number of quantum gates of a given
type that would be required to implement a given larger transformation in
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terms of smaller ones, and possibly to show that certain constructions of
larger gates out of smaller ones are optimal.

In subsequent subsections, we begin carrying out the above-described
line of research, with some initial investigations of the difficulty of various
simple operations in situations where the available dynamics is relatively
unconstrained, which is the easiest case to analyze.

12. SPECIFIC OPERATIONS

In this section, we explore the difficulty (according to our previous
definitions) of a variety of important quantum and classical logic opera-
tions.

We will begin by considering some educated guesses about the difficulty
of various unitaries. For each unitary U we are to imagine implementing it
via a particular transformation trajectory U'(t) (and Hamiltonian H(t) such
that U'(t) =eiH(t)dt) that is as "direct" as possible, in the sense of minimizing
the Hilbert-space distance through which worst-case states are transported.
Intuition tells us that these minimal trajectories are expected to follow geo-
desics in the space of unitaries, as per the metric we defined earlier; in other
words, they should be "straight-line" paths, so to speak, that get us to the
desired unitary as directly as possible.

12.1. General Two-dimensional Unitaries

Let us begin by considering U2, the space of unitary transformations
on Hilbert spaces of dimensionality 2. In quantum computing, these corre-
spond to single-qubit quantum logic gates. As is well known (e.g., see Ref.
23, Eq. 4.9), any such U can be decomposed as

U =eic RA (0), (60)

where h = (nx, ny, nz) is a real 3D unit vector and Rh (O) is a Bloch-sphere
rotation about this vector by an angle of 0, that is,

Rh (0) = ei(0/ 2)(flr), (61)

where a = (orx, ory, .) is the vector of Pauli matricesi0 1 or = i 01 .
Cr = 1 0 ] ' CY = [ ' 0 ] r z= [ 0 -1 (6 2

Let us now consider breaking down U into its multiplicative factors eia

and Rh(O), which we observe commute with each other, since e"a is a
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scalar. Thus, we can consider these two components of U to be carried
out in either order, or even simultaneously if we prefer.

Let's start by looking at RA,(O). At first, we might guess that the
worst-case effort that is required to perform Rh (O) for angles 0 where
-7r <0 <7r ought to just turn out to be 101/2, since, for example, a Bloch
sphere rotation through an angle of 0 = 7r radians corresponds to invert-
ing a spin in ordinary 3D space through an angle of 180' to point in
the opposite direction, which is an orthogonalizing transformation, and
we already know from the Margolus-Levitin theorem that any transition
to an orthogonal state under a constant Hamiltonian requires a minimum
action (given zero ground state energy) for the state in question of h/4=
(7r/2)h = (7r/2) rad, or an area swept out of 7r/4 square units. This is a
good first guess, but later, we will see that the actual worst-case action
turns out to be twice as large as this. (Our intuition forgot to take into
account the fact that the state vector in the Margolus-Levitin theorem
isn't actually the worst-case one, as far as the accumulated Hamiltonian
action is concerned.)

Indeed, for any real unit 3-vector h (the "axis of rotation" for the
Bloch sphere), one can easily verify that there is always a corresponding
complex state vector

1(tz [nz+l] (63)nv)•2(~z nx+iny

which is a unit eigenvector of h . o having eigenvalue +1. This state vector
is therefore also an eigenstate of Rh (0), with eigenvalue ei(0/ 2). In other
words, in any orthonormal basis that includes Iv+) as one of the basis
vectors, as 0 increases from 0 (for now, we'll assume for simplicity that
the final value of 0 is non-negative, 0<0<7r), the coefficient of the Iv+)
component of the state J*(t))= Rh(0)Iv+) (starting from the initial state
I*(0)) = vt), where the coefficient c I. is 1) describes a circular arc in
the complex plane centered on the origin, sweeping out a total angle of
0/2, and an origin-centered area of 0/4. As we saw earlier, this same
measure of the weighted-average accumulated angle and total area accu-
mulated still holds in any basis. So, we have that the effort of R, (6) must
be at least 0/2. Indeed, this is the exact worst-case effort, since Iv+)'s
eigenvalue is maximal, so no pure energy eigenstate can possibly sweep
out a larger angle as 0 increases, and therefore no superposition of energy
eigenstates (i.e., no general state) can do so either.

Now, what about the eia factor that's included in the expression for a
general U E U 2? Note that this term represents an overall (global) phase
factor that applies to all eigenstates. As such, even the ground state 1g)
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of whatever Hamiltonian is used to implement U might still accumulate
a phase due to this phase factor. In this case, Ig) would have non-zero
Hamiltonian energy. If we redefine Ig) to instead have zero energy (HIg)=
0), then Ig)'s coefficient would not phase-rotate at all, since the action
operator A = Ht would give AIg) = 0 for this state, and UIg) would give
(eiA)lg) = (e°)Ig)= Ig), that is, Ig) would be unchanged by this U. How-
ever, it does not follow that we can always just let a be zero, as Ig) may
generally have accumulated an additional phase resulting from the Rh(O)
component of U as well. It is the total phase accumulated by the ground
state that we wish to define to be zero.

Let us now consider the following: Under the transformation Rh(O),
as 0 increases from 0, we notice that Iv+) (the eigenvalue-1 eigenstate
of h. a which we constructed above) only phase-rotates by an angle 0/2.
Under U = ei R, (0), I v+) therefore undergoes an overall phase-rotation by
an angle of a + 0/2. We confidently conjecture that the "least potential
action" or most efficient way to implement U is to apply a Hamiltonian
that simultaneously sweeps both ot and 0 forward steadily from 0, at
respective rates that are exactly proportional to their intended final values.
If this is correct, then lv+) is indeed an eigenstate of that best-case
Hamiltonian, with energy (a+ 0/2)/t (recall that we're using h = 1), where
t is the total time taken for a and 0 to reach their final values.

However, since the space we are working with is two-dimensional,
there must be another energy eigenstate as well. Solving the eigen-equation
(h a)Iv)=rIv), we find that the other eigenvalue r of h-a is -1, and the
other unit-length eigenvector, modulo phase-rotations, is (for n, > 0)

1- = I nz -11 (64)
_v-- /2-(I- -nz) In, +in yI

or, in the special case when nz =0, then instead any normalized column
vector Iv-)=[vo; vI] where Ivo1 v, 2-1/ 2 will work, so long as the vec-
tor components vo and vl have the specific obtuse (that is, > 900) relative
phase angle that is given by the relation vi = (-n, - in.,)vo. (Note that
In, + inyI = I when n, = 0.)

Thus, for any Hamiltonian that smoothly sweeps 0 forward in a
steady transformation Rh (0) with 0 cx t, there will actually be two differ-
ent energy eigenstates having energies that are negatives of each other, one
state in which the accumulated action of the Hamiltonian is 0/2 (as we
saw above), and another state (the ground state) where the action is the
negative of this, or -0/2. Together with the global phase-rotation of a,
we have that the total action for U is a + 0/2 and c - 0/2 for these two
energy eigenstates, respectively.
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Following our convention that the total action in the ground state
should be always considered to be zero, we can shift the energy levels
upwards in such a way that the lower value a - 0/2 will be equal to 0, in
other words, we can adjust our rate of global phase rotation (which deter-
mined a) in such a way that we have exactly a =0/2. Now, the total action
in the high energy state is a +0/2=0/2+0/2=0.

In other words, starting with any U E U 2 and decomposing it as
U = ea Rh (0), which involves a rotation of the Bloch sphere through an
angle of 0 about an axis h, we can calculate a meaningful difficulty
D+(U) by using the convention that the ground state should be consid-
ered to have energy 0, and by letting D+(U)=D+(U',(O)), where we define
Uh(0) =_-ei,/ 2Rh (0), that is, ignoring the original value of at (whatever it
was) and instead adjusting at to have the value a = 0/2 which assigns the
ground state to zero energy. Thus, we can say that the "true" computa-
tional/physical difficulty of U (given this choice) is exactly 0 for any sin-
gle-qubit unitary U = el' Rh (0), regardless of the value of a. If 0 is a pure
number (implicitly bearing an angle unit of radians), then the worst-case
Hamiltonian action to carry out the desired transform using the best-case
Hamiltonian (assuming that is indeed what we have managed to charac-
terize above) is Oh, in whatever physical units we wish to express h. That
is, D+ (U) =0.

To wrap up this section, let us take a look at the precise form of the
Hamiltonian that we are proposing. Note that

. [ -iny -=J(65)nx + iny -nzI

is itself an Hermitian operator which plays the role of the Hamiltonian
operator H with respect to the Bloch-sphere rotation unitary RA,(O)=
ei( /2)(A), if the rotation angle 0 is taken be equal to twice the time t.
Meanwhile, in this scenario, the extra phase-rotation factor eia = ei(0/2) out
front corresponds simply to an additional constant energy of + 1, using the
same angular velocity units of (0/2t). This gives us a total "Hamiltonian"
(in quotes because we haven't introduced an explicit time parameter here
yet) of H, that is required to implement a steady rotation about h which
is equal to

H, = 1+h-T

1 0nz nx -iny]=0 1 4-nx +-iny -nZ

I + nz nx - iny (66nx + iny 1 -nz .I (6
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With this choice of "Hamiltonian," we can easily check that the Ivt)
are indeed its energy eigenstates, with H I v) =0 (the ground state has
"energy" 0) and H Iv+) =2, which is what we want since it will cancel
out with the 2 in the denominator of the exponent in the rotation unitary
Uj (0) - ei /2 Rf (0) = ei(/ 2 ) (I +h ) -- ei(/ 2 )HA.

To generalize the picture slightly, if a rotation through 0 about an axis
h is to take place over an arbitrary amount of time t, then we require a
Hamiltonian (a proper one now, in actual angular-velocity energy units) of

H=OH= 0 [ 1+n, n,-iny (67)
2t n2tI nx +iny 1-nz

With this choice of Hamiltonian, note that things work out nicely so
that the high-energy eigenstate Iv+) phase-rotates at exactly the desired
rate co+ -0/ t, since we have that

0 0 0HIvt)=yHhlv+)= 2Iv+)=01v+ )= +(68)

Thus, the action operator A= Ht comes out exactly equal to the angle
operator 02 which gives the total angle of phase rotation for both the
energy eigenstates Iv,=), that is, AIv-)= QIv-)=OIv-) and AIv+)=Q Iv)=
Ov+). And for an arbitrary initial state *, i.e., for any normalized com-
plex superposition of the eigenstates Iv,=), A[Vf]=QŽ[*] gives the quantum
mean angle of phase rotation.

Note that in all the above discussion, we have assumed that the rota-
tion angle is non-negative, i.e., that 0 < 0 <7r (rad). To complete the pic-
ture, note that for values of 0 between 0 and -7r, we can convert them to
positive angles by the simple expedient of rotating instead by an angle of
101 = -0 about the -h axis , which is an exactly equivalent rotation. This
has the effect of exchanging the values of the lv=) eigenstates, as well as
the sign of the H, component of H. Other than that, everything else is the
same, with the result that the action A always comes out non-negative and
equal to the absolute value of 0. Of course, for the case of absolute angles
outside the range (-7r, 7r], we can just reduce them to the equivalent angle
in (-7r, 7r] by adding or subtracting the appropriate multiple of 27r.

In the above, although we have not yet quite finished proving rigor-
ously that the specific H we have given is in fact the one that implements
U with the least possible value of the worst-case action A, still, we expect
that it should already seem highly plausible to the reader that this should
in fact be the case, due to the directness and simplicity of our construc-
tion, which made use only of the simple fact that any arbitrary U E U2 can
be decomposed into a single generalized rotation about an arbitrary axis
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is real three-space, accompanied by a global phase rotation. Of course, a
more complete proof of the optimality of this construction would be desir-
able to have, but it will have to wait for future work.

12.2. Specific Single-Qubit Gates

Given the above discussion, to determine the difficulty D of any sin-
gle-qubit gate U is a simple matter of finding some unit 3-vector h and
angles a, 0 E (-7r, 7r] such that U'= e" Rh (0), which is always possible. This
then establishes that D+(U) = 101, under our ground zero energy conven-
tion. Let us look briefly at how this calculation comes out for various sin-
gle-qubit gates of interest.

1. The Pauli spin-operator "gates" X =o, (which is the in-place NOT
operation in the computational basis), Y = cy, and Z = a, all of course
involve a rotation angle of 0= 7r, since they all square to the identity (27r
rotation). Thus, D÷ (X) = D÷ (Y) = D÷ (Z) = 7r = h/2.

2. The "square root of NOT" gate N = ½+ [ i-'] of course requires2l-i l+i]ocorerqis

an angle of zr/2, since N 2 =X. Thus, D+(N)=7r/2=h/4.

3. The Hadamard gate N = [L-L1 requires a rotation angle of 7r

about the hi = (1, 0, 1)/V,/2 axis, i.e., h a = (or + az)/N 2 . Also note that
H 2 = 1 and a rotation through 27r is the identity. Thus, D+(H) ==Ir =h/2.

4. The "phase gate" S=[ 0 ] requires 0=7r/2 since note that S2 =Z.

So, D+(S) =-r/2=h/4.
5. The so-called "'r/8" gate T = [0 exp[i 0/4]

note that T4 -=Z. Thus, D+(T)=-r/4=h/8.

6. The generalized phase gate ph(0)= [exiJ ] is just a rotation by

an angle of 0 about the z axis, so D+(ph(O))=O=Oh.

As a point of comparison, the paper (16) studies the time required
to perform the specific gate U = e'6 X (i.e., NOT with global phase rota-
tion) using an optimal Hamiltonian, and conclude that the minimum time
r required (for a specific initial state) is

r=h 1+2 0). (69)

Note that the corresponding Hamiltonian action ca or effort F is

a-=.F=Er = h +2h0
4 47r
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7r
= -h +Oh

2
7r

= -+0 (with h=l). (70)
2

At first glance, this might appear to contradict our claim that the diffi-
culty of such a U ought to be exactly 7r. However, we should keep two
things in mind. First, in Ref. 16, Levitin et al., are concerned with the time
to carry out U in the case of a specific subset of initial states which will
actually transition to an orthogonal state in the time r. However, these
particular states are not the "worst-case" ones from our perspective, and
so they don't determine the maximum effort. Rather, the particular states
under consideration in their paper all have a mean energy of only Eý =
(El + E2)/2, where E1 and E2 are the low and high energy eigenvalues
of the ideal Hamiltonian, respectively. Letting E1 = 0 (our ground zero
assumption), we have that E2 = 2E. Since E 2 has the highest energy avail-
able given this spectrum, the E2 energy eigenstate accumulates more action
over the time r than any other possible state, in particular, double that of
states with energy E = E 2 /2, and thus it is the E 2 state that determines the
worst-case action, which is twice that of016) or in other words A=7r. The
term involving 0 in (70) drops out entirely, since as we already saw ear-
lier, global phase shifts are irrelevant when considering total action, under
our convention that the ground state action is always defined to be zero.
Levitin et al. don't make this adjustment, because they are assuming that
the Hamiltonian has already been arranged in advance to have a desired
energy scale. Thus, the global phase rotation by 0 leads to an extra addi-
tive 0 in their expression (70) for the action.

12.3. Difficulty of Achieving Infidelity

A natural and widely-used measure of the degree of closeness or sim-
ilarity between two quantum states u, v is the fidelity, which is defined
(for pure states) as F(u, v)= I(ulv)l =lutvl. (see Ref. 23.) Note that if the
actual state of a system is u, and we measure it in a measurement basis
that includes v as a basis vector, the square of the fidelity p = F 2 gives the
probability that the measurement operator will project the state down to
v, and that v will be seen as the "actual" state. (This is a "quantum jump"
or "wavefunction collapse" event, or, in the many-worlds picture, it is the
subjectively experienced outcome when the state of the observer becomes
inextricably entangled with that of the system.) Likewise with the roles of
u and v reversed. Thus, only when F =0 are the states u and v orthogonal.

We can also define a related quantity, the "infidelity" Inf(u, v) --
v/1 - p = N/1 - F 2 . The squared infidelity between u and v is then just the
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probability I - p that if the actual state is u, then it will not be taken to
v by a projective measurement (in a measurement basis that includes v),
and vice-versa. In other words, if v is some old state of a system, and u
is its new state, the squared infidelity between u and v is the probability
that the answer to the question "Is the state different from v yet?" will be
found to be "yes" when this question is asked experimentally by a mea-
surement apparatus that compares the state with v.

Let us now explore the minimum effort that is required in order for
some of the possible state vectors of a system to attain a given degree
of infidelity (relative to their initial states), in the case of two-dimensional
Hilbert spaces. Note that not all vectors will achieve infidelity; in particu-
lar, the eigenvectors of any time-independent Hamiltonian will always have
0 infidelity.

We start by recalling from earlier that any 2-dimensional unitary can
be considered a rotation of the Bloch sphere about some axis in ordinary
(real-valued) 3-D space. Since a simple change of basis suffices to trans-
form any axis to any other, we can without loss of generality presume a
rotation about the z axis, represented by

Rý (0)=e 0/2 0 (71
e4 0 ei0/2] (71)

We saw earlier that the effort of any such rotation (under the ground-zero
convention) is always exactly 0. What initial state will gain infidelity most
rapidly under this transformation? Until we figure this out, let us allow the
initial state to be a general unit vector Iv) =[vo; vl]= vo10)+ vI11) in the
basis 10), I1). Then Iu)-=Ri(O)1v)=[e-i°/ 2 vo; ei°/ 2 Vl] as a column vector of
complex coefficients. Now the fidelity between v and u is

F(v, u) = (vIu)I= I(vIR2(0)1v)I

= vle-iO/2 vO.+ vtei8/ 2vl

e-i°/2 IVo 12 + e"/2IV 112

[cos -isin v012 + cos isin] IV, 2

(cOS )0(1vO I V12)+ i(n (iIV h)

+ O) +i (sin 0) (IV,112 _ Iv0I2), (72)

where in the last line we have made use of the fact that Ivol 2 + lV2V = 1
for a normalized v. Now, F 2 is the sum of the squared real and imaginary
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components of the expression inside the outermost absolute-value delimit-
ers II above:

[F(u, v:)] ý12 [ •2( I u)] +.12 [ (VI u)]

- cos2 (0) +sin 2 (0) (Iv, 12 _ [v012) 2

= cos2 (0) +sin 2 (-) (1-41viI2lvo2)

1-4sin2 ( 1)Vl2 IVOl 12, (73)

where in getting from the second to the third line, we have again made
use of the fact that I v0 12 + Iv 112 = 1. We can reassure ourselves that the
last line of (73) is always in the range [0,1], since Ivo12 1l 2 < 1/4 given
that vol 2 + Ilv 12= 1. Note also that the fidelity is minimized when Ivol 2 =

IVi 12=½, that is, when the two z-basis states are in an equal superposition.
This is then the "worst case" (worst in terms of "least fidelity") which we
wish to focus on.

So now, the infidelity I = Inf(u, v) = V 1- F 2(u, v) comes out to be a
reasonably simple expression:

Inf(u, v) = 1 - [F(u, v)]2

= r4sin2 (t) lvil2 lvol 2  (74)

= 2 (sin 0 ) IvolIIvi. (75)

Note that for any given angle of rotation in 0 < 0 < 7r/2, the infidelity is
maximized when Ivo0 = IlI = 1v//2_. For such v, we have Ivo0Ill v=I and
so

0
Inf(u, v) = sin 0. (76)2

Thus, if we wish that some system initially in state v should achieve a
desired degree I of infidelity (relative to its initial state) using a transfor-
mation of minimum effort, we must choose a unitary transformation that
is a rotation Rh (0) about an axis h that is "perpendicular" to v, and rotate
by an angle 0 = 2. arcsin(I). The Hamiltonian action a accumulated by
"worst-case" (that is, maximum-energy) vectors under this transformation
is (by definition) the difficulty D+ (Rh (0)) of that unitary, and is given by
a = 2- arcsin(I).
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However, the specific initial vector v that we are dealing with will
not have the maximum energy E (relative to ground) but rather half of
this, or E/2, since half of its probability mass will be in the high-energy
state, and half in the zero-energy ground state. Therefore, v's total
Hamiltonian action (amount of change) along its trajectory will instead
be exactly a(v)=arcsin(I), a wonderfully simple expression. This a is the
effort exerted by the specific state v as it traverses a maximally efficient
path for achieving infidelity I = sin a.

So, for example, suppose we want to cause some given initial state v
to transition to a new state that has only a probability of at most p = 1/2
of being confused with the initial state if it were measured. This is to say
that the infidelity between the states should be at least I = v/ -p = 1/-,2,
which requires the state to traverse a trajectory that has a length of at
least 0 =arcsin(I) =arcsin(l/'2-) =7r/4=h/8, which can be done using a
minimum-difficulty unitary transform whose worst-case effort is twice as
great as this, or 7r/2=h/4, meaning that the worst-case (maximum-energy)
states of the system would traverse a trajectory of this (greater) length
under an optimal implementation of such a transformation.

Assuming that the actual given initial state in question is assigned an
average energy of only E above the ground state, it will take time at least
t = h/8E to carry out a unitary transformation on this state that achieves a
probability above 1/2 of distinguishing it from the resulting state; whereas,
if we are given that the maximum energy state in the qubit spectrum has
energy E, then it will take time at least t = h/4E to carry out the trans-
form.

In other words, to carry out an operation in time t that yields a 50%
probability (or less) of conflation of some initial states with their succes-
sors requires that the initial states in question must have energy at least
E = h/8t, and that states of energy at least E = h/4t must exist in the
spectrum.

Note that the above results are also perfectly consistent with the
Margolus-Levitin theorem.(5) That is, plugging in an infidelity of I = 1 to
represent a transition to an orthogonal state, we find that the specific ini-
tial state's effort F(v) = arcsin(l) = 7r/2 while the worst-case difficulty for
this transform is 0 = 2 arcsin(l) = 7r; these figures are twice that for the
previous example. And so for a state to attain a 0% probability of con-
flation (i.e., to reach an orthogonal state) requires that it have at least
twice the energy as the previous scenario, or E = -r/2t = h/4t (under the
Hamiltonian used to carry out the transformation), while other energy
levels of at least 7r/t = h/2t must be present in the spectrum of the
Hamiltonian operator being used.
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12.4. Higher-dimensional Operations

Naturally, we are interested not only in unitaries in U2, but also in
higher dimensions, in particular, unitaries in the groups U2T, which corre-
spond to general "quantum logic gate" operations (really, arbitrary quan-
tum computations) operating on sets of n qubits.

In particular, let us focus on the "controlled-U" gates with one target
bit, which take the general form (modulo qubit reorderings)

Uj = Cn- I U (77)
U 0J

where we have 2n -- 2 ones along the diagonal, and a rank-2 unitary matrix
U in the lower-right corner. In other words, for computational basis states
[bobl ... bn-), whenever the first n - I qubits bobl ... b,- 2 are not all l's,
the state remains unchanged; otherwise, the unitary U is performed on the
final qubit b,- 1 .

We observe immediately that D+(U') > D+(U), since all the input
states that undergo any change at all will undergo the exact same transfor-
mation (in the subspace associated with the last qubit) that they would if
U were just applied unconditionally. Thus, the worst-case trajectories when
conditionally applying U can be no shorter than the worst-case uncondi-
tional trajectories (under an optimal implementation).

Furthermore, if U by itself would be optimally implemented by the
Hamiltonian H, then it is easy to believe that U' would likewise be opti-
mally implemented by the Hamiltonian

0
HH= (78)

H J

that is, with O's everywhere except for a copy of H in the lower-right 2 x 2
submatrix. It is easy to verify that this H', when exponentiated, indeed
produces the desired U'. And since its worst-case difficulty is equal to our
lower bound D+(U), it is in fact an optimal H', assuming our earlier con-
jecture about the optimality of H is correct. In this case, if H' is actually
an available Hamiltonian in the context one is considering, then the effort
of U' is indeed exactly the same as the effort of U.

We can see from this example that when we consider the full
space of mathematically describable Hamiltonians, we are likely to greatly
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underestimate the effort, compared to what can actually be implemented.
The typical known implementations of U' in terms of small local quan-
tum gates would require a number of orthogonalizing operations that is at
least linear in n, whereas in our case above, the effort is constant (upper-
bounded by 7r). It seems likely that the effort for a physically realistic
(e.g., field-theory based) Hamiltonian for this class of Us would have to
be more than constant, since the interaction of n qubits to determine an
outcome would appear to necessarily be a non-local process.

In most physical situations of interest, we will not necessarily have
available Hamiltonians that are of any form desired, such as the form H'
suggested above. Instead, we may only have available a more limited, per-
haps parameterized suite of Hamiltonians, perhaps ones that are formed
by a sum or time-sequence of specific, controllable, localized couplings
having (say) at most 2 qubits each, as is popularly represented in the
quantum computing literature using the schematic notation of quantum
logic networks.

Obviously, whenever our space of available Hamiltonians is more
restricted than the simple "all Hermitian operations" scenario analyzed
above, the resulting values of D+(U) will in general become much larger,
and probably also much more difficult for us to analytically calculate. To
compute DD+(U) for Hamiltonians that can plausibly be constructed within
the context of particular experimental frameworks that are readily physi-
cally realizable in the lab (or in a manufactured product, e.g., a someday-
hopefully-to-be-realized commercial quantum computer) is clearly a much
more complex and difficult task than we have attempted to tackle in this
paper. To address this problem more fully will have to wait for future
work.

Still, we hope that the present work can at least serve as a fruitful
conceptual foundation on which we can proceed to build meaningful ana-
lytical and/or numerical analyses of the physical/computational "difficulty"
of performing various quantum operations. We also hope that this work
will serve as a helpful stepping stone for future investigators who wish to
continue exploring the many deep and rich interconnections between phys-
ical and computational concepts.

12.5. Classical Reversible and Irreversible Boolean Operations

Although in the above discussion we have focused on the effort
required to carry out quantum gate operations, it is easy to extend the
results to classical logic operations as well. Any classical reversible opera-
tion is just a special case of a quantum gate where the matrix elements of
the unitary operator (in the computational basis) are 0 or 1. For example,
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a reversible Toffoli gate or Controlled-Controlled-NOT (CCNOT) is a
special case of the C2 U gate addressed in §12.4 above. Specifically, since
the U in question is X (NOT), which has a rotation angle of 7r, the effort
required for Toffoli must be at least 7r, and indeed is exactly 7r if arbi-
trary Hamiltonians can be constructed. Toffoli is a universal gate for clas-
sical reversible computation, so a construction of any classical reversible
circuit out of Toffoli gates sets an upper bound (as a multiple of 7r) on
the difficulty of that computation, apart from any extra effort that may be
required to control transitions between gates (which could be substantial,
but is probably close to linear in the number of operations performed).

As for ordinary irreversible Boolean operations, these can be embed-
ded into reversible operations as follows. Consider, for example, a standard
boolean inverter, whose function is irreversible as it is normally specified
in an electrical engineering context. The explicit function of an inverter
is to destructively overwrite its output node with the logical complement
of its input. (Please note that this function is distinct from that of a
classical reversible NOT operation, which simply toggles a bit in-place.)
Due to Landauer's principle, the physical information contained in the
output node cannot actually be destroyed, but is instead transferred to
reside in the environment. So, we can model the ordinary inverter's func-
tion as a sequence of reversible operations as follows:

1. Exchange output bit with an empty bit in the device's environment
2. Increment an "environment pointer" to refer to the next empty bit

in some unbounded list
3. Perform a CNOT between input node and (now empty) output

node

The first step can be understood as the emission from the device of
the old stored value of the bit, in the form of entropy. The second step
can be viewed as implementing the continuous flow of entropy away from
the device, to make room for discarding the results of subsequent inverter
operations. Finally, the third step carries out the desired logical function.
The above breakdown is not necessarily the simplest possible implementa-
tion of the classical inverter (although it is probably close), but it at least
sets an upper limit on the number of quantum operations that are abso-
lutely required.

The first step can be carried out by a unitary SWAP operation
between the two bits in question. The second step can be carried out
by an annihilate/create pair of operations that moves a "particle" by one
position to point to the next empty location in the environment; this cor-
responds to a unitary operation that increments the state vector Ii) of
some subsystem that specifies the integer location i of the environment
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pointer. Finally, the third step is just an ordinary CNOT, with an effort
of 7r. In principle, we could calculate and add up the effort for all these
steps, together with the effort needed to update a part of the machine state
that keeps track of which step we are on, to arrive at an upper bound on
the effort required to implement a classical inverter operation. However,
this calculation might not be very meaningful unless we did more work to
specify a detailed physical setup that would allow us to confirm that such
a bound was achievable in a practical hardware implementation.

13. RELATION TO BERRY PHASE

An interesting question to ask about our quantity .F is what rela-
tionship (if any) it has to the classic notion of the geometric or Berry
phase of a quantum trajectory.(24-3 1) So far, the relationships between
these concepts are not completely clear, and working them out in more
detail will have to wait for future work. However, some initial remarks are
in order.

Let H(t) be any time-dependent Hamiltonian that implements the
unitary U for t going from 0 to r, and let IV*) be an eigenvector of U,
with eigenvalue e'O. The state J f) thus undergoes a cyclic evolution in the
projective (phase-free) Hilbert space. Aharonov and Anandan(26) point out
the relation -0 = a - f (the integrated form of their Eq. (2)), where a is
the integral of the instantaneous Hamiltonian energy of the state,

ot = -f (*(t)JH(t)J*(t))dt (79)

and P is a term given by

f• T 
d -

t= fo(•(t)Ii- IV(t))dt, (80)

where 4(t) is any continuously gauge-twiddled version of *'(t) such that
*(0)= *(r) = V) (0). Aharonov and Anandan's paper(26) revolves around
their claim that this ,8 quantity is a generalized version of the Berry phase
that applies even to non-adiabatic evolutions.

However, if the results of the present paper are correct, then Aharonov
and Anandan's / is always an arbitrary value congruent to 0 (modulo 27r)
and thus is not a physically meaningful quantity. The reason is that the a
in (79) is exactly our a= A[V/r(0)], where U = e-iA (in the usual sign con-
vention, which A&A are using), and thus 4r(0) is also an eigenvector of A
with eigenvalue a, so I14(r)) = UI *(0)) =e-iaIV*(0)). Since we are already



332 Frank

given that *r(r) = e"O '(0), it follows that 'p--c (mod 27); thus -= 0
(mod 2wr). Any desired multiple of 2-r can always be selected for f by
appropriate choice of the function *(t). So, / does not contain any infor-
mation at all about the specific evolution 4(t), and thus it is not a phys-
ically meaningful quantity.

It it interesting to note that the A&A paper(26) never actually shows
that their quantity fP can ever be different from 0 (mod 2w), although they
do prove that fP has some other "interesting" properties (such as being
independent of the gauge of the original trajectory) which of course are
true trivially if fP is always congruent to zero.

Thus, it seems that one implication of our results (assuming they are
correct) is that Aharonov and Anandan's particular version (at least) of
the "geometric phase" is a chimera, and does not really exist. Further
study is needed to verify this conclusion more rigorously, and also to
determine whether other definitions of the Berry phase might escape from
it, and retain a useful physical meaning that relates in some way to our
quantity oa. Since many researchers have reported the experimental detection
of Berry-type phases (e.g., see Ref. 32), it seems highly unlikely that our
results will turn out to nullify all versions of the geometric phase for all
quantum evolutions. However, as of this writing, the correct resolution of
the apparent discrepancy between theory and experiment on this question
is not yet clear.

14. CONCLUSION

In this paper, we have shown that any continuous trajectory of a nor-
malized state vector can be measured by a real-valued quantity which we
call the effort .F, which is given by the line integral, along the trajectory,
of the imaginary component of the inner product between adjacent states
along the trajectory. This quantity is basis-independent, and is numerically
equal to the probability-weighted average phase angle accumulated by the
basis state coefficients (in radians), and to twice the area swept out by
the coefficients in the complex plane, and also to the action of the time-
dependent Hamiltonian along the trajectory, in units of h. This notion of
effort can be easily extended to apply also to transformation trajectories
U'(t) over time, as well as to an overall resulting unitary transform U,
where it measures the difficulty D or minimum effort (over available tra-
jectories) required to implement the desired transform in the worst case
(maximizing over the possible initial states). Our framework can be used
to easily rederive a variety of related results obtained by earlier papers for
various more specialized cases.
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The major implication of these results is that there is indeed a very
definite sense in which we can say that the physical concept of energy does
indeed precisely correspond to the computational concept of the rate of
computation, that is, we can validly say that energy is the rate of physi-
cal computing activity, defined as the rate of change of the state vector,
according to the measure that we have described in this paper. Further-
more, we can validly say that physical action is (an amount of) computa-
tion, defined as the total amount of change of the state vector, in the sense
we have defined.

What about different specific types of energy, and specific types of
action? Later papers along this line of research will survey how different
types of energy and action can validly be identified with computational
activity that is engaged in different types of processes. For example, heat
may be identified with energy whose detailed configuration information is
unknown (is entropy), rest mass-energy can be identified with energy that
is engaged in updating a system's internal state in its rest frame, potential
energy with phase rotation due to emission/absorption of virtual particles,
and so forth. As a preview, it turns out that we can even make our compu-
tational interpretation consistent with special relativity by subdividing the
energy of a moving body (in a given observer frame) into the functional
energy (D that is associated with updating the body's internal state (this
turns out to be just the negative Lagrangian -L = H - pv) and a motional
part M = pv (related to but not quite the same as kinetic energy) that is
associated with conveying the body through space; relativistic momentum
then turns out to be the motional computational effort exerted per unit
distance traversed. Future papers will elaborate on these related themes in
more depth.

It is hoped that the long-term outcome of this line of thought will
be to eventually show how all physical concepts and quantities can be
rigorously understood in a well-defined mathematical framework that is
also simultaneously well-suited for describing physical implementations
of desired computational processes. That is, we seek an eventual uni-
fying mathematical foundation that is appropriate for not only physical
science, but also for device-level computer engineering and for physics-
based computer science. We expect that such a unifying perspective should
greatly facilitate the future design and development of maximally effi-
cient computers constructed from nanoscale (and perhaps, someday, even
smaller) components, machines that attempt to harness the underlying
computational resources provided by physics in the most efficient possible
fashion.
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We describe a model for the interaction of the internal (spin) degree of free-
dom of a quantum lattice-gas particle with an environmental bath. We impose the
constraints that the particle-bath interaction be fixed, while the state of the bath
is random, and that the effect of the particle-bath interaction be parity invari-
ant. The condition of parity invariance defines a subgroup of the unitary group
of actions on the spin degree of freedom and the bath. We derive a general con-
straint on the Lie algebra of the unitary group which defines this subgroup, and
hence guarantees parity invariance of the particle-bath interaction. We show that
generalizing the quantum lattice gas in this way produces a model having both
classical and quantum discrete random walks as different limits. We present pre-
liminary simulation results illustrating the intermediate behavior in the presence
of weak quantum noise.

KEY WORDS: Quantum lattice gas; decoherence; quantum random walk.
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1. INTRODUCTION

Lattice gases are arguably the simplest models for the simulation of
classical physical systems. These models provide elementary microscopic
dynamics whose hydrodynamic limits are, inter alia, the diffusion equation,
Burgers' equation and the Navier Stokes equations.• They also provide a
simple arena for the creation of new models of physical phenomena such
as multicomponent flow and dynamical geometry.(2- 5) Lattice gases pos-
sess deterministic, stochastic and quantum (unitary) formulations.
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Simulation of quantum systems on quantum computers remains one
of the very few applications for which exponential speedup over classical
computation is provable. The quantum lattice gases defined by Meyer(6)

and by Boghosian and Taylor(7) may be simulated on a quantum com-
puter in exponentially fewer steps than are required on a classical com-
puter and with an exponential reduction in hardware. These models,
together with other approaches by Lloyd(8' 9) and by Ortiz and Guber-
natis,("0' 1 1) have made concrete Feynman's observation that simulation of
quantum systems is hard on classical computers, but easy on quantum
computers. ( 12-14)

Meyer was led to the definition of the quantum lattice gas by con-
sideration of quantum generalizations of cellular automata (CA). The sim-
plest possible quantum CA model would be a map in which the updated
state of a cell depended linearly on the state of its neighbours and the
global evolution rule was unitary. Meyer showed that the only such maps
are trivial, namely, the identity map and the left or right shift, possibly
multiplied by a phase. This "No-Go" theorem proves that there are no
nontrivial homogeneous scalar unitary cellular automata.( 15)

Quantum cellular automata models may evade this No-Go theo-
rem(15) by having cell values which are not scalar, or by having local
update rules which are not linear (although the global evolution in such
models remains quantum mechanical, and therefore linear). Non-scalar
models sacrifice some simplicity, while the determination of unitarity for
nonlinear models is problematic.(16-18) A third possibility exists: We may
partition our cellular automata, dividing our evolution into two substeps,
acting on two distinct neighborhoods. This was the approach taken by
Meyer( 19) and also by Watrous.(20 ) If one of the substeps of the evolution
is interpreted as propagation of the cell values to neighboring sites we may
identify the partitioned cellular automata with a lattice gas model.(19)

The dynamics of all lattice gases take place by propagation of
particles to neighboring sites on the lattice, followed by a local collision
operation. In a stochastic lattice gas which obeys semi-detailed balance,
the collision step is a doubly-stochastic Markov matrix acting on the state
of a single lattice site. For a lattice gas with only a single particle mov-
ing on the lattice, the stochastic model reduces to a classical random walk.
In the collision step of a quantum lattice-gas model, the state at a site is
acted on by a unitary scattering matrix. Just as in the classical case, the
one-particle sector of the model possesses an interpretation as a discrete-
time discrete-space quantum random walk.

Quantum lattice gases are explicitly formulated as discrete models for
quantum physics, and so are subject to additional physical constraints.
In particular, the unitary scattering matrix is constrained to be parity
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invariant. The quantum lattice gas was shown to yield the continuum
propagator for the Dirac equation in one-dimension,( 19) and also possesses
the Schroedinger equation as a nonrelativistic continuum limit.(2 1)

The quantum random walk has also been studied extensively from
a point of view quite different from that of physical modeling. Quantum
random walks may provide an alternative route for the development of
new quantum algorithms. Such walks have the property that the variance
of the walk grows linearly with time, in sharp contrast to classical
walks where the variance grows as the square root of time. This echoes
the computational advantage of Grover's search algorithm, and indeed
unstructured search can be reformulated as a quantum random walk
problem. Discrete-time quantum walks have yielded exponential perfor-
mance improvements in the hitting time on the hypercube, and continu-
ous-time quantum walks have yielded an exponential improvement in the
solution of a graph traversal problem. For an overview of the subject of
quantum random walks we refer the reader to the review of Kempe.(22)

Two things distinguish quantum lattice gases from discrete quantum
walks. Firstly, the absence of scalar homogeneous models means that dis-
crete quantum walks must also introduce an extra degree of freedom.
This degree of freedom is interpreted as a "coin" state which determines
the motion of the walker at the next time step. In the context of the
quantum lattice gas this degree of freedom is interpreted as the spin (or,
in one-dimension, helicity) degree of freedom of the particle. Secondly,
the constraint of parity invariance imposed by Meyer in one-dimension,
and discrete rotation invariance imposed by Boghosian and Taylor in
d-dimensions is infrequently applied to discrete time quantum random
walks. The coin state is commonly updated by the Hadamard operation,
which is not invariant under parity inversion. While parity inversion sym-
metry is a fundamental requirement for models of physics, from the point
of view of the computational properties of quantum walks parity invari-
ance is not an obvious requirement.

Unitary actions and measurements are the elementary operations
allowed on closed quantum systems. However, no quantum system (except-
ing, possibly, the entire universe) is truly closed. Open quantum systems
may be treated as subsystems of some larger closed quantum system. The
unitary evolution of the entire closed system induces a (generally non-uni-
tary) evolution on the open quantum subsystem. Such operations, which
include measurements and unitary actions in their span, are referred to
as quantum operations in the context of quantum information theory.(23)
The theory of open quantum systems has been developed from the point
of view of fundamental physics in the work of Feynman and Vernon,
Caldeira and Leggett and Prokof'ev and Stamp.(24- 27 ) In this seminal
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work the environment degrees of freedom are included explicitly, and
renormalization group arguments are adduced to model the environment
as belonging to one of two universality classes: either the environment
degrees of freedom are localized (spin bath) or delocalized (oscilla-
tor bath). "Random level" models of the environment have also been
studied.(28,29)

In keeping with the motivation of this issue we shall leave the fasci-
nating computational properties of both discrete-time and continuous-time
quantum random walks aside. We shall focus instead on the physical inter-
pretation of the classical stochastic lattice gas as a microscopic model for
diffusion and of the quantum lattice gas as a microscopic model for a sin-
gle particle obeying the Dirac equation in the continuum limit. Our aim
in the present paper will be the construction of a single model capable of
capturing both types of behavior in different parameter regimes.

We shall consider decoherence arising from an interaction with an
environment coupling only to the particles' internal degrees of freedom
and not to the particles' position degrees of freedom. Such decoherence
models are referred to as "coin" decoherence in the context of quantum
random walks. In general, coin decoherence produces a transition from
behavior characteristic of a quantum walk in which the standard devia-
tion of the walk grows linearly in time to behavior characteristic of a clas-
sical walk in which the standard deviation varies as the square root of
time. 30- 35) Previous decoherence models for quantum walks considered
a scattering step which is a unitary action with probability 1 - p, and
a unitary action followed by a projective measurement with probability
p. (30-33) Models in which measurements on the coin yield less than total
information have also been considered.( 36)

We begin by considering a decoherence model for quantum lat-
tice gases (or equivalently, discrete-time quantum random walks) with
an explicitly physical motivation. We require that the system-environment
interaction be fixed and that the interaction preserve the parity invariance
of the original lattice gas. We first describe the unitary lattice-gas dynam-
ics and the extension of such dynamics to the density matrix formalism,
necessary for the introduction of quantum operations into such dynam-
ics. We then introduce the framework of quantum operations, and discuss
two types of decoherence models for quantum lattice gases. We derive the
constraints on the unitary operator coupling the system and environment
arising from the requirement of parity invariance. Numerical results are
presented for one parameterization of the decoherence model, which qual-
itatively verify the transition from quantum to classical (i.e., diffusive)
behavior in the model. We close the paper with discussion and some direc-
tions for future work.
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2. DECOHERENCE

The state vector formulation of quantum mechanics is inadequate to
describe situations in which we have imperfect knowledge of the quantum
state. Such perfect knowledge is expressed by the system being in a pure
state, that is, a vector of complex amplitudes whose moduli squared sum
to one. Consider the imperfect preparation of a quantum state such that
state IJ&) is prepared with probability P(14')), where the (classical) proba-
bilities P(I*)) sum to one. We cannot simply represent this by a real linear
convex combination of states, as we already have a complex superposition
over observable basis states. We must instead consider a linear real convex
combination of the dyads I V) (V l,

P=LP( = ) I) (Vr. (1)

Such a real linear convex combination is called a mixed state. The density
matrix is the appropriate tool for simultaneously describing two probabi-
listic aspects of the theory-one arising from classical uncertainty about
the state of the system, and one arising from the fundamental uncertainty
arising from quantum superposition.

The time evolution of the density matrix may be obtained by lin-
ear extension of the evolution of the pure states. The time evolution of a
pure state is given by I*') = U I 4') where U is the unitary evolution oper-
ator of the system, and so the time evolution of the density matrix is
given by conjugation: U: p'= UpUt, where dagger indicates the Hermitian
conjugate. The Hilbert space of a quantum system which can be divided
into two subsystems A and B possesses a basis which can be tensor fac-
tored such that each basis vector Im) can be expressed as a tensor product
Ima) ® Imb), such that Ima) E Ha and Imb) E Hb. The reduced density matrix
of subsystem A is obtained by taking the partial trace of the full density
matrix over subsystem B.

We may now define a quantum operation on the density matrix of
system A. We take the tensor product of the density matrix of the system
A with that of the environment B. A unitary operation UAB acts on the
resulting density matrix by conjugation. The environmental subsystem B is
then traced over, resulting in a new density matrix for the system A. Such
quantum operations are therefore maps from density matrices to density
matrices. Such maps may be constructed without reference to an environ-
ment state by invoking the operator-sum representation. The theory of
such maps may also be formulated axiomatically without reference to the
constructive procedure adduced here.(23) In the present paper we utilize the
unitary representation of quantum operations given above, while noting
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that a formulation of the noise model we shall construct in terms of the
operator-sum representation is possible, and in fact may be a more conve-
nient representation of the model.

3. QUANTUM LATTICE-GAS MODEL

In the present paper we restrict attention to one-dimensional lattice
gases with two directions per site. The (classical) particle states are spec-
ified as follows: Each site on the lattice has two lattice vectors connect-
ing it to its left and right neighbors. There may be at most one particle
per site per vector.(37) The dynamics of all lattice gases take place in two
substeps. First, the particles propagate along their vectors to neighboring
sites, retaining their velocity as they do so. Second, the particles at each
site undergo a collision changing the occupations of the vectors at each
site. The propagation step clearly conserves any quantity that is obtained
by summing a function of particle mass and velocity over all particles,
since those quantities are not changed as particles propagate. The collision
step is required to conserve a subset of these quantities that are of physical
interest, such as mass, momentum, etc. In the following we shall consider
models which conserve particle number only; if we regard the particles as
each having unit mass, this may be thought of as conservation of mass.

For a one-dimensional lattice with two vectors per site, the only
deterministic rules which preserve particle number are trivial. The first
nontrivial model occurs when one considers a stochastic collision in which
a single particle at a site has probability 1 - p to reverse direction. The
stochastic lattice gas with a single particle may be identified with a ran-
dom walk. Generalizing to multiple particles we find the evolution of the
single particle distribution function for a classical stochastic lattice gas
obeys the diffusion equation. The stochastic models include the (trivial)
deterministic models as the special case p = 1.

The single timestep evolution operator U of the quantum lattice gas
without decoherence is the composition of advection and scattering steps:

advectL-'i rx,alxa)-- E*rxalx+aa)
scatter

) E/('x,aSa1IX+ua,'), (2)

where the scattering matrix may be parameterized up to a global phase as:

S(cosO i sin 0"(
S i sin 0 cos0) (3)
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and the Hilbert space is 2N-dimensional, where N is the lattice size. This
quantum lattice gas was shown to yield the continuum propagator for
the Dirac equation for a particle with mass tan 0 in Ref. 19. The model
may also be interpreted as a discrete-space discrete-time quantum random
walk, subject to the constraint that the scattering rule be parity invariant.

We generalize the above model by first extending the dynamics to
those of the density matrix for the lattice gas. This allows us to handle
the mixed states which will arise when we introduce decoherence into the
dynamics. We couple the particles' internal degrees of freedom to a bath
of arbitrary size and act on the internal degrees of freedom and the bath
with a unitary matrix which is the product:

U,. [S ®l9 Rath], (4)

where ]I is the identity operator on the bath. We then trace over the envi-
ronment degrees of freedom at each timestep.

This decoherence model corresponds to a generalization of the quan-
tum lattice gas to the case where the collision operator is neither a uni-
tary operator, nor a classical Markov matrix as in the stochastic classical
lattice gas, but a quantum operation. The set of quantum operations con-
tains both unitary actions and Markov actions as special cases. The uni-
tary operator is clearly included as a special case when one considers U,
which do not couple the system and the environment (i.e., which tensor
factor into Uc = Uc(sys) 0 Uc(bath)).

It is clear that the Markov operations of the classical stochastic lattice
gas are included when one considers an initialization of the density matrix
of the lattice gas in a completely classical state - that is, a density matrix
at each site with only diagonal entries, p1 and pr. The action of the uni-
tary part of the collision operator on this matrix is:

cos0 i sin0" (Pr 0'\( cosO -isinO

sin 0 cosO ) 0 pi] k\-i sin0 cosO )
_(picos

2 0+pr sin 2 0 isinOcosO(pr Pr -(P5)

-- sinO cosO(p -Pr) pl sin2 0 +Pr COS2 0] (5)

This reproduces the action of a classical Markov matrix on the vector of prob-
abilities (pI, Pr), where the probability that the particle continues in its current
state is cos2 0 if the interaction with the environment induces the map:

( plCOS20+prsin2 0 isin0cos0(pr -- Pi)
isin0cos0(p1 - Pr) pl sin 2 0 +Pr COS 2 0]

_ ,p cos 2 0 + Pr sin 2 0 0 2o (6)0 Pl sin2 0 + Pr COS2 0
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We can construct this mapping by coupling the system to a
two-dimensional environment in the completely mixed state 1/2R using the
controlled-NOT gate where the system is the control qubit. More generally,
the map given in Eq. (6) is the effect of a measurement on the system,
and such actions are included in the set of quantum operations. The cor-
respondence of unitary operations combined with measurements as equiv-
alent to Markov operations is also discussed in the context of Type-Il
quantum computing in Ref. 38.

In order to complete the demonstration that classical stochastic lat-
tice gases are included as a subset of models described by a density matrix
whose collision process is a quantum operation, we must show that a
classical (i.e., diagonal) density matrix evolves to another classical density
matrix under propagation. The classical density matrix is non-zero only in
entries Ix, a) (x, oeI, which evolve under propagation to Ix +a, oa) (x +a, a1.
Diagonal density matrices evolve to diagonal density matrices under prop-
agation and a subset of collision operations evolving diagonal density
matrices to diagonal density matrices are equivalent to the Markov matic-
es implementing collisions of a classical stochastic lattice gas.

Hence a single-particle quantum lattice-gas simulation in which the
entire density matrix is stored and in which the collision rule is a quan-
tum operation includes as special cases quantum lattice-gas evolution and
the stochastic evolution of a classical lattice gas. Deterministic classical lat-
tice gases are included as they are a special case of stochastic lattice gases.
Such a model therefore provides a bridge between the quantum lattice gas
which possesses the Dirac equation as a continuum limit and classical sto-
chastic lattice gases which possess the diffusion equation as a continuum
limit.

4. PARITY-PRESERVING NOISE

We now define the set of quantum operations giving our new scat-
tering rule. Specification of a set of quantum operations defines a "quan-
tum noise" model. Such a model has two ingredients: a model for the
environment state and a model for the system-environment interaction.
Before specifying the environment state we must specify how many dimen-
sions the environment Hilbert space must have. Here we may invoke a
theorem which states that for a d-dimensional system Hilbert space a d2_
dimensional environment is sufficient to produce every possible quantum
operation on the system. This theorem states that for a quantum opera-
tion specified by a set of principal components in the operator-sum rep-
resentation it is always possible to find a unitary operator coupling a
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d2-dimensional environment to a d-dimensional system which reproduces
this quantum operation.(23)

This suggests the following noise model: We initialize the four-dimen-
sional environment in a fiducial state (100) for example). We then sample
from a distribution over the unitary group U(8) and apply our sampled
operator to the eight-dimensional system-environment pair, and then we
trace over the environment. Such a model samples from the entire set
of quantum operations. The preparation of the environment in a fiducial
state does not imply a loss of generality, as the sampled operation can be
considered to be first an operator acting only on the environment prepar-
ing a random environment state, followed by an operation coupling the
system and environment. The distribution over the set of quantum oper-
ations is induced in a nontrivial way by the distribution over U(8). Such
a model would resemble a random level, or random matrix model, of the
environment. (28,29)

On the other hand, our aim is the construction of a noise model with
physically inspired constraints on the system-environment interaction. For
such physically motivated noise models we wish the system-environment
coupling matrix to be a constant unitary operator, arising from a putative
fixed system-environment interaction Hamiltonian (which we may or may
not know). If we regard our quantum lattice gas as a discrete model for
the Dirac equation, we note that the interaction of the helicity degree of
freedom of a Dirac particle with an environment is indeed fixed by funda-
mental physics.

We must take care about the meaning of the theorem invoked
above for noise models with a constant system-environment interaction.
The theorem does not state that a fixed unitary operator coupling a
d2 -dimensional environment to a d-dimensional system can reproduce
every quantum operation on the system. In the sequel we construct our
noise model for an environment of arbitrary dimension, although we
revert to a four-dimensional environment for reasons of computational
tractability for simulations.

Equation (3) gives an explicit parameterization of all parity-preserv-
ing two-dimensional unitary operators, up to a global phase. Such con-
venient parameterizations of quantum operations do not yet exist, and
so we follow the explicit constructive procedure for such operations given
above. We choose a model for the environment such that its state is a
unimodular complex vector whose Cartesian components are independent
random variables. The environment-system interaction is fixed, and we
consider a wide class of such interactions, namely those which preserve the
parity invariance of the original unitary quantum lattice gas. The unitary
update S obeys parity invariance ST = TS where T is the parity exchange
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operator. The parity preserving couplings Us have the property that they
commute with the parity exchange operator acting on the system tensored
with the identity operator acting on the environment.

[Us, T OE]]= 0 (7)

Equation (7) expresses a discrete symmetry of a discrete-time evolu-
tion operator. In physics we are more usually concerned with continuous
symmetries and continuous time evolution operators. The usual statement
of invariance of an interaction Hamiltonian under a particular symmetry
transformation is that the infinitesimal generators of the symmetry trans-
formation commute with the Hamiltonian. In the language of Lie groups
this means that the Hamiltonian lies in the commutator subalgebra of the
generators of the symmetry transformation in the Lie algebra of U(N),
where N is the number of degrees of freedom of our system. We may also
apply these ideas to a discrete symmetry of a discrete-time discrete-space
model. Let t be the Lie algebra element corresponding to T OE1. Let u be
the Lie algebra element corresponding to U. A sufficient condition that
Eq. (7) holds is:

[u, t] = 0. (8)

The Lie algebra of U (N) is the set of anti-hermitian matrices. We use
the basis arising from the root system of the Lie algebra of U(N):(3 9 )

DkP = i6pkbpl 1< p < N

k•pi (-kp~ql±+kqbpl) 1 <p<N q <p (9)
Aqp

Ak1 (3kpql -- kq~pl) 1 <_p<N q <p

where 6,y is the Kronecker delta, and there is no sum on repeated indices.
We note that Aqq =0 and Sqq =2Dq. The convention for the antisymmet-
ric matrices is chosen so that the labelling superscripts increase from left
to right, and so that the negative entry is always in the upper triangular
portion of the matrix.

The commutation relations of the Lie algebra basis follow from
Eq. (4):

[DP, Dq IkI =0 I <_p <N

[Dr, SqP]kI =prA qr +6rqApr

[Dr, AqP] 1k = 8 rp srq - 3 rq Srp

[Srs, AqP] k1 = pSrq - 3sq srp + Srp ssq - 3rq Ss' (10)

[Srs, SqP]k-1 =ps Aqr +SqsApr +.prAqs + Sqr A Ps
[Ars, AqP] 1k = bps Aqr "-qsAPr -- pr Aqs +- qr APs
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The block diagonal form of T 9 E1 makes it straightforward to diag-
onalize, and it is therefore straightforward to obtain the Lie algebra ele-
ment t.

N N/2t~lnrl=- 7r S(2s-l1)2s
t =In T = (11)

r=1 s=l

A general element u of the Lie algebra may be written:

N 1 N N

U = E °r O 2 E E[pqp Sqp + yqpAqp] (12)
r=l p=l q=1

where fPqp =-Opq and Yqp = Ypq, and fPqq = Yqq =0.

The commutator is then

7r[N N1NNN

[U,t]=-l SD - E S(2S-l)2s, E Ur Dr +- 2 E [qpSqP + yqpAqP

= s=l r=1 p=l=q=l

(13)

Applying the structure constants of the Lie algebra and using /Pqp = fPpq

and Yqp =-Ypq gives:

N/2 N

[U, t] =-7 E EL[ p(2s)AP(2s-1) +-Pp(2s -1)AP(2)

-±-Yp(2s(2 s-l)p + Yp(2s-l)S(2s)p] (14)

The constraint that this be zero imposes a set of constraints on the fi
coefficients and a set of constraints on the y coefficients. Because the
coefficients and the matrices A are real, while the matrices S are pure
imaginary, we may rearrange terms involving the A's and S's separately to
obtain these constraints. We write

[u,t]=CIO +CY. (15)
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where Cp =0 and Cy = 0 are necessary conditions for [u, t] = 0.

N/2 N

7T -~ ~ [P 2 )pc2s-1) ±i(s)p()]l

N N N N-1

7l"P~-1 - T7pA s 1

s even p even s even p odd

N-I N N-I N-I7r 7r"

2 PpAP(S+l)-• E2 /AP(s+l) (16)
s odd p even s odd p odd

We wish to rearrange terms so that we have a unique set of A's whose
coefficients we can set to zero in order to obtain our constraints. In the
first and fourth terms here the indices on the A's have opposite parity,
whereas in the second and third terms the indices have the same parity in
each term, but the indices are both odd in the second term and both even
in the third term. This means that the first and fourth terms may be com-
bined by exchanging dummy indices and using the symmetry properties of
the A's, whereas the second and third terms must be dealt with separately.
Denoting term x in the right hand side of Eq. (16), C', and taking the
first and fourth terms:

N-I N N N-1
=-/" 1 Pps7/~-" p,)As

s odd p even s even p odd

(17)

Exchanging p and s in the second term on the right hand side:

N-1 N
C1 +c4=• 7 [tiP(s+lAPs+Pls(p-')Asp] (18)

s odd p even

Using the antisymmetry of the A's, we have

N-I N

2 L [fPp(s+l) -s(p-l)] Aps (19)

s odd p even
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Now consider the second and third terms in C#. The second term is:

N-1 N-1

c2 71 E Z E p(,+l)AP
s odd p odd
N-1 N-1

7r

4 L L [8P(S+l) - is(p+1)] APs (20)
s odd p odd

The third term is:

N N

C3 2 T p Ev p(e-n)APs
s even p even

N N
7r

=--4 [tpP(s-l)-Pts(p-l)] APS (21)

s even p even

These equations give the following set of conditions on the beta coeffi-
cients:

tp(s+1) -- Ps(p- 1) = s mod2=1 p mod2=0

fip(s+l) - is(p+1)=0 s mod2=1 p mod2=1

flp(s-1) -- Ps(p-1)=O s mod2=0 p mod2=0

(22)

These constraints are redundant. In fact a pair of constraints is sufficient
to ensure C#• =0:

Pip(s+) --Ts(p_1)=O s mod2=1 s<p

fip(s+l)--0i+(p+±)=O s mod 2=1 p mod 2=1 s<p (23)

We now consider Cy,.

N/2 N -

Cy 2- E [Yp( 2 s) S(2S- l)p _ Yp(2s- 1) S(2s)p

N N N N-1

- L L YP -) 2 YP(S -I'SSP

s even p even s even p odd

N-s N N-1 N-o
,yp(S+II)SSP - ' : 1:yp(s+llSSP (24)

2s odd p even 2s odd p odd
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Exchanging dummy indices in the third term, expanding the first and
fourth terms, and utilizing the symmetry of the S's and the antisymmetry
of the y's gives:

N N
7r

Cy -4 L L [Yp(s-1)+Ys(P-I)] SP
s even p even

N N-1
7rss

s evens odd
N-1 N-1

-4 4 L [Yp(s+l) + Ys(p+I)] Ss (25)
s odd p odd

This yields the constraints on the y's:

Yp(s-1yY(p+l)s=O s mod2=0 p mod2=1 p<s-1

Yp(s-l)±Ys(p-l)=O s mod 2=0 p mod 2=0 p<s

(26)

5. SIMULATIONS

Simulations were performed for a system whose internal degree of
freedom is coupled to a four-dimensional bath. The coupling operator is
therefore an element of U(8). The general form of an element of the Lie
algebra of U(8) obeying the constraints derived above is

(011 P12 P 13 P14 Pi5 P16 P17 P18 0 0 -Y13 -Y14 -Y15 -Y16 -Y17 -Y18

P12 0X2 P14 P13 P16 P15 P18 P17 0 0 -Y14 -Y13 Y16 -Y15 -Y18 -Y17
P13 P14 0/3 P34 P35 P36 P37 P38 Y13 Y-14 0 0 -Y-15 -Y-36 -Y37 -Y38

P14 P13 P34 U4 P36 P35 P38 037 + /14 Y13 0 0 -Y-36 -Y-35 -Y38 -Y-137

P15 P16 P35 P36 U5 P56 P57 P58 Y15 Y16 Y35 Y36 0 0 -- Y57 --Y58
P16 Pi15 36 P35 P56 0e6 P67 P57 Y16 Y15 Y36 Y/35 0 0 -- Y58 -- Y57

P17 P18 037 P38 057 &67 C17 P78 Y17 Y18 Y37 Y38 Y57 Y58 0 0

P18 P17 P638 P37 P58 P57 P78 a/8 \Y18 Y17 Y38 Y-37 Y58 Y"57 0 0

(27)

In all cases the system was initialized in a pure state corresponding
to a gaussian spatial wavefunction centred at the origin with a standard
deviation equal to one quarter of the lattice size, with equal amplitudes for
both internal states of the particle. The system was a periodic lattice with
64 sites, and the parameter 0 in the unitary part of the collision operator
was set equal to 0.35.
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Fig. 1. Plots of the time evolution of the diagonal components for 400 time steps. The
greyscale indicates the magnitude of the density matrix evolving from a Gaussian pure state
centered at the origin with standard deviation one quarter of the system size. Left: Unitary
evolution. Middle: Evolution with Z8 coupling the system to the bath. Right: Evolution with
a parity-invariant coupling between system and bath.

Three types of simulations were performed. First, a simulation of the
density matrix of the system and bath was performed in which the cou-
pling matrix was the identity operator. In this case the quantum lattice gas
reproduces the unitary evolution expected in the case that the system-bath
coupling is zero. Second, simulations were performed in which the system-
bath coupling operator is the Fourier transform over the cyclic group Z8.
Finally, simulations were performed in which all coefficients a1, P and y in
a matrix of the form (27) were set equal to one and the resulting matrix
numerically exponentiated to obtain a parity-preserving coupling (Fig. 1).

The simulation with no system-bath coupling shows typical unitary
evolution on a cycle, with the wave-packet dispersing until the edges of the
wave-packet reach the periodic boundaries of the system, at which time
interference occurs between the original packet and the reentrant com-
ponents. The reversibility and unitarity of the dynamics is apparent as
the system never settles into a static equilibrium state. The simulations in
which the system-bath coupling is given by the Fourier transform, which
violates parity invariance, exhibit a driving of the system to the right.
Additional simulations in which the coupling is given by the conjugate of
the Fourier transform with the parity inversion operator show the same
driving effect in the opposite direction, as expected. Simulations in which
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Fig. 2. Top: Time evolution of the probability distribution for the first
300 timesteps of unitary evolution. Curves are plotted every 50 timesteps.
Bottom: Time evolution of the first 300 timesteps of the parity-invariant
decoherent evolution and the final uniform distribution. Curves are plot-
ted every 50 timesteps, and the final state after 8000 timesteps of evolu-
tion is shown.

the system is coupled to the bath by our example parity-invariant unitary
matrix show no driving effect. The system undergoes an irreversible evo-
lution of the initial probability distribution to the uniform distribution on
the cycle.
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The behavior of the model shows its intermediate quantum-classi-
cal nature in two ways. First, the decay of the probability distribution
shows some residual "wave-like" behavior in addition to the overall damp-
ing. Second, the final density matrix is not a completely mixed state, but
retains non-zero off-diagonal components within a finite band. Both these
effects indicate that the coupling matrix chosen implements a coupling
strong enough to cause irreversible dynamics on an observable timescale
but weak enough that the dynamics retains some interesting quantum
characteristics (Fig. 2).

6. CONCLUSIONS

We have defined a new quantum lattice-gas model for a single parti-
cle (or equivalently, a discrete-space discrete-time quantum random walk)
in which the scattering rule is given by a quantum operation, rather than a
unitary, deterministic, or stochastic operation. We showed that the model
so defined includes unitary, stochastic and deterministic models as special
cases, as well as interesting intermediate behavior. Preliminary simulation
results confirm this by exhibiting non-unitary diffusive decay of an initial
gaussian pure state.

The noise model chosen here utilized a fixed unitary operator cou-
pling a four-dimensional bath to the two-dimensional Hilbert space of the
internal degree of freedom of a single quantum lattice-gas particle. This
distinguishes our work from the noise model given by Kendon and Sand-
ers(36) in which a single environment qubit is coupled by an interaction
with a strength tunable from the case of no coupling to the case where
the environment produced a projective measurement of the coin degree of
freedom of the quantum random walk.

As noted above, a two-dimensional environment with a fixed inter-
action is insufficient to reproduce all quantum operations. However, the
constraints of parity invariance on the coupling operator were obtained
here for U(N), and so this work could be extended to include an arbi-
trarily large environment. If the most general noise model is desired, the
sampling procedure discussed but not implemented above, in which ran-
domly sampled unitary operators couple a four-dimensional bath to the
internal degree of freedom of the particle, provably includes all quan-
tum operations. The parameterization of the noise model then involves a
parameterization of the distribution of quantum operations induced by a
given distribution on the unitary group.

The above discussion motivates several directions for future work.
First, the noise model presented here is not conveniently parameterized.
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Ideally we would be able to smoothly vary the degree of coupling between
the system and the environment from zero (where the time evolution
would approximate the Dirac equation) to the case where the environ-
ment performs projective measurement of the particles' internal degrees of
freedom. This property is possessed by the noise model of Kendon and
Sanders,(36) and such a parameterization of the model presented here is
certainly possible, although it may be tedious in practice. The work of
Kendon and Sanders( 36) discusses decoherence in quantum random walks
from the point of view of complementarity. The work of the present paper
was motivated instead by the principle of correspondence. The generaliza-
tion here satisfies the requirement that the results agree with classical the-
ory in the case that the particle is strongly coupled to an environment.

The two most natural generalizations of the work described here
are to quantum lattice-gas models with multiple particles, and to mod-
els defined in multiple dimensions. The constraint of parity invariance
becomes the constraint of invariance under discrete rotations in multiple
dimensions, and one expects the constraints analogous to those derived
here to be correspondingly more complex. Simulations of multiple par-
ticles, even in one dimension, have a classical computational cost which
grows exponentially with the number of particles. However, one expects
that few-particle simulations will be tractable.

The possibility of efficient quantum simulation of classical systems
is an important open problem in the field of quantum computation for
physical modeling. One of the central problems in this area is that most
of the equations of classical physics of practical interest are irreversible
macroscopic equations of motion. The work presented here shows that
irreversibility may be simply included by the use of quantum operations
instead of unitary matrices. The emergence of irreversible behavior in the
degrees of freedom of the subsystem exhibited here is a manifestation of
the "arrow of time" of non-equilibrium thermodynamics. The interesting
practical question, which remains open, is whether there are systems for
which the time complexity of such classical and quantum simulation is
different. More glibly: Can time's arrow may be made to move faster on
a quantum computer?

ACKNOWLEDGMENTS

PJL and BMB were supported by DARPA QuIST program adminis-
tered under AFOSR grant number F49620-01-1-0566, and by ARO con-
tract number W91 1NF-04-1-0334. BMB was also supported by AFOSR
award number FA9550-04-1-0176. Both authors would like to thank



From Dirac to Diffusion 353

AFOSR for their hospitality at the Quantum Computation for Phys-
ical Modeling Workshop on Marthas Vineyard in 2004. The authors
have great pleasure in thanking David Meyer, Gianluca Caterina, Howard
Brandt, and Seth Lloyd for helpful discussions and questions.

REFERENCES

1. G. D. Doolen, U. Frisch, B. Hasslacher, S. Orszag, and S. Wolfram (eds.), Lattice Gas
Methods for Partial Differential Equations (Addison-Wesley, 1990).

2. B. M. Boghosian, P. V. Coveney, and P. J. Love, Proc. Roy. Soc. Lond. A 456, 1431
(2000); cond-mat/9907298.

3. P J. Love, Phil. Trans. R. Soc. Lond. Ser A 360, 345 (2002); cond-mat/0109475.
4. P. J. Love, B. M. Boghosian, and D. A. Meyer, Phil. Trans. R. Soc. Lond. Ser. A 362,

1667 (2004); cond-mat/0506742.
5. B. Hasslacher and D. A. Meyer, Int. J Mod Phys. C 9, 1597 (1998).
6. D. A. Meyer, Phil. Trans. Roy. Soc. Lond. A 360, 395 (2002); quant-ph/0 111069.
7. B. M. Boghosian and W Taylor, Physica D 120, 30 (1998).
8. S. Lloyd, Science 261, 5128 (1996).
9. D. S. Abrams and S. Lloyd, Phys. Rev. Lett. 79, 2586 (1997).

10. G. Ortiz, E. Knill, and J. E. Gubernatis, Nucl. Phys. B (Proc. Suppl.) 106, 151 (2002).
11. G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme, Phys. Rev. A 64, 022319 (2001).
12. R. P. Feynman, J. Opt. Soc. Am. B 3, 464 (1984).
13. R. P. Feynman, Found Phys. 16, 507 (1986).
14. R. P. Feynman, Int. J Theor Phys. 21, 467 (1982).
15. D. A. Meyer, Phys. Lett. A 223, 337 (1996).
16. C. Durr, Random Struct. Algor. 11, 381 (1997).
17. C. Durr, SIAM J Comput. 31, 1076 (2002).
18. D. A. Meyer, quant-ph/9605023 (1996).
19. D. A. Meyer, J Stat. Phys. 85, 551 (1996).
20. J. Watrous, in Proceedings of the 36th Annual Meeting on the Foundations of Computer

Science (1995), pp. 528-537.
21. B. M. Boghosian and W Taylor, Phys. Rev. E 57, 54 (1998).
22. J. Kempe, Contemp. Phys. 44, 307 (2003); quant-ph/0303081.
23. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information

(Cambridge University Press, 2000).
24. R. P. Feynman and E L. Vernon, Ann. Phys. 24, 118 (1963).
25. A. 0. Caldeira and A. Leggett, Ann. Phys. 149, 374 (1983).
26. N. V. Prokof'ev and P. C. E. Stamp, Rep. Prog. Phys. 63, 669 (2000).
27. U.Weiss, Quantum Dissipative Systems (World Scientific, 1993).
28. E. P. Wigner, Ann. Math. 53, 36 (1953).
29. D. L. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953).
30. G. Alagic and A. Russell, quant-ph/0501169 (2005).
31. V. M. Kendon and B. Tregenna, Phys. Rev. A 67, 042315 (2002); quant-ph/0209005.
32. V. M. Kendon and B. Tregenna, quant-ph/0210047 (2002).
33. V. M. Kendon and B.Tregenna, in Decoherence and Entropy in Complex Systems (20Q3);

Vol. 633, pp. 253-267, quant-ph/0301182.
34. T. A. Brun, H. A. Carteret, and A. Ambainis, quant-ph/0208195 (2002).



354 Love and Boghosian

35. T. A. Brun, H. A. Carteret, and A. Ambainis, Phys. Rev. A 67, 032304 (2002); quant-
ph/0210180.

36. V. M. Kendon and B. C. Sanders, Phys. Rev. A 71, 022307 (2004); quant-ph/0404043.
37. This is sometimes called the "exclusion principle" for lattice gases, but it should be noted

that it is unrelated to the Pauli exclusion principle.
38. P. J Love and B. M. Boghosian, To appear in Physica A (2005); quant-ph/0506244.
39. T. Brocker and T. tomDieck, Representations of Compact Lie Groups (Springer-Verlag,

1985).



Quantum Information Processing, Vol. 4, No. 5, November 2005 (© 2005)

DOI: 10.1007/sll 128-005-0003-0

Unambiguous State Discrimination in Quantum Key
Distribution

Howard E. Brandt1

Received March 8, 2005; accepted August 15, 2005

The quantum circuit and design are presented for an optimized entangling probe
attacking the BB84 Protocol of quantum key distribution (QKD) and yielding
maximum information to the probe. Probe photon polarization states become
optimally entangled with the signal states on their way between the legitimate
transmitter and receiver Although standard von-Neumann projective measurements
of the probe yield maximum information on the pre-privacy amplified key, if
instead the probe measurements are performed with a certain positive opera-
tor valued measure (POVM), then the measurement results are unambiguous, at
least some of the time. It follows that the BB84 (Bennett-Brassard 1984) proto-
col of quantum key distribution has a vulnerability similar to the well-known vul-
nerability of the B92 (Bennett 1992) protocol.

KEY WORDS: Quantum cryptography; quantum key distribution; quantum
communication; quantum computer; entanglement.
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1. INTRODUCTION

It is generally known that the standard two-state B92 protocol of quantum
key distribution"') is not a good solution for quantum key distribu-
tion.(2) Although the two nonorthogonal photon-polarization states of the
protocol cannot in general be distinguished unambiguously by an eaves-
dropping probe without being disturbed, they can be unambiguously dis-
criminated at least some of the time, at the cost of there occurring some
inconclusive events. However, if the inconclusive rate equals the loss rate
of the legitimate receiver (due to attenuation in the key distribution chan-
nel), and only the unambiguous states are relayed by the probe to the
legitimate receiver, then the probe can obtain complete information on the
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pre-privacy amplified key, once the bases are announced on the public
channel during reconciliation. A POVM receiver is an implementation of
such a probe.(3' 4) Also to counter alteration in the attenuation due to the
probe, the legitimate channel might be replaced by a more transparent
one. In the present work, I argue that the four-state BB84 protocol of
quantum key distribution(5) has a similar vulnerability.

In Section 2, the optimized unitary transformation is reviewed, repre-
senting the action of an optimized entangling probe on quantum key dis-
tribution in the BB84 protocol. In Section 3, the corresponding quantum
circuit is obtained. In Section 4, a method is determined for projectively
measuring the appropriate correlated states of the probe, thereby obtaining
the maximum possible information (in the ideal case, ignoring losses). In
Section 5, a possible implementation of the entangling probe is obtained.
In Section 6, analysis is presented for alternatively using the Positive Oper-
ator Valued Measure (POVM) receiver in measuring the probe, thereby
unambiguously discriminating the signal states, at least some of the time.
Section 7 contains a summary.

2. OPTIMUM ENTANGLING PROBE

For the standard four-state BB84 protocol of quantum key distribution,
the author recently calculated a simple optimized unitary transformation
representing the effect of an eavesdropping probe, which on average yields
the maximum information to the probe for a given error rate induced by
the probe.(6) The most general possible probe consistent with unitarity was
addressed,(7- 12) in which each individual transmitted bit is made to inter-
act with the probe so that the carrier and the probe are left in an optimum
entangled state, and measurement of the probe then yields maximum infor-
mation about the carrier state. The probe optimization was based on maxi-
mizing the information gain by the probe on corrected data for a set error
rate induced by the probe in the legitimate receiver.(9-12) Corrected data
include data remaining after discarding inconclusive results and also erro-
neous data as determined by block checksums and bisective search.(7, 9'10)

The maximum information gain by the probe is needed for privacy amplifi-
cation. (7,.10)

It was shown that the above unitary transformation representing the
probe produces the following entanglements for initial probe state 1w)
and incoming BB84 signal photon-polarization states ju), ju-), Iv), or 10,
respectively:(6)
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Iu) u1w) ) 4 (ia+)9 U) +ja)0 V)) (1)

U•)® w)-- ) (I a) 0 Iu)+ loa)® 9 )). (2)

Here, the states lu) and Iu) are orthogonal signal states in the flu), I )i
basis, and I v) and I 3) are orthogonal signal states in the {I v), 101)} basis,
and the two bases are nonorthogonal with 7r/4 angle between the linear
polarizations of states lu) and Iv). The probe states la+), la-), and la) are
given by

R2+) = 1/2 +l) (1+ 1/2 +(21/2 1/2 wo)

+ [(21/2 + 1) (1- 1)1/2 + (21/2 -1) (I +±7)1/21 1w3), (5)

let-)- R(21 /2- _I)(1 +11)1/2+ (21 /2 + I) (1--17)1/2] Iwo)

+ [(2 1/2-_1) (1-_r1)l/2 +(2 1/2 +1) (1+ 77)1/2] 1W3), (6)

lat) =-(I + 1)1/2 + (I 1) 1)/2 1 wo) + [_-(1- _))1/2 + (I + n/) /2]W) 7

where

rj = [8E(1 - 2E)]/2 (8)

expressed in terms of the probe basis states I w0) and I W3), and also the
set error rate E induced by the probe. Of particular importance is the fact
that the states lat+) and lat-) are in general nonorthogonal. The Hilbert
space of the probe is two-dimensional, depending on the two probe basis
vectors, Iwo) and Iw3). It should be noted here that in Eqs. (29) and (32)
of Ref. 6, the overall signs must be positive in order to yield Eq. (19)
of Ref, 6. Also, in Eqs. (5)-(7) above, the sign choices correspond to the
implementation chosen here. Also, it is important here that large error
rates are to be ignored to enforce monotonicity. The present analysis and
that of Ref. 14, Eq. (71) of Ref. 13, and Eq. (89) of Ref. 6 apply for
E < 1/4. [To include larger E, the optimization of Eq. (158) of Ref. 13
with sin 2tt = 1, cos 0 = 1, and p = (1 -2E) 1/2 can be implemented, also
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with a single CNOT gate yielding the same maximum information gain
and POVM measurement characteristics given here. However such large
error rates are of less practical importance.]

It is to be noted in Eq. (1) that the projected probe state I V',) corre-
lated with the correct received signal state (in the notation of Refs. 7, 12),
in which the state Ju) is sent by the transmitter, and is also received by
the legitimate receiver, is lI+). Analogously, using Eq. (2), it follows that
the correlated probe state I~uu) is lI-). The two states Ja+) and la-) are
to be distinguished by the measurement of the probe. Also, according to
Eqs. (3) and (4), the same two probe states are the appropriate correlated
states Jpr•) and IVf,), respectively. It will be shown below that the fact
that the same two nonorthogonal states are to be distinguished in either
polarization basis is critical to unambiguous state discrimination of the
BB84 signal states (at least some of the time), since it is this feature of the
entangling probe that will enable measurement of the probe by the POVM
receiver. (3)

It should also be stressed that the state u) in Eqs. (1)-(4) is only
correlated with the cases where one of the four signal states is sent and
the orthogonal state is received by the legitimate receiver, and this will be
interpreted as error. However, again it is to be remembered that the erro-
neous bits are discarded, and so their only role in the entangling probe
optimization is in determining the error rate induced by the probe, and the
latter is appropriately set by the eavesdropper. For any eavesdropping pro-
tocol, there is always a tradeoff between information gain by a probe and
the induced error rate, and any key distribution protocol has some intrin-
sic noise level that the eavesdropper can exploit. It must also be under-
stood that privacy amplification is always necessary, and this process is
very error-rate dependent. Analogous arguments apply to attacks on the
B92 protocol, which as stated above has a well-known POVM attack vul-
nerability.

3. QUANTUM CIRCUIT

In this Section, I exploit the quantum circuit model of quantum com-
putation to determine the quantum circuit corresponding to the optimum
unitary transformation, Eqs. (1)-(4). It was shown in Ref. 6 that the tensor
products of the initial state 1w) of the probe with the orthonormal basis
states, leo) and lel), of the signal transform as follows (See Eqs. (1), (35)-
(40) of Ref. 6), again with the above sign choices:

lea n w) de0) (JI) (9)
and
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lei ® w) l-+ei) ® A2 ), (10)

expressed in terms of probe states IAI) and IA2 ), where

JAI) =aI Iwo) +a2 1w3 ), (11)

IA2) =a2 Iwo) +aI Iw3), (12)

in which

al =2-1/2(1 +±7)1/2, (13)

a2= 2- 1/2(1 - 7)1/2, (14)

and ri is given by Eq. (8).
In the two-dimensional Hilbert space of the signal, the two orthog-

onal basis states leo) and lei) are oriented symmetrically about the sig-
nal states lu) and Iv), and make angles of 7r/8 with the signal states
lu) and Iv), respectively. Next, consider a quantum controlled-NOT gate
(CNOT gate), in which the control qubit consists of the two signal
basis states {leo) , lei)), and the target qubit consists of the probe basis
states (Iwo), Iw3 )), and such that when leo) enters the control port then
{IwO), Iw3)} becomes {Iw3), Iwo)} at the target output port, or when lei)
enters the control port then (Iwo) , Iw3)} remains unchanged. It then fol-
lows that a simple quantum circuit affecting the transformations (9) and
(10), and thereby faithfully representing the entangling probe, consists of
this CNOT gate with the state IA2) always entering the target port, and
{leo), Iel)} entering the control port. When leo) enters the control port,
then IA2) becomes IAI), or when lei) enters the control port then IA2)
remains unchanged, in agreement with Eqs. (9) and (10) with Iw) = IA2).
According to the quantum circuit model of quantum computation, it is
known that at most three CNOT gates, together with single-qubit gates,
are in general necessary and sufficient in order to implement an arbitrary
number of unitary transformations of two qubits. Apparently in the pres-
ent case, a single CNOT gate suffices to faithfully represent the optimized
unitary transformation.

Next expanding the signal state lu) in terms of the signal basis
states,(7) it then follows from Eqs. (9) and (10) that the CNOT gate affects
the following transformation when the signal state lu) enters the control
port:

7r 7r

Iu) ®0 A2 ) -*cos - leo) ® IAI)+sin - lei) ® IA 2 ). (15)
8 8
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Equivalently, then

lu) 0 A2)--Co0 S cos - lu) -sin -7r• ®IA

±sinj8 (sin 8 lu) +cos' 8ii ®IA2 ), (16)

or
1

lu) 9 1A2 ) -- [(2 + 21/2) IAI) 0 lu) + (2- 21/2) IA2 ) 0 lu)
4

-2 12 JAI) 0 It)+±2 1/ 2 1A2 ) 0 1 u)], (17)

which becomes Eq. (1). Analogously, it follows that the quantum circuit
also yields Eqs. (2)-(4).

4. PROBE MEASUREMENT CORRELATIONS

According to Eqs. (1)-(4), and the analysis of Section 3, the probe
produces the entanglements of Eqs. (1)-(4) for initial probe state Iw) = IA2 )
and incoming BB84 signal states lu), l•), Iv), or I3), respectively. Then if,
following the public reconciliation phase of the BB84 protocol, the signal
basis mutually selected by the legitimate transmitter and receiver is pub-
licly revealed to be {lu) , iS)}, then the probe measurement must distinguish
the projected probe state lI+), when the signal state lu) is both sent and
received, from the projected probe state lot-), when the signal state JU-) is
both sent and received. In this case one has the direct correlations:

Lu) 10I+), lU) = ll-)- (18)

The same two states la+) and la-) must be distinguished, no matter which
basis is chosen during reconciliation. Thus, according to Eqs. (3) and (4),
if, following the public reconciliation phase of the BB84 protocol, the sig-
nal basis mutually selected by the legitimate transmitter and receiver is
publicly revealed to be {Iv), IVi)), then the probe measurement must distin-
guish the projected probe state la-), when the signal state Iv) is both sent
and received, from the projected probe state lIt+), when the signal state )
is both sent and received. In this case one has the direct correlations:

IV) = I-), IV) 4=• I±t+). (19)

Next, one notes that the correlations of the projected probe states
la+) and LIc-) with the probe's two orthogonal basis states Iwo) and Iw3)
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are indicated, according to Eqs. (5) and (6), by the following probabilities:

I(wo ot+)12 I(w31oa_)12 1 [E(1 -2E)]1/2

,a+12 Ice_ 12  2 + (1 - E) (20)

I(woIce_)12 I(w3I1t+)12 1 [E(l -2E)]1/ 2

Ia_12 I-I+12 -2 (1 - E) (21)

and one then has the following state correlations:

10t+) ý=• IwO), Ice-) €==* Iw3). (22)

Next combining the correlations (18), (19), and (22), one then establishes
the following correlations:

{lu>,i1)}, 01 IC1+) == IwO), (23)

{It), Iv)) €==I at-) = Iw3), (24)

to be implemented by the probe measurement method. This can be simply
accomplished by a von Neumann projective measurement of the orthog-
onal probe basis states Iwo) and Iw3), implementing the probe projective
measurement operators {Iwo) (wOI, I W3) (w3 I}. The chosen geometry in the
two-dimensional Hilbert space of the probe is such that the orthogonal
basis states Iwo) and Iw3) make equal angles with the states Ict+) and la-),
respectively. This geometry is consistent with the symmetric von Neumann
test, which is an important part of the optimization in Refs. 7, 9-12.

5. ENTANGLING PROBE DESIGN

Based on the above results, I have invented a simple entangling probe
design.(15) An incident photon coming from the legitimate transmitter is
received by the probe in one of the four signal-photon linear-polarization
states Iu), t•), Iv), or 13) in the BB84 protocol. The signal photon enters
the control port of the CNOT gate. The initial state of the probe is a pho-
ton in linear-polarization state IA2) and entering the target port of the
CNOT gate. The probe photon is produced by a single-photon source and
is appropriately timed with reception of the signal photon by first sam-
pling a few successive signal pulses to determine the repetition rate of the
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transmitter. The photon linear-polarization state IA2 ), according to Eqs.
(12)-(14) and (8), is given by

1/12)= {1-[8E(1-2E)]12} Iwo)+ {l+[8E(1-2E)]1/ 21 1w 3),

(25)

and can be simply set for an error rate E by means of a polarizer. In this
way the device can be tuned to the chosen error rate to be induced by the
probe. The outgoing gated signal photon is relayed on to the legitimate
receiver, and the gated probe photon enters a Wollaston prism, oriented to
separate photon orthogonal-linear-polarization states Iwo) and IW3), and
the photon is then detected by one of two photodetectors. This is an ordi-
nary von Neumann projective measurement. If the basis, revealed during
the public basis-reconciliation phase of the BB84 protocol, is flu), fi-)},
then the photodetector located to receive the polarization state Iwo) or
Iw3), respectively, will indicate, in accord with the correlations (23) and
(24), that a state lu) or lz-), respectively, was most likely measured by the
legitimate receiver. Alternatively, if the announced basis is {Iv), 10)}, then
the photodetector located to receive the polarization state Iw3) or Iwo),
respectively, will indicate, in accord with the correlations (23) and (24),
that a state Iv) or Mi), respectively, was most likely measured by the legiti-
mate receiver. By comparing the record of probe photodetector triggering
with the sequence of bases revealed during reconciliation, then the likely
sequence of ones and zeroes constituting the key, prior to privacy ampli-
fication, can be assigned. In any case the net effect is to yield, for a set
error rate E, the maximum information gain to the probe, which is given
by Eq. (19) of Ref. 6, namely,

J lopt=g02 [2- (1 -3E )] (26)

The geometry of the initial and shifted probe polarization states IA2 )
and IAI), respectively, and the orthogonal probe basis states, Iwo) and
Iw3), in the two-dimensional Hilbert space of the probe, is such that the
angle 6o between the probe state IAI) and the probe basis state Iwo) is
given by

60=cos- ((wolA1)) (27)
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or, substituting JAI), given by Eqs. (11), (13), and (14), namely,

IA1= ý{l+[8E(1-2E)]1/2}1/ 2 Iwo)+ [{I -[8E( -2E)]1/2}1 W3),

(28)

in Eq. (27), one obtains

8 0 =-os-l (I I + [8E(1- 2E)]1/2I) 1/2 (29)

This is also the angle between the initial linear-polarization state JA2) of
the probe and the probe basis state Iw3). Also, the shift 3 in polarization
between the initial probe states IA2 ) and the state IAI) (the angle between
JAI) and IA2)) is given by

Cos- ((AlIA2)(

Js IAIIIA21 P (30)

or, substituting Eqs. (25) and (28), one obtains

6 =cos-'(I -4E). (31)

6. POVM MEASUREMENT OF ENTANGLING PROBE

Instead of performing a von-Neumann projective measurement of the
entangling probe (using the Wollaston prism along with two photodetectors,
as in Section 5), one can unambiguously detect the two nonorthogonal
probe states la+) and la-), at least some of the time. For this purpose, the
POVM (See Fig. 1 of Ref, 3) will simply be setup to distinguish the non-
orthogonal states Ja+) and la-) (instead of the states Iu) and Iv) described
in Ref. 3). For this purpose, the Wollaston prism in Fig. 1 of Ref. 3 must
be aligned to separate the orthogonal states:

e,•++,: - [ I/la I++) / Ia+ I+ la-) / Io-I[((a•+1/ ±I++ ( /-I/ I,-I) (Il+) / 1I+l + la) /•-Ia)]1/2

and

"e \ I/ I a+) / Ia+I - la-) / la-Iea+-c_] J [(I +[/ Io+I- (a-I / Ia1-) (,a+) / Ia+l,- _1_) / I1_I)]1/2 (33)
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(instead of eu+v) and eu-V), as in Ref. 3). The overlap Q between the

states la+) and la-) is given by

Q = ('+l IU-I (34)

Ia+I la- I

or using Eqs. (5) and (6), one obtains

I -3E
Q -E (35)

The reflection coefficient RI of the beamsplitter BS1 in Fig. I of Ref. 3
must, for the case at hand, be given by

RI=tan(Q Cos-') 1-Q (36)

or substituting Eq. (35) in Eq. (36), one obtains

E
R1 = 1-2E (37)

Thus the reflection coefficient R1 must be set, according to Eq. (37), by
the set error rate induced by the entangling probe. This will require a
beamsplitter with an adjustable reflection coefficient.

The inconclusive rate R? (or, equivalently, P? in the notation of Ref.
3, also see Refs. 16-18) of the POVM receiver is given by Ref. 3

R (-- =a+I ua-) (38)

IU+ I la-1

Next, using Eqs. (34) and (35) in Eq. (38), one obtains

1 -3E
1-E (9

The conclusive rate R, is then given by

R, =1 - R?, (40)

or using Eq. (39), one obtains

2E1E' (41)
1 -E'
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which is clearly nonoptimal, particularly for low error rates, as can be seen
by comparing Eq. (41) with Eq. (20). However, if the loss in the key dis-
tribution channel between the probe and the legitimate receiver, due to
attenuation, equals the inconclusive rate, Eq. (39), and only the conclusive
states are relayed by the probe to the legitimate receiver, then the entan-
gling probe together with the POVM receiver can obtain complete infor-
mation on the pre-privacy-amplified key, once the polarization bases are
announced in the public channel during reconciliation. Also, to counter
alteration in the attenuation due to the probe, the legitimate channel might
be replaced by a more transparent one.(2) One may therefore conclude that
the BB84 protocol has a vulnerability very similar to the well-known vul-
nerability of the B92 protocol.

7. SUMMARY

Exploiting the quantum circuit model of quantum computation, the
quantum circuit, needed to implement the optimum unitary transforma-
tion representing an entangling-probe attacking the BB84 protocol, was
determined and shown to yield the correct entangled states. The quan-
tum circuit, faithfully representing the optimum entangling probe, consists
of a single CNOT gate in which the control qubit consists of the two
photon-polarization basis states of the signal, the target qubit consists of
the two probe-photon polarization basis states, and the probe photon is
prepared in a specific initial linear-polarization state, set by the induced
error rate. The required initial polarization state of the probe photon can
be produced by a single-photon source together with a linear polarizer.
The gated probe photon, optimally entangled with the signal, enters a
Wollaston prism which separates the appropriate correlated states of the
probe photon to trigger one or the other of two photodetectors. Basis
selection, revealed on the public channel during basis reconciliation in the
BB84 protocol, is exploited to correlate photodetector clicks with the sig-
nal transmitting the key, and to assign the most likely binary numbers,
1 or 0, such that the information gain by the probe of the key, prior
to privacy amplification, is maximal. The probe is a simple special-pur-
pose quantum information processor that will improve the odds for an
eavesdropper in gaining access to the pre-privacy-amplified key, as well as
impose a potentially severe sacrifice of key bits during privacy amplifica-
tion.(10)

Finally, it is argued that if the projective measurement of the probe
is replaced by a nonoptimal measurement using a POVM receiver, then
unambiguous signal state discrimination is achieved at least some of the
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time. It follows that if the loss rate due to attenuation in the key distri-
bution channel equals the inconclusive rate of the POVM receiver, then
the standard BB84 protocol has a vulnerability very analogous to the well-
known vulnerability of the standard B92 protocol.
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Recent work has demonstrated the feasibility of using an array of quantum infor-
mation processors connected via classical channels (type H quantum computer)
to implement a quantum lattice-gas algorithm. This paper describes work towards
constructing a new experimental set-up for a type II quantum computer. This set-
up has new hardware and software specifications but does follow previously pub-
lished approaches of operation encoding the initial mass density onto a twoqubit
processor and using standard pulse techniques to step through the algorithm. New
hardware for this system includes the ability to read both qubits at once, effec-
tively reducing the processing time by twofold. Hardware changes also include the
use of multiple coils controlled by a single spectrometer and a hardware switch.
New software includes a top level control system for the spectrometer for quick
experimental configuration as well as configurable modeling software to verify
results. Results are presented here from a system with the final software imple-
mentations and the two channel spectrometer configuration run on a single proto-
type coil. Progress towards the final multi-coil implementation is described.

KEY WORDS: Quantum information processing; nuclear magnetic resonance;
quantum lattice gas; diffusion equation; quantum computing.
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1. INTRODUCTION

Researchers in the newly emerging field of quantum information process-
ing have made great strides both in its theoretical development and exper-
imental practice during the last several years but progress is still strongly
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limited by the technological difficulty of accurately preparing and con-
trolling the quantum state of many qubits. One successful approach to
expanding the computational capabilities of current quantum informa-
tion processing hardware is the construction of type II quantum comput-
ers. Type II quantum computers, as described in Refs. 1,2, constitute an
ordered set of quantum processing nodes where inter-nodal information
transfers is reducible to invertible quantum mechanical operators repre-
sented by orthogonal matrices - effectively inter-nodal communication via
classical channels. This architectural paradigm allows for the use of sev-
eral, uncorrelated quantum processors to speed computational times as a
whole by working on separate parts of the problem: quantum parallelism
occurs locally within a quantum node while classical parallelism occurs
globally. A group from the Massachusetts Institute of Technology (MIT)
has implemented one such device using a liquid state nuclear magnetic res-
onance (NMR) imaging technique and have achieved proof-of-concept by
simulating the spacetime dynamics of a quantum lattice gas in 1+1 dimen-
sions, modeling the macroscopic scale behavior of a many-body quan-
tum system whose effective field theory is either the classical diffusion
equation(3-5) or the classical nonlinear Burgers equation.(6 7 ) This type II
system used a standard NMR setup with field gradients to spread out
the magnetization signal from a single sample, containing two spin-1/2
nuclei, into 16 effective quantum computational nodes. While offering
great advantages in increasing the number of computational nodes avail-
able, it also had the disadvantage of the complexity of the operations
needed to encode and readout out data while still preserving the distinct-
ness of the quantum nodes.5

This report describes our work towards implementing a different design
for a type II NMR quantum computer intended to address the issues men-
tioned above.6 Furthermore, this report presents new experimental results

5A newer version of the MIT approach attempts to employ a k-space encoding that directly
implements the inter-nodal communication (or stream operator) using pulsed field gradients.
This eliminates the need for continual readout of data after each time step.

6At University of Minnesota Center for Magnetic Resonance Research, a modern commer-
cially available magnetic resonance imager called SENSE is used, arrays of four or eight
different coils and receivers have been commonplace for the last five years. In some ways,
they are built with vastly more sophistication than the idealized prototype system we have
considered. Clinical SENSE coil arrays are a series of overlapping surface coils used to
limit penetration and increase the signal to noise for imaging purposes. They are inappro-
priate for QIP applications for the following reasons. First, NMR QIP uses different nuclear
spins to serve as qubits. This requires the use of multiple tuned or multiple coil NMR
probe. Multi-frequency SENSE arrays are not presently available and will take a consider-
able engineering effort to develop. Second, QIP requires a highly uniform BI field for QIP
calculations. SENSE coils have an inhomogeneous B, field due to their planar structure.
Adiabatic pulses are not appropriate for NMR QIP because it takes milliseconds to achieve
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as well as new NMR simulator results (modeling the operation and error
sources in the NMR spectrometer) of the same quantum lattice-gas algo-
rithm tested in Ref. 5. The main goals of this work are to explore this new
hardware approach, improving efficiencies where possible, and streamlining
and improving related data acquisition and control software as well as the
simulator software. This work is the first step in an effort to construct a
practical multi-coil system that can be quickly reconfigured and reused for
testing different quantum computing algorithms.

Two key differences exist between our hardware design and the MIT
design. The first is the simultaneous use of two receive channels as well as
two output channels. This is in contrast to most system configurations that
allow one or more send channels but are restricted to a single receive chan-
nel. This system can be scaled for additional send and receive channels as
well. The advantage of simultaneous data readouts for each coil is twofold:
the first is in performance and the second in accuracy. The system perfor-
mance speed is doubled since the data can be obtained from two channels at
once rather than having to read one channel, repeat the experiment, transfer
the data from one channel to another and then read out the second chan-
nel. Furthermore, the experimental accuracy also improves since the data
from both channels are obtained from the same run and not a repeat of the
previous run; hence we can avoid errors from irreproducibility problems.

The second difference is using a one-to-one mapping of NMR coils
to quantum computers as depicted in Fig. 1. This means as many coils
are needed as desired quantum processors. This offers the advantage of
relatively simple encode and read operations to operate each processor.
It also allows the system to let nuclear spins contained within individual
coils relax in preparation for the next computation while another coil is

a spin rotation versus microseconds in a conventional high homogeneity RF coil. Third,
SENSE coils require precise geometric layouts. Crosstalk between small dimension SENSE
coil arrays will pose significant, if not insurmountable, engineering challenges. They isolate
themselves from one another by careful geometric arrangement of the coil layout. As the
dimension of the coil decreases, the relative error in layout increases - thus making orthogo-
nality of RF fields from adjacent coils more difficult. In contrast, in our approach the exact
location of each microcoil, with respect to one another, is not critical. This is because the
design goal is to have each microcoil be self-shielded, hence mitigating inter-nodal interac-
tion. Positional uncertainty is not an issue in our case as it is with SENSE coils. Forth,
typical SENSE coils have 20dB isolation between channels. Under extraordinary condi-
tions SENSE coils can have up to 60 dB isolation from one another. Crosstalk between
channels will lead to decoherence in QIP experiments. Using individually shielded RF coils
can provide isolation exceeding 100dB thus providing higher immunity from decoherence.
Finally, QIP uses 1 H, 13C and other spin-labeled compounds to serve as qubits. A minimum
of two qubits (different spins) are necessary for liquid sample QIP applications. Expensive
"designer" molecules are necessary for two qubit applications, e.g., ' 3CHCI3. Samples for
QIP applications are mass limited and cannot use available SENSE coils due to filling fac-
tor and SNR considerations.
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Fig. 1. Each coil acts as a quantum processor.

run by the central control processor and spectrometer, a type of pipelin-
ing. This is especially handy for samples with long T1 times. Finally, this
setup also allows for optimal use of costly spectrometer channels, increas-
ing the system speed with the addition of more relatively inexpensive coils.

The MIT approach uses pulsed field gradients, decoupling and shaped
radio frequency (RF) pulses to subdivide one sample into multiple quan-
tum processors. It is difficult to create isolated quantum processing cells
by this method. There is the potential for cross-talk between adjacent cells
created by shaped RF pulses and gradients. The RF pulses are typically
amplitude and phase modulated to create well defined spatial nodes. How-
ever, the dividing lines between the spatial nodes are not "brick walls" and
thus the spins in adjacent slices are not completely isolated.

The use of shaped pulses also leads to a dispersion of phases within the
selected slice. For many collision experiments there can be a significant accumu-
lation of phase errors. The imaging approach also requires decoupling during
the read portion of the experiment. This leads to partial spin polarization due
to the nuclear overhauser effect (NOE).( 8) NOE increase in signal strength for
a carbon spin can be up to a threefold factor during proton irradiation and
depends on the efficiency and duration of decoupling. This is an additional
source of error when integrating the detected NMR signal.

A pulsed field gradient (PFG) is necessary to spatially map the spins.
A PFG will induce eddy currents within the bore of an NMR magnet
resulting in a time-dependent perturbation of the spins lasting long after
the gradient is off. This can result in imperfect slices and unwanted fre-
quency and phase shifts of the NMR spin ensemble. Note that PFGs
are necessary for destroying off diagonal spin coherences during an NMR
quantum information processing experiment and is a major source of error
for both the imaging and multiple coil approach.

Finally, subdividing a sample by imaging methods results in a smaller
signal to noise ratio (SNR) for the defined voxel than attainable by hav-
ing a coil with a dimension equivalent to the voxel size. This observation
is known as reciprocity and is the basis of matching the RF coil dimension
to the sample size to optimize SNR.(9 10) The SNR for a specific nucleus
at a fixed temperature is defined by
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S BI VNuo2o-- cx ,(1)
N I Vnoise

where B1/! is the RF coil sensitivity, V, the sample volume, N the num-
ber of spins, wo is the larmor frequency and Vnoise is the sample and RF
coil noise voltage.(9',") The term Bi/l represents a unit current induced
in an RF coil from nuclear spins precessing in the transverse plane. This
term becomes larger when spins coupling to the coil are physically close to
the coil. So as the coil dimension decreases, nuclear spins are closer to the
coil windings, thus inducing a larger current in the coil. The behavior of
RF coils for mass-limited samples, i.e., a fixed number of spins, has been
theoretically and experimentally investigated.(9,12) Generally, for a solenoi-
dal RF coil the SNR per unit volume of sample is proportional to the
inverse of the coil diameter for a coil diameter greater than 0.1 mm. For
coils below 0.1 mm in diameter the per unit volume SNR is proportional
to the square root of the coil diameter.

In addition to the new hardware features mentioned above, several
custom software applications were created. The first was a highly recon-
figurable control program that runs on the top layer of the experiment,
controlling both the spectrometer software and coordinating the data col-
lection and writing. This software was designed and written in a mod-
ular form and can be quickly reconfigured for different algorithms and
experiments. The second software application was an NMR simulator to
verify experimental results. This consisted of a Java user interface and a
mathematica back-end. Again, both pieces were designed in a modular
fashion for ease of reconfiguration and reuse.

For the initial work detailed in this paper, a single prototype hard-
ware coil was used to simulate the behavior of 16 parallel coils. The soft-
ware written for this NMR quantum computer experiment was designed
for use with the multiple coil system.

This paper will first present a brief description of the quantum lattice
gas system in Sec. 2. Section 3 describes the NMR implementation hard-
ware and software. Section 4 shows the results of the first data run with
the prototype coil and Section 5 provides a short summary and remarks
about future work.

2. QUANTUM LATTICE GAS SYSTEM

The type II quantum algorithm can be exactly represented at the mes-
oscopic scale by an effective field theory: the quantum Boltzmann equa-
tion of motion that describes the time-dependent dynamics of a kinetic
many-body particle system. The quantum algorithm is a novel computational
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technique to reduce the complexity of fluid dynamics simulations where
quantum logic operations directly causing qubit-qubit interaction are used
to model the relevant local particle-particle interactions occurring within
the fluid. The quantum model of the diffusion equation, in D + 1 dimen-
sions where D can be any number of spatial dimensions, requires only two
qubits per node, and hence encodes the occupation of up to two particles at
that node. An operator splitting method reduces the algorithmic complexity
down to a modeling problem in 1 + 1 dimensions.( 13) This decomposition
method in demonstrated for a 2 + 1 dimensional test case in Ref. 14. The
quantum algorithm then models unit-mass particle-particle interaction with
one unitary collisional operation per lattice node per unit time step. In par-
ticular to model diffusion in 1 + 1 dimensions, the WSW-A-P-quantum logic
gate models the on-site particle-particle interaction. Once the interaction
calculation is completed, the final algorithmic step of a single iteration of
the time-dependent evolution of the quantum algorithm requires streaming
the results (particle occupations) to the neighboring nodes. Both the colli-
sional operation and the streaming operation conserve mass over the entire
system. The orthogonal stream operator, 59, and its transpose (inverse), 9T,
are the two informational transfer operations on the one-dimensional lat-
tice, one operation per direction (+ x). In the case where the particles have
an equal probability of reversing direction in each interaction, the particle
motion is effectively a random walk and the mass density field consequently
diffuses isotropically over time. (5,15)

Our work concentrates on the implementation of the type II quan-
tum algorithm in I + 1 dimensions. This algorithm works by mapping
the energy of each particle to the probability values of our quantum sys-
tem and uses quantum state mixing to describe the interaction of parti-
cles.(5' 16'17) Mapping the occupational probability onto the single-particle
state of a quantum bit is done as follows:

Iq) = v/f[l) + V/(1--f)10). (2)

A two qubit system is required for a one-dimensional quantum lattice
representation of the diffusion equation. The initial wave function for such
a system with fl and f2 occupational probabilities is the following tensor
product state:

IV(m, n)) = Ifl (m, n)f2(m, n)I 11) + V/fl (m, n)(I - f2(m, n))I 10)

+v/(l - fl (mn))f2(m, n)101)

+-/(I - fl (m, n))(1 - f2(m, n))100), (3)

where m is the node index and n is the time-step index.
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The four main steps of the type II quantum lattice gas algorithm are:

1. Encoding of the probability value for each qubit (i.e., fi and f2).
2. Application of a unitary collision operator for quantum state

mixing:

I4'(m, n)) & ti(m, n)), (4)

for all m where the SWAP-quantum logic gate is

1 0 0
1 ) i " (5)

0 0 0

3. Reading of the resultant probability values f; and f2 (i.e., quantum
state reduction).

4. Unitary streaming the results to the next site:

fl (m, n + 1) = f{(m - 1, n), (6)

f 2(m, n + 1) = f2(m + 1, n). (7)

The reading method employed in this experiment follows the method of.(5)

3. NUCLEAR MAGNETIC RESONANCE IMPLEMENTATION

Liquid-state NMR was used for this implementation using a two
gram sample of Carbon 13 labeled chloroform (13CHC13) where the
two spin-1/2 nuclei of hydrogen and the labeled carbon 13 comprised a
two qubit system for ensemble quantum computing. A frequency differ-
ence, or chemical shift, of the spin-l/2 nuclei in the labeled chloroform
is caused by the local magnetic fields within the molecule's geometrical
structure. An external magnetic field B0 , on the order of a Tesla, cre-
ates a difference in population of the quantum states, between the aligned
and anti-aligned spin-l/2 nuclei because of a small energy change in the
Boltzmann weights at thermal equilibrium.0 8) This energy difference is rel-
atively small at room temperature but is still detectable due to the large
number of molecules in the sample. Spin-spin coupling, mediated by cor-
related electrons within the molecule, further splits the ground state energy
of one of the fermionic nuclei in the molecule depending on whether the
other fermionic nuclei is spin up or spin down. This energy shift is much
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smaller than the chemical shift, but is also clearly detectable. NMR spec-
trometers use high fidelity RF circuits to manipulate the net magnetiza-
tion of the system and detect the population of each state as it returns
to equilibrium. For the two qubit sample used above, the system is accu-
rately described by the density matrix that depends on only the intramo-
lecular spin degrees of freedom by tracing over all non-spin degrees of
freedom, such as positional degrees of freedom, leaving a reduced 4 x 4
density matrix.

While NMR is technically advanced as compared to many quantum
computing schemes due to the near 60-year history since the publication
of the phenomenon of magnetic induction( 19) there are still several tech-
nical challenges to the use of liquid-state NMR for quantum computing.
Inhomogeneities in the background magnetic field and the RF coils cause
spin-spin decoherence, limiting the number of quantum logic operational
that can be executed with phase-coherence. Another problem is the rel-
atively small number of controllable qubits within a molecule. Yet, the
largest problem is the control of the pure quantum state of each mole-
cule individually, which is not possible within the context of our experi-
mental approach; hence the system is always in a mixed quantum state.
Liquid-state NMR quantum computing was made possible with the devel-
opment of several methods(20' 21) for ensemble qubit preparation and the
creation of start states that simulate pure quantum states. This work used
the method described by Price et al.(22) for initial state preparation.

3.1. Mapping the Quantum Lattice Gas to the NMR Spin System

Much of this work, but not all, followed the same mapping scheme
for the quantum state description to the physical experiment as in previ-
ous work.(5) One exception is the elimination of the need for the overall
pulsed field gradient and a truncated RF modulation function for the dis-
cernment of different quantum processors. A summary of all the imple-
mentation differences are listed in Table 1.

3.2. Hardware

The basic elements of a NMR spectrometer setup are shown in
Fig. 2. Components of the system include the magnet that provides the
external magnetic field, the coil creating the orthogonal magnetic fields
to manipulate the sample, the sample itself, a RF signal source that cre-
ates the pulse signals, a RF transmitter/receiver to prepare the outbound
pulse and receive the resultant signal from the sample and finally the con-
trol computer for the whole system. In addition to the main components
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Table 1. Implementation differences for type II quantum computer
using imaging techniques versus separate coil design

Pravia et al Multi-coil
Item (5,16,17) Implementation

Quantum Portion of a sample One coil per
Computer in a coil quantum computer

Addressing Via field gradient By coil
possible crosstalk, no crosstalk,
possible eddy current artifacts no eddy current artifacts

Encoding Shaped pulses Hard pulses
Decoupling needed No Decoupling needed

Reading Decoupling needed No Decoupling needed

needed, there are several key items for increasing the quality of the sig-
nal. Auxiliary magnetic shim coils are used within the magnet itself for
increasing field homogeneity and for the creation of magnetic gradients.
Pre-amps are used for increasing signal strength from the mixer and
Transmit-Receive (TR) switches that allow the same coil windings to do
dual duty as senders and receivers of signal from the sample.

A 1.5Tesla large bore (55cm) magnet was used for this experiment.
The large bore allowed for the quick prototyping of a custom coil out of
readily available materials. This bore can easily accommodate the addition
of many more coils for the future expansion of this system. This is the
planned next step in this work with the final goal being the construction
of at least four coils working in parallel. The prototype coil used orthog-
onal Helmholtz-saddle circuits to independently control of each spin-l/2
ensemble via RF pulses.

The system described here differs from previous implementations of
this algorithm(5, 23) in that the entire RF coil is used as a single quantum
computer. Previous implementations used a pulsed field gradient to split

Spectrometer
Magnet S of R[ Gradient Coils

SSample,.•- TR Switch
Bo - Computer

S Gradient Coils R- F Am us Porme

SMge Gradient AmpH.Gradient Pus rgrme•

Fig. 2. Schematic overview of a NMR system.
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(a) Magnet RF Coil TR Switch Pair Spectrometer

1.5 Tesla Two Channel

(b) Magnet Coil Array Switch Arrays Spectrometer

5 Tesla Two Channel

Fig. 3. (a) The prototype configuration shown above was used to obtain the data

described in this work. (b) The new setup uses a four coil array, as shown in the final
configuration schematic. The four coils are connected to a single multichannel spectrom-
eter via a hardware switch. This switch allows the use of a single coil for a calcula-
tion while the remaining coils relax. This significantly improves the use factor for the
spectrometer and magnet hardware since the relaxation time used between calculations
for this work was 180s, while the calculation sequence itself is executed in under a sec-
ond. The use of four coils accessed round-robin instead of repeatedly using a single coil
would allow a calculation to be executed every 45 s instead of once every 3 min, decreas-
ing the overall experiment time needed by a factor of four.

a single coil into 16 effective quantum computational processors using
NMR imaging techniques. While the single computer per coil design does
force the construction of many coils versus the use of a single one, it also
allows to us use hard pulses rather than shaped pulses for data encoding
and to skip the use of decoupling sequences altogether for encoding and
reading channels. It further eliminates artifacts from eddy currents induced
by pulsed field gradients and possible crosstalk between adjacent cells due
to imperfect slice selection from a truncated RF sinc function all through
the use of independent coils.

The eventual goal of this work is to have several such coil quan-
tum processors connected to the spectrometer via a hardware switch as
shown in Fig. 3. This would allow the spectrometer to access one coil for
a calculation while the remaining coils relax. This approach would signifi-
cantly improves the use factor for the spectrometer and magnet hardware
since the relaxation time used between calculations for this work was 180 s,
while the calculation sequence itself is executed in under a second. The use
of four coils accessed round-robin instead of repeatedly using a single coil
would allow a calculation to be executed every 45 s instead of once every
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(a) Transmit Mode
RF Coil

1H NMR
Spectrometer

11H

Receive Mode

(b) Tx
•_41w Rx

"-No 13 C NMR

T/RS W Tx 1 Spectrometer

RF Coils

Fig. 4. (a) Classic spectrometer design with two send channels and a single receive
channel. (b) Full two channel design configuration used for this work, containing two
send as well as two receive channels.

3min. This decreases the overall experiment time needed by a factor of
four while still maintaining all the benefits of long decoherence times.

This approach is feasible within the physical parameters of existing
NMR hardware. The magnet allocated for this final work is 210mm use-
able bore 5.0Tesla magnet with uniformity of 2ppm for a 100mm diam-
eter spherical volume (DSV). Four individual 22mm coils will be placed
within in an array with center axis separation of roughly 45 mm, easily fit-
ting within the 100mm DSV. Shim and pulse power calibration parame-
ters can be measured per coil and used by the software control program
to minimize response differences between the coils. Additionally, the sam-
ple sizes used for these coils sizes are not much larger than those used for
micro coils,(9,10) the use of which would allow even more coils to fit within
the magnet's 100 mm DSV.

A custom built Apollo spectrometer (Tecmag, Inc., Houston, TX) was
used to control the hardware system. This windows based unit was outfit-
ted with two send as well as two receive cards which allowed for simul-
taneous control of both channels in all aspects of the experiment. This is
shown schematically in the bottom section of Fig. 4. This system differs
from the typical NMR spectrometer setup in that while many have multi-
ple channels to send pulses out, few have more than one hardware channel
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available for reading data. Thus most systems cannot look at the state of
more than one qubit at the end of a computation. For a two qubit sys-
tem this limitation would force an experimenter to run the same compu-
tation twice: once for the nominal qubit the channel was tuned to and a
second time to read the data from the other qubit, using a swap operation
to move the data over to the read-capable channel.

3.3. Control and Simulation Software Design

Custom software was written for both the control of the NMR quan-
tum computer and the simulation software to verify the experimental results.
Figures 5 and 6 show the designs for the experimental and the simula-
tion software, respectively. A high level of encapsulation was used in the
design for both systems. This allows for maximum reusability for the core
code, meaning that core code written for this experiment could also be used
for future experiments, whether a different algorithm for liquid state NMR
quantum computing or even the same algorithm for solid state quantum
computing.

Visual Basic

Interface & Control

NMRQC VB

Package

[ OLE Objects 1

Spectrometer

Control Software

Fig. 5. High level architecture of the Experimental Control Software. This software is com-
prised of several layers: the top layer user interface and control module, the OLE objects
used to communicate to the spectrometer and the spectrometer software itself. The top layer
is designed to eventually be split into two separate layers as is denoted by the second object

contained within it labeled "NMRQC VB Package". This package contains core NMR quan-
tum computing commands needed for the execution of any quantum algorithm.
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Java Interface &

Program Control

NMRQC
Mathematica

Package

Mathematica

Fig. 6. Design of the Simulation Software. This software is comprised of several layers. The
top layer contains the user interface and control module, all written in Java. The middle layer
is the package of generic quantum computing Mathematica commands needed for the actual
calculations. The middle layer also contains a few helper commands that combine many of
the generic functions for quick communication. The bottom layer is the Mathematica engine
itself that executed the commands and returns the results. Not explicitly shown is the J/Link
communication package that facilitates communication between the Java application and the
Mathematica software.

3.3.1. Experimental Control

The experiment was run using a Visual Basic software program devel-
oped to execute the algorithm logic and work as a higher layer of control
over the spectrometer software. This allowed for precise timing between
sequence executions as the sample reset to the thermal state. It also
allowed for the automated analysis of results.

The Visual Basic program consisted of two layers: "User Interface and
Control" and a core package of commands, "NMRQC VB Package", to
access the Tecmag Objecting Linking and Embedding (OLE) objects7 which
were in turn used to control the spectrometer software and hardware.

The "User Interface and Control" layer accepted user input for
experiment start values, provided a method to control the start of the
experiment, coordinated the execution of all core commands needed to
implement the algorithm and provided user feedback on the progress
of an experiment underway. This allowed for the running of multiple

7OLE is a Microsoft developed standard for access and control of one program by another.
The Tecmag software is written following the OLE standard and the company provides an
Application Program Interface (API) guide for accessing these objects on their system.
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experiments with different initial mass density distributions without the
modification of a single piece of code.

The control layer also handled the saving and initial analysis of data.
Data was stored as both raw spectrum files as well as final integrated val-
ues. The raw spectrum showed the state of the system over the duration of
the experiment, as well as allowed the possibility of later applying multiple
analysis methods, if so desired.

The layer just below the user interface, the "NMRQC VB Pack-
age", contained general commands needed for NMR quantum comput-
ing. This core code contained commands that are needed to run NMR
quantum computing experiments in general, such as operations to ini-
tialize the system, encode values into each qubit and read out resulting
values.

3.3.2. Pre-computed Experimental Overhead

In an ideal world, the sample response to RF power would be linear
and could accurately be characterized by percent power needed per degree
flip angle, which is in turn related to the spectral integral projection value
by a sine function. This was not the case for the actual hardware in the
real world. Others have found this to be true as well( 16) and used a spy
coil to record the actual response and adjust accordingly. The system used
for this experiment was consistent enough to allow the use of a lookup
table for actual found responses per RF power unit. The creation of this
entailed the following steps:

1. The nominal RF power needed to flip the sample spectra 180 degrees
in 180 or 240[ts was found, depending on the system used.

2. The RF power was divided into 28 equal parts.
3. The overall time used for the RF pulse was reduced by a factor of

two so the nominal 180 power should produce a 90degree pulse.
4. Spectra integral values were measured for the 28 RF pulse intervals

chosen above plus another additional division in the event of undershoot-
ing the initial 180degree power for a total of 29 RF power intervals.

These steps were repeated for each channel used. This created a lookup
table of percent maximum response per percent input power. For the
running of the actual experiment needed RF pulse powers were interpo-
lated between lookup table values as needed. Figure 7 shows the data for
the 1.5 Tesla system.
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Fig. 7. The percent of maximum signal response, per percent input RF power from
the spectrometer software. Twenty nine divisions were used to measure the overall
system signal response. These are the maximum power divided by 28, plus another
increment to verify that the maximum power was not under-estimated. The maximum
power value was determined during an initial calibration process as the power needed
to produce a 90 degree flip, i.e., the maximum signal. The diamonds are channel one
and the stars are channel two. A sine curve, showing the theoretical power response,
is fitted to channel one and is shown as the solid line.

3.3.3. Simulation of Expected Results

Experimental results were verified through a separate simulation pro-
gram. This program also follows the multilayer paradigm, as shown in
Fig. 6, for a high level of code reuse. This software consists of two
main sections: a core Mathemnatica package containing all the quantum
state manipulations necessary and a top-layer java application written to
access the Mathemnatica engine through the Mathmatica toolkit J/Link.
This design allows the top layer java application to evaluate different user
input, load the core quantum computing package, execute the desired sim-
ulation and quickly return well formated results. The benefits of such a
design are multi-fold: the top layer user interface allows different inputs
to be evaluated nearly instantaneously without any re-coding, standardized
graphical user interface tools can be used, along with standardized logging
techniques for the results, and finally, the lower layer core Mathematica
package can be reused for new quantum algorithm experiments.

The simulator program calculated two sets of data. The first is an
ideal calculation dataset that assumes perfect encoded values and zero
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error terms, for each cell of our simulated lattice. The second dataset eval-
uates the addition of user specified errors in the implementation, such as
incorrect system calibration and outside noise. The error terms specifi-
cation allowed for the evaluation of both systematic as well as random
errors. The systematic errors analyzed included incorrect flip angle power
calibration, which would introduce overall under or overshooting of the
intended angle, incorrect initial value encoding error, which is also a flip
operation but was analyzed separately, incorrect evolution timing, overall
signal loss and incomplete gradient applications. Random errors analyzed
included random flip angle errors, evolution errors and encoding errors.

Systematic errors were modeled by using a multiplier of magnitude
selected by the user. It could be positive or negative. All operations using the
selected operation were equally affected. Selecting an error of 0 is the same as
executing the ideal calculation. Furthermore, random errors were also propa-
gated by a multiplier but this time using a random number generator to selected
a number within plus or minus the user selected value. A new random number
was selected for each occurrence of the operation, and for each iteration.

Overall loss was calculated by reducing the final output matrix values
by the user selected amount at the end of each complete calculation. This
was performed once per calculation cell per iteration.

Incomplete gradient application was calculated by attenuating the
density matrix off-axis values to a user selected percentage. Ideally, the
application of a gradient reduces all off-axis terms of the density matrix to
zero. The result of this application was the existence of off-axis terms after
the application of a gradient. This error was termed gradient "leakage,"
since the magnitude denoted the percent of off-axis terms remaining.

3.4. Quantum Lattice Gas Simulation

Figure 8 shows the steps involved in one calculation cycle. The
first portion manipulates the state density into the pseudo-pure start
state.(22,24,25) This is a much simpler start state then the nominal room
temperature mixed state, both equalizing the Hydrogen and Carbon sig-
nals and eliminating off-axis and mixed states. Once this is accomplished,
the system is encoded with the desired start values. Both qubits are
encoded at the same time followed by the application of the collision oper-
ator. Finally, the values of both qubits are read.

Using hard pulses and separate coils for each calculation rather than
imaging techniques to divide the sample into effective cells in frequency
space eliminates the need for decoupling during encoding and reading of
data. A small spread in frequency space does not impact the accuracy of the
separate coil implementation since it does not use that domain to define the
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Initial state preparation: Quantum Lattice Gas Computation:H- -
Equalize Pseudo- -d no]Collision Readout

C pure Operator

Fig. 8. The pulse sequence of single time step for the NMR implementation of the quan-
tum lattice-gas algorithm. The first steps prepare the sample for a calculation by equaliz-
ing the spin signals and then setting them into a pseudo-pure state. Once this is done, each
spin ensemble is encoded with the desired starting values. The collision operator is applied
to the sample and final values of the resultant density values are ready out. Both channels
are read at the same time. Hard pulses are used throughout.

Initial Distribution 1H 1H 1H

Lattice
Gas
Sites

13c 3c0 13c

Streaming of Data between Iterations

Iterations, 1 to M No

Data Key: 1 H = -* 13c= . -

Fig. 9. The data flow for the lattice-gas algorithm, adapted from.('6) The calculations
for the algorithm were run one at a time on the single prototype coil, simulating the
action of 16 different coils running simultaneously for each iteration of the algorithm.
See Fig. 8 for details on each quantum circuit. The read values for each calculation
were streamed to the next encode step at the appropriate location in the lattice for the
next iteration: the hydrogen moving up one step and the carbon moving down one step
between each iteration.

calculation cells themselves. This saves in both execution time and accuracy.
Both channels were encoding during a single 90 gts pulse time step rather
than the two 8 ms pulse intervals needed to encode the data for the previ-
ous implementation using imaging techniques.(5) Additionally, exposure to
well know decoupling error terms such as the NOE are eliminated.

Figure 9 shows the flow of data over the course of the entire exper-
iment. Values are streamed between iterations. A continuous boundary
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Fig. 10. Ideal (solid curve), experimental (diamonds) and simulated (crosses) values for
the 16 cells of the quantum lattice-gas algorithm over six time steps. The algorithmic time
labels each snapshot. For each graph, cells number one through 16 are shown along the
bottom from left to right. The cell values of the total number density are shown vertically.

condition is met by having the values of quantum computation cell 16
streamed to cell 1 and vice versa.

4. EXPERIMENTAL RESULTS

Figure 10 shows the ideal, actual and simulated data for the 1.5 Tesla sys-
tem. There is good over all agreement between the analytical solution and
experimental values in terms of the overall shape, but there is an overall growth
in the density values across all cells for each iteration of the algorithm.

The experimental data was simulated with reasonable agreement
using the error values shown in Table 2. Analysis of the data presented
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Table 2. Simulator error values used to model the exper-
imental data

Item Systematic (%) Random (± )- /)

Error values used for simulated data
Evolution -2.0 0.5
Flip 3.5 0.5
Proton encode -4.0 0.5
Carbon encode -2.0 0.5
Overall loss 1.0 0.0
Gradient leakage 35 n/a

Fig. 11. A four coil array. Helmholtz coil pairs were implemented on 22 mm outer diame-
ter G10 fiberglass tubing and mounted within 38 mm outer diameter RF copper shields. The
copper shields which were constructed of electrically isolated strips of copper overlaid on
fiberglass tube to form a complete physical barrier. The four coil and shield units were then
mounted on two plexi-glass discs of 20.8cm diameter that would slide within the 21 cm bore
of the 5 Tesla magnet and maintain consistent coil placement from experiment to experiment.
Holes within the plexi-glass discs allowed for sample placement within the coils and connec-
tions of the coils to the tuning boards. Each coil pair was tuned to 212.5 and 53.4MHz, the
Larmor resonant frequencies of HI and C13, respectively.
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1.5 Tesla, Single Coil, Centered 5 Tesla, Single Coil, Centered

5 Tesla, Coil 1 of the Coil Array,

Offset 4.5 cm from the Magnet's Central Axis

Fig. 12. 'H spectra for the magnets and coil positions used for this work. The upper
left shows the spectra in the 1.5 Tesla magnet with the coil centered. The upper right
shows the results in the 5 Tesla magnet, again with the coil centered. Finally, the bottom
image shows the results for one of the coils in coil array, where the coil itself is off-center
from the magnet's central axis, nominally the region of maximum B0 uniformity. The full-
width, half maximum (FWHM) line widths for each of these is approximately 10, 5 and
7 Hz, respectively.

here showed that the incomplete elimination of off-axis elements for
pseudo-pure start state appeared to be the dominant error term. This
approach relies on gradients to eliminate these off-axis elements. However,
eddy currents caused by gradients can interfere with the temporal field
homogeneity, distorting the results of the calculation sequence beyond use.
For this reason our pulse power of the existing gradient coil magnet insert
was limited. The data presented here shows a compromise between gradi-
ent coil power and distortions caused by field inhomogeneities due to eddy
currents. One approach to address this issue is to use individual gradient
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coils around each processor coil for future hardware implementations. The
increased distance between the gradient coils and the magnet walls would
allow for much stronger gradient pulses without the penalties of eddy
current induced field distortion and would have a significant impact on the
results.

The incomplete elimination of the off-axis terms is also significant in
that this had a multiplicative effect on other error terms. One example
is finding that the resultant errors for flip angle inaccuracies are double
the expected values when a high degree of off-axis terms remained. This
amplification effect is also seen to a lesser degree for evolution errors. A
key indicator that off-axis terms are present is the non-symmetric growth
of error in each channel. This behavior is generally not seen with the other
error terms studied, with the possible exception of random noise, which is
at least a magnitude smaller in effect.

Overall signal loss, or decoherence plays a key role in the appear-
ance of the data. Even small overall signal loss (one percent or less) from
time of density encoding to final read resulted in the appearance of an
asymptotic limit to the density values over several iterations. This signa-
ture shape was not seen from other error terms studied.

Finally, the system was equally sensitive to random system errors in
both the flip angles and evolution terms. Small magnitudes of one half
of one percent random error for flip and evolution terms in the model
matched the experimental results well.

5. CONCLUSION

The experimental results show reasonably good agreement with the-
oretical prediction as well as with previous work using an imaging
approach for a type II quantum processor. Simulation of the experimen-
tal implementation showed excellent agreement with experimental results.
Furthermore, the simulation pointed to a high degree of remaining off-axis
magnetization terms from the pseudo-pure state preparation as the main
contributor of experimental data deviation from the analytical solution.
This indicates that an improved implementation the pseudo-pure state,
through the improved implementation of high power, low field-distorting
gradients, would greatly improved the quality of experimental data.

Further work is in the development an implementation of multiple-coil
type II quantum computer system. This system will use the existing custom
software already developed along with the custom two full channel spec-
trometer but will run on a 5 Tesla magnet and employ smaller coils along
with a custom constructed hardware switch to control the operation of the
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coils. This switch will allow full control of the coils by the software and allow
optimization of coil use based on sample fidelity and experimental needs.
The additional coils and switch give the advantage of additional comput-
ing power with relatively small expensive as compared to adding additional
spectrometer channels as well as additional coils. The improved filling fac-
tor of the planned smaller coil design, the increased system field strength
and the planned modification to the collision operator(26) should result in
improved system fidelity and overall system accuracy.

A four coil insert constructed for the multi-coil work is shown in
Fig. 11. This insert has a maximum coil off-set of 45 mm from magnet
center. This configuration yields acceptable line widths, even off-axis, as
shown in Fig. 12.
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A lattice-based quantum algorithm is presented to model the non-linear
Schridinger-like equations in 2 + I dimensions. In this lattice-based model, using
only 2 qubits per node, a sequence of unitary collide (qubit-qubit interaction)
and stream (qubit translation) operators locally evolve a discrete field of prob-
ability amplitudes that in the long-wavelength limit accurately approximates a
non-relativistic scalar wave function. The collision operator locally entangles pairs
of qubits followed by a streaming operator that spreads the entanglement throughout
the two dimensional lattice. The quantum algorithmic scheme employs a non-linear
potential that is proportional to the moduli square of the wave function. The model
is tested on the transverse modulation instability of a one dimensional soliton wave
train, both in its linear and non-linear stages. In the integrable cases where ana-
lytical solutions are available, the numerical predictions are in excellent agreement
with the theory.

KEY WORDS: Non-linear Schr6dinger wave equation; quantum algorithm;
soliton dynamics; non-linear quantum mechanical instability; quantum
computing; computational physics.
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1. INTRODUCTION

The non-linear Schr6dinger (NLS) equation is one of the most basic equa-
tions of non-linear physics. Its salient feature is that it emits soliton solutions
by exact integration. Hence, it plays a vital role in weakly non-linear systems
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with the dispersion relation dependent on the wave amplitude. The NLS
equation is pivotal in non-linear optics,(:) plasma physics(2) as well as in
ideas for information transfer in optical computers.(3,4) In 1+1 dimensions,
both the focusing and defocusing NLS equations are exactly integrable and
exhibit soliton solutions. Here, we develop and test a quantum lattice rep-
resentation of the (focusing) NLS equation in 2+1 dimensions

iat * + O a,, V+ayyO* + 21* 2V=0. (1)

building on our previous quantum lattice representations of the Shrodinger
wave equation,(5) NLS equation(6) and the vector Manakov system(7) in
1+1 dimensions and the Dirac equation in 3+1 dimensions.(8) In partic-
ular, we shall consider the transverse modulational instability of the one-
dimensional soliton wave train solution *,o (x, t) of (1).

In the quantum lattice algorithm for the Schr6dinger equation, at
each spatial node, the wave function is represented by the interference sum
of probability amplitudes of the upper excited state of each qubit. In the
quantum algorithm for the NLS equation in 1+1 dimensions, 2 qubits
per node are used, and collisional interaction is induced by the unitary

SWAP quantum logic gate. The SWAP quantum gate has been imple-
mented experimentally using 2 qubits per computational node in a quan-
tum lattice gas model of the diffusion equation.(9,1I) This entanglement
is then spread throughout the lattice by the unitary streaming operator,
which is real. In extending the algorithm to 2+1 dimensions, still only
2 qubits per node are required and the SWAP still represents local
qubit-qubit interactions. If implemented on a platform using future quan-
tum information processing device technology, the quantum algorithm
presented here is suited for a type-I quantum computer architecture, as
described in this Quantum Computation for Physical Modelling (QCPM)
special issue in Section A of,(8) but with local non-linear interactions
inherent in the quantum device.

2. QUBIT REPRESENTATION FOR THE NLS WAVE FUNCTION
IN 2+1 DIMENSIONS

We discretize the single-particle wave function over a two dimensional
square Bravais lattice (the wave function is defined only on a spacetime
lattice) where 2 qubits are used at each lattice node to encode the local
value of the wave function at that node. Let L denote the number of lat-
tice nodes along an orthogonal direction and let i and j be integer val-
ued spatial indices ranging from 1 up to L. Then, at lattice node (i, j)
one defines a position basis ket Ixij). The discretized single-particle wave
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function ket I *) is modelled by a sum over all possible ways the particle
can be located on the lattice sites:

L-1

lI*)= E y iJxij), (2)
i,j=O

where the (complex) probability amplitude for each possibility is y' --
(x'jIo

The two qubit kets for each lattice node are denoted by Iqoj) and jq'j)
with each qubit having the standard two-level representation

I qa") = aa 10) + Pa"J I 1) (3)

with normalization ia4 12 + foaj 12 = 1 for a = 0, 1 at spatial site (i, j). In
particular, the quantum particle is said to occupy the ath local state at
position xij when fla = 1, while the ath local state at xij is empty when
fl! = 0. For each position ket there are four basis states in the number
representation:

qolq~ l) ... 111) ... IqLLqLL) doubly occupied at xij

Xij

q011 q)"" ...110) ... IqLLqLL) spin-up at xij

Xij

q0 q I)"'101)".qLLqLL) spin-down at xij

xij

Jq0 q 1)"...100)'...IqLqLL) empty at xi

xij

where we use conventional terminology letting Iqoj) encode spin-up and

1qJ) encode spin-down, say.
In the number representation of the one-particle wave function

ket I 4r), we need consider that subset of basis states in which only one
amplitude flP = I is non-zero (all other P amplitudes are zero). This subset
of basis states is called the one-particle sector. There are (2L) 2 such states.
So in the one-particle sector, there are two ways (interfering possibilities)
for a particle to occupy the ijth lattice position

Po al .0... 10 ... OO)±+ U'fl I00-.. 01 ... 00). (4)

Xij Xij

Hence the occupancy probability of the ijth node is determined by first
summing up the probability amplitudes of the spin-up and spin-down
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basis states in the one-particle sector and then computing, the resulting
square of this absolute value. Letting 4' j= 0' and ,• a0l ', the

complex probability amplitude in (2) is set equal to the sum of the two
on-site probability amplitudes

Yij =- + J (5)

3. QUANTUM ALGORITHM TO RECOVER THE NON-LINEAR
SCHRODINGER EQUATION IN 2+1 DIMENSIONS

To recover a macroscopic scale effective theory that approximates the
Schr6dinger wave equation in the long wave length limit, our quantum
lattice representation of the dynamics uses the unitary v VAP quantum
logic gate as the collision operator that couples the on-site probability
amplitudes:

c•(Y jij :-l(-i I +i) (Yij.i -, (6)
tj 2 I\ /1- i \ t

Y1 \I )1
and eight stream operators which independently shift the T and 4. compo-
nents of the discretized spinor wave function in the ±i and ±ý directions.
The stream operator and its transpose (which is its adjoint and inverse) in
the £ direction for the first (spin-up) component are:

SXT(YT) =(y+"j ST(Y.) (Y . (7)

and the stream operators in the .i direction for the second (spin-down)
component of the discretized spinor wave function:

i,' ( -) /+ j S = (8)

Similarly, we define the four stream operators in the . direction:

S (1) =.;,, ST,( (A_)) (9)

S (1 .) ST(2) ( .) = (YI 1 ).I (10)

s tj i'j'' s,, \ j
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We define the fundamental evolution operator for direction w^ =x^ or 5 and
spin a =T or 4, as follows:

91,,,,, = S,,U (1CI

Now we define the interleaved evolution operator (which would be identity
if the stream and collide operators commuted) as follows:

cS Gat S (12a)
U) or Iva Oliat t wa~ll 913" 1)

= s~,(• t SI,,0C (12b)

TST SC,=Ig (12c)

= S-_,,,,•SIia,, (12d)

since the adjoint of the fundamental evolution operator is OU,, =tS t,0",

the stream operator is real S, = SW., and the collide operator is
self-adjoint V = IC. Because of the spacetime interpretation of spin,(8)
where if spin-up moves along ti say then spin-down moves along -6t, then
the interleaved evolution operator is invariant under the following simulta-
neous spin flip and spatial inversion:

_-U),,-(T = 9 ,0U (13)

For example, J-x.,T =x, .
Now, let E denote the local quantum evolution operator that advances

the discretized spinor wave function one unit in time. Then the evolution
equation is the following:

Y ili (t + At) =E{'J()

Yý (t + At) Y J(t)) (14)

The evolution operator can be partitioned in space using an operator
splitting method. A third-order accurate quantum algorithm for the local
evolution operator has the form

E = •_yIyt._xTxl (15)

where the macroscopic effective field theory for the spinor field if=(yrT) is

Ax2
at= --- ax (axx±+O)Y)'VO(E 3 ), (16)
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where ur = 1 0 and where c - Ax V-, ýI7. So if we trace over the spin

components of * and form the scalar TP = Yt + yl, we obtain the following
non-relativistic wave equation for a free quantum particle:

atP=i-h (axx±ayY)'i+.O(C 3 )' (17)

where the diffusion constant associated with the particle mass is
(h/m = Ax 2/At) in lattice units. Quadratic products of the interleaved evo-
lution operator (12) are invariant to order E3 under the following double
spin flip and spatial interchange operation:

w)w',I' = w~',-r Waw ,-U' J +O(E 3 ). (18)

For example, Jxt~yj = 1 yt 5x4 and Jxt~yt =5yýJxj. Hence using (18),

there are (') = 6 ways to re-order the spatial indices of the evolution

operator (15). Then, using (13), for each configuration of the spatial indi-
ces there are 16 ways to re-order the spin indices of (15). Hence, there are
a total of 96 ways to rewrite the quantum algorithm (15). For example, we
can rewrite (15):

E (13)E= Jyfjytjxý_qxý (I19a)

(8= JytJxfJyIJxý (I19b)

(18)- x xt y y .(1c

Every version has the same algorithmic complexity and the error terms
are always order d. Furthermore, there are versions of the quantum algo-
rithm where the error terms differ only by an overall sign change. We
exploit this feature to judiciously cause a cancellation of all E3 error terms
by using twice as many operators. This doubles the algorithmic complex-
ity, but the error is then pushed out to fourth-order. Although the algo-
rithmic complexity increases by a factor of 2, the numerical accuracy of
the algorithm increases by a factor of 4 because of the diffusive ordering
of the space and time fluctuations (because (17) is parabolic). Therefore,
it is advantageous to employ this numerical schema.

As a case in point, the error terms in (19a) and in (19c) differ only
by an overall sign. Hence, choosing our evolution operator to be

E=ak2  J 2 j2 2(20)•xt yý yt xý,
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we recover the following macroscopic effective field theory for the spinor
field

atr =i At Orx (axx-+-aYY) Vft-O(C4)" (21)

Again, tracing over the spin degrees of freedom, we obtain the Schr6dinger
wave equation as our effective field theory, but now with diffusion
constant

h Ax 2

- =2 (22)
m At

We add a potential V by rotating the overall phase of the spinor field fol-
lowing each application of (20)

4f(t+At) = Ee-iAtV/hlf(t) (23)
(22) EeiAx2(2m/h 2 )VVI(t). (24)

The resulting equation of motion is

Ax
2

at*¢ = i /----O-fx (axx --+ ayy) Vf Vr - + g - (,E4), (25)
A t h 25

or in terms of the scalar wave function

ihatqj =--h AX2 (axx -+-Oyy) ill +1 gk +I q-(_(4). (26)

At

The addition of the potential does not introduce any greater error nor
diminishes the numerical accuracy of the scheme. Using (13), there are
28 ways to rewrite (20). Furthermore, (20) must be invariant under an
interchange of the spatial labels x and y and the spin labels T and 4,.
Hence, there are at least 256ways of writing a quantum algorithm that is
fourth-order accurate.

4. TRANSVERSE INSTABILITY

For convenience, we briefly review some properties of a 1 D soliton wave
train solution of (1).(1) A planar ID bright soliton solution of (1) is

*0 (x, t) = (x - xo - 2vt; fl)ei(vx-t±ft+O), (27)
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where the standard soliton shape is given by

0 (x; p) = fp/ 1 2 sech(p 1/2x) (28)

The location of the soliton wave train is x0, 2v is the (transverse) soliton
wave train speed, P controls its amplitude and 0 its phase. For a linear sta-
bility analysis of this 1D soliton wave train, one considers perturbations of
the form

6 V(x, y, t) = [u (x) + i w (x)]ei[t+Ft+ipy, (29)

where p is the transverse perturbation wavenumber in the y-direction, and
F(p) is the linear growth rate of the perturbation. An analytic solution
to this linear perturbation problem does not exist, and one must resort to
asymptotic theory--either about the long wavelength limit (p = 0) or about
the maximum growth rate wavenumber Pc where F(pc)=0. Here, we shall
consider the linear instability in the long wavelength limit, p << 1. In this
limit, it can be shown01 ) that the resulting eigenvalue problem has

u(x) =0 w(x)=0(x). (30)

In the long wavelength limit, the transverse modulation will break up the
1D soliton wave train into N filaments, where

N= pLy (31)
27r

5. NUMERICAL PREDICTIONS FOR NLS EQUATION IN 2+1
DIMENSIONS

We apply our quantum lattice algorithm to the solution of the NLS
equation in 2+1 dimensions, using a 1024 x 1024 spatial grid with a sol-
iton wave train speed v = 0.05 and amplitude f 1/2 = 0.085 for three cases
presented below: an unperturbed soliton wave train, a solition wave train
with an additional transverse modulation, and the interaction of two per-
pendicularly directed solition wave trains.

To test whether (classical) floating-point roundoff will trigger the
transverse instability in the quantum lattice algorithm we the propaga-
tion of the planar 1D bright soliton solution in the NLS equation in 2+1
dimensions. We find even after 10,000 lattice time steps there is no trig-
gering of the transverse modulation instability, and the 1D soliton train
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propagates undistorted through the lattice, see Fig. 1. The quantum algo-
rithm is numerically stable. This is verified in the simulations for t=OAt,
t = 5 KAt, t = 10KAt. The simulation error in soliton speed after 10K
iterations is only 0.5% (about 5 lattice grid points on the 1024 grid).

A transverse perturbation of the form of (29) with wavenumber p =
27rN/Ly, N=8 with an amplitude that is a factor of 10-7 below the ini-
tial wave train amplitude. The asymptotic linear stability predicts that the
1D soliton train should break up into 8 filamentary structures, an unstable
phase, as shown in Fig. 2. This is indeed found in our simulations, with
the filamentary structures becoming so isolated and peaked that the steep
gradient of the wave function cannot be resolved on the grid after about
t= 2100At iterations, even on using a 1024 x 1024 lattice.

Finally, we consider the interaction of two perpendicularly directed
soliton wave trains. No initial perturbations are needed due to the "over-
lap" region of the two wave trains. A very rapid instability is immedi-
ately triggered at the intersection region of the two wave trains, and its
localization and peak are so rapid that the gradient of the wave function
cannot be further resolved on the grid after just 35 time steps. The insta-
bility occurs only at the point of intersection of the two soliton trains and
the unaffected regions of both soliton trains propagate in normal fashion.
This expected behaviour is observed in the simulation shown in Fig. 3.

6. CONCLUSION

Presented was a lattice-based quantum algorithmic method to numeri-
cally model time-dependent solutions of the Schr6dinger wave equation in
an arbitrary number of spatial dimensions using a fourth-order accurate
operator splitting method. Here, we tested the method in 2+1 dimensions
using a quantum system with a non-linear potential. Generalization to
3+1 dimensions is straightforward. This was the first numerical test of the
quantum lattice gas algorithm in multiple spatial dimensions-all previous
simulation results that have appeared in the literature have been for 1+1
dimensional cases. Furthermore, we probed to determine if the quantum
algorithm was cable of accurately modelling the expected physical behav-
iour of the non-linear quantum system by triggering the onset of strong
and rapid non-linear instabilities in solitary wave trains. This was a strin-
gent test of the method.

In all the cases, the quantum algorithm performed excellently with
the numerical results in perfect agreement with the theoretical predic-
tions. Ultimately, in tracking the late time developed of the growth of
the instabilities, we were limited by our fixed grid resolution. To follow
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Fig. 1. Evolution of a ID soliton wave train for the
NLS equation in 2+1 dimensions on a 1024 2 grid with
periodic boundary conditions. No transverse modulation
instabilities are triggered, even after 10,000 iterations.

By t = 10, 1000At (bottom), the wave train has wrapped
around the grid.
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Fig. 2. Evolution of a I D soliton wave train for the NLS
equation in 2+1 dimensions on a 10242 grid (only half

the grid is shown) with a transverse perturbation with
amplitude 10-7 lower than the initial peak amplitude of
the soliton wave train. A transverse modulation instability
is triggered, clearly observable after t =2000At time steps.
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a 1024' grid. An rapid instability is immediately triggered,

creating a rising peak at the intersection point of the solitons
that reached the grid resolution after t = 35At time steps.
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the quantum evolution for significantly longer periods of time following
the onset of a non-linear instability, one could introduce adaptive mesh
refinements into our quantum algorithmic scheme, and this will be left for
future work.
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1. INTRODUCTION

Finding a simple rule to represent the spacetime quantum mechanical
dynamics of a system of Dirac particles in 1+1 dimensions as a discrete
path integral, or more accurately as a path summation, is known as the
Feynman chessboard problem.(') In Feynman's notes we see that he first
solved this problem in 1946.(2) A proof by Jacobson and Schulman of Fe-
ynman's solution to this chessboard problem relies on a deep isomorphism
between the discrete path integral and the partition function in statistical
mechanics of an Ising spin system with nearest-neighbor spin-spin interac-
tion.(3 ) The 1+1 dimensional chessboard is a square spacetime lattice with

'This discrete path integral formalism, included in the beginning of this paper, was pre-
sented on August 20, 2004 as an invited talk entitled "Lattice-based quantum algorithms
for computational phsyics" at the 13th International Conference on the Discrete Simulation
of Fluid Dynamics, hosted by Tufts University in Cambridge, Massachusetts. The quantum
algorithm for the Dirac system in 3+1 dimensions, included at the end of this paper, was
presented on May 9, 2002 at the Quantum Computation for Physical Modeling Workshop
2002, hosted by the Air Force Research Laboratory in Edgartown, Massachusetts.

2 Air Force Research Laboratory, 29 Randolph Road, Hanscom Field, Massachusetts 01731.
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grid sizes Az and At. Feynman's solution is the following: the probability
amplitude for a free massive Dirac particle to go from one lattice site to
another is represented by summing over all the possible zigzag pathways a
particle may travel with velocity ±Az/At, hopping ±Az from lattice site
to lattice site, continuing forward or reversing direction at each time step
At. The probability amplitude a particular path contributes to the kernel
depends on the number of reversals, or bends, where each bend contrib-

utes a multiplicative factor of i 2 to the overall probability amplitude
associated with the path and where m is the particle mass.

Employing just this rule, the relativistic quantum mechanical evolu-
tion is correctly emulated. The Dirac Hamiltonian in 1+1 dimensions is
recovered in the continuum limit as the grid resolution becomes infinite:
Az -) 0 and At -- 0 where the limit is taken such that the ratio Az/At
remains constant, which is interpreted as the speed of light c. The Dirac
equation of motion in 1+1 dimensions for a 2-spinor field emerges as the
effective field theory in the long wavelength limit. A solution to the chess-
board problem is given in §11, employing the isomorphism between the
path summation and the partition function, but also employing the stream
and collide paradigm used in quantum lattice gases to further simplify
matters.

Feynman attempted to find a simple solution to the chessboard problem
in 3+1 dimensions, but had no success. Jacobson presented a solution, but
his model is unsettling, if not unphysical, because the Dirac particle locally
moves faster than the speed of light.(4) Furthermore, Jacobson's solution is
complicated because it is implemented on a kind of random spacetime lattice
and, hence, is neither useful for numerical simulation purposes nor quantum
computation. Here we consider a simple solution for 3+1 dimensions where
the Dirac particle locally moves at the speed of light and where the solution
is directly suited for numerical simulation and quantum computation.

The full problem, checkered in four dimensions instead of on the
plane, is the following: Using a spatial body-centered cubic Bravais lat-
tice, show that the probability amplitude for a free massive Dirac parti-
cle to go from one lattice site to another, by moving independently and
simultaneously along the orthogonal cubic lattice directions with veloc-
ity ±Ax/At, ±Ay/At, and ±Az/At, is equal to the sum of all possible
pathways between those sites, where the probability amplitude a particu-
lar path contributes to the kernel depends on the number of reversals of
motion, or bends, counted by projecting along the orthogonal ., ý, and

• axes, where each bend contributes a multiplicative factor of i eLAt toDh

the overall probability amplitude associated with the path, where m is the
particle mass, and D = 3 is the number of spatial dimension.
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Presented in §111 is a solution that is a straightforward generalization
of the 1+1 dimensional solution given in §11. The key is to designate the
quantum mechanical velocity vector of the Dirac particle in terms of the
spin components Sx =-1, sy -1, and s, as follows:

S(Sx. + Syý + Sz).(1)

Locally there are only eight possible spin combinations, hence the choice
of the body-centered cubic lattice. All the spacetime translational degrees
of freedom are specified in terms of the spin variables. The relativistically
invariant Dirac system is recovered in the continuum limit as the grid res-
olution becomes infinite: Ar -* 0 and At -+ 0 where Ar = Ax = Ay = Az
and where the limit is taken such that the ratio Ar/At remains constant,
which is interpreted as the speed of light c. The Dirac Hamiltonian gen-
erating the unitary evolution for the 4-spinor field of a relativistic particle
emerges as the effective field theory in the long wavelength.

1.1. Application to Quantum Computing

The basic approach is to use an externally controlled array of qubits
to encode the quantum wave function of the modeled quantum system of
Dirac particles and to use an engineered local Hamiltonian to emulate the
Dirac Hamiltonian so as to approximate the subsequent time-dependent
behavior of the wave function on a spacetime lattice. Two qubits are used
per lattice node to model the Dirac equation in 1+1 and 2+1 dimensions
and four qubits are used per lattice node to model the Dirac equation
in 3+1 dimensions. The 3 dimensional spatial lattice is a body-centered
cubic (bcc) lattice. The 3+1 dimensional spacetime lattice is a hyper-bcc
lattice.

The final result of the computation is obtained by measuring all Q
qubits. To recover the moduli squared of the modeled wave function,
an ensemble measurement or repeated measurement is required. The fre-
quency of occurrence is associated with the moduli squared of the wave
function. Upon measurement, the probability of finding a "particle" at
time t at a lattice node at location ý is equals the sum of the mod-
uli squared of the excited-energy eigenstate probability amplitudes of the
qubits at that quantum node. This probability is called an occupation prob-
ability.

The local Hamiltonian that emulates the Dirac Hamiltonian has a
kinetic energy part related to the motion of qubits and an on-site qubit-
qubit interaction part. Both generate the time-dependent dynamics of a
discrete amplitude field. The local Hamiltonian is spatially homogeneously
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applied to the lattice-based amplitude field independently on all the lat-
tice nodes. Each part of the Hamiltonian generates unitary evolution
operators:

1. The on-site interaction, represented by a unitary operator W called
the collision operator, emulates particle-particle "collisions."

2. Site-to-site exchange, represented by a unitary operator 9 called
the stream operator, emulates local "translation" of particles between
neighboring lattice sites.

The quantum mechanical local evolution equation is:

(, t+At)) = (t)(2)

where IjV) is local value of the probability amplitude field and where 5'
causes quantum mechanical streaming. Equation (2) is called a quantum
lattice gas equation of motion and is derived in §liD for the 1+1 dimen-
sional case and in §III D for the 3+1 dimensional case.

In the one particle case, (2) can rewritten as follows:

I•(., A))= E Mslvf(2 -j, t)), (3)

SE bcc

where Ms is a matrix that represents 59 on a local stencil of the
body-centered cubic (bcc) lattice and the sum is over the eight diagonal
neighbors. Then with W represented by a unitary matrix, (3) becomes a
finite-difference representation of the Dirac equation.

The first-order numerically convergent version of the quantum algo-
rithm can be expressed as a quantum lattice-gas evolution Eq. (2). In 3+1
dimensions, 59 moves each quantum particle located at the lattice site i to
8 neighboring sites on the body-centered cubic lattice, which on R.H.S. of
(3) is notated - .3 5' is quantum mechanical because a particle moves
to multiple locations at each time unit At.

In §IV, the unitary matrix representation of the stream and collide
quantum mechanical operators are given to specify quantum algorithms
for numerically modeling a system of relativistic Dirac particles. The quan-
tum algorithms are distinguished by whether they may handle one or many
particles and by their numerical convergence properties. Several quantum
algorithms are presented in §IV: one particle algorithms in §IV A in the
form of (3) and many particle algorithms in §IV B in the form of (2) in

3 Say the net motion is along i-axis. Then a positive energy particle starting at (0, 0, 0)
moves to the 4 sites (+Ax, +Ay, Az) whereas a negative energy particle moves to
(±Ax, ±Ay, -Az).
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the second quantized representation using ladder operators. The structure
of 9 depends on the number of spatial dimensions of the modeled quantum
mechanical system and it can be altered to improve the numerical conver-
gence properties of the quantum algorithm.

The quantum mechanical stream operator is rewritten in terms of a
classical stream operator, denoted S = S, Sy Sz (not to be confused with the
action). Each product component operator of S moves a particle along an
orthogonal cubic lattice direction. The following identity relating the quan-
tum stream operator to the classical stream operator is proved in §IV A.2:

i _ . e a ( 2 ) i . (2 ) _ ( 2 ) .S r r 1 ( 2 )
9'=eT-(2y -4- ) Sye(-4 xSz" (4)

As a starting point, in §IV A.2, the simplest quantum lattice-gas algorithm
on a bcc lattice is treated. This quantum algorithm is a direct transcription
of the path summation in §111. However, this algorithm suffers two diffi-
ciencies: the checkboard problem of non-interacting sublattices and only
first-order numerical convergence. Therefore, next in §IV A.3, an improved
version of the quantum algorithm that remedies these deficiencies is
presented.

The simulation of many Dirac particles is treated in §IV B. This
quantum algorithm is naturally suited to implementation on a quantum
computer using conservative quantum gates. If implemented on this hy-
pothethical quantum computer, it efficiently predicts time-dependendent
solutions of the four spinor Dirac field associated with the many-body rel-
ativistic system in 3+1 dimensions.

The quantum algorithm can handle the many-body Dirac system in
a second-quantized representation without any additional computational
overhead. Therefore, this is an efficient quantum algorithm for the many-
body system of Dirac particles in 3+1 dimensions. Its computational com-
plexity is dominantly linear in the number of qubits used to spatially
resolve the 4-spinor wave function. With Q-number of qubits, the number
of quantum gate operations needed to model a one-body quantum system
is dominantly linear ---aQ, where a is a fixed constant. This is discussed
in §IV B.1. The efficiency of the quantum computation derives from the
fact that exactly the same number of quantum gate operations are needed
to model a many-body quantum system, for up to as many particles as
qubits. This kind of exponential speedup has been previously shown to
occur in quantum lattice-gas algorithms for modeling a many-body system
of non-relativistic particles.(5)
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2. 1+1 DIMENSIONS

2.1. Feynman Path Integral Representation of Non-relativistic Quantum
Mechanics

The probability amplitude that a quantum particle at position Za at
time ta will transfer to a new position Zb and time tb is given by the fol-
lowing path integral:

K (Zata; Zbtb) = f D[z (t)]ei , (5)

where f D[z(t)] denotes integration over all trajectories z(t) for which
Z(ta) =Za and Z(tb) =Zb, and where the increase of the action

S = Jtb dtL[ý(t), z(t)], (6)

along a trajectory z(t) is determined using the classical Lagrangian L.

2.2. Path Summation Representation of Relativistic Quantum Mechanics

Feynman(1 ) found a discrete representation of the Feynman path inte-
gral principle on a square spacetime lattice to compute (5) for a relativistic
quantum particle:

Kg(Zata; Zbtb)= lim 15' (R) iAt MC , (7)
N-..+ oo

R>_O

where At= tb-t, where a and fP are the ± components of the spinor
amplitude field (spin-up or spin-down), cI, (R) is the number of paths
with N steps and R bends, where the length of each step is Az-= z M
-c At, where c is the speed of light, and where m is the mass of the quan-

tum particle. An example relativistic trajectory with 4 bends along ý is
depicted in Fig. 1.

The allowable region of the lattice is bounded by the intersection of
two light cones, with boundaries Z = ±c(t - ta) + Za and z = ±c(t - tb) + z,
for ta < t < tb and Za < z < Zb. One light cone originates at the spacetime
point (Za, ta) and an inverted light zone terminates at (zb, tb), see Fig. 2.
With zb - z, = M Az and tb - ta = NAt, the edges of the allowable rectangu-
lar region are given by P -[_M] and Q=[-N-M 1 , for N>M>O. Hence,
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Fig. 1. Example trajectory of a massive relativistic particle starting at location

z, at time t Q and ending at Zb at time tb. The total number of steps is N= 17, so
the elapsed time is t= 17At. The number of steps to the right minus the number
to the left is M = 7, so the net distance traversed is z = 7Az. The relativistic par-
ticle moves at the speed of light c=_-Az/At. The number of bends is R =4.

the paths are the permutations of the set with N-- P + Q members ±l1:

( 1, 1 ..... 1 -1, -1, ..... -1). (8)

Q number of I's P number of -lI's

The number of permutations is the binomial coefficient:

number of paths= ( +Q)=(P+Q). (9)

2.3. Spin System Representation

Because the summation (7) occurs on a discrete spacetime lattice,
in 1+1 dimensions it is possible to enumerate all the paths originating
at point a and ending at point b using N + 1 spin variables si, for
i =0, 1,2, ... , N. This is depicted in Fig. 3a for the example relativistic
trajectory. Identifying a with so and fP with SN, the summation (7) is
equivalent to:
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Fig. 2. Example problem in 1+1 dimensions with N = 8 and M = 2. (Top)
Allowable rectangular region of the square lattice within the light cone, with
sides of length Q = r = 5 and P=[L---MJ = 3. (Bottom) Enumeration of all
possible paths, the 56 permutations of the set (1, 1, 1, 1, 1,-1, -1,-1).

KsosN(Zata;Zhtb) = ( iAt ) (10)
{Sj .... sN-IlIM

where the set {so, .... SN } specifies a discretized trajectory with a path
length constrained by the condition

N

ZbSi Za (11)•-• i - Az

i=o
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ta tb
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Fig. 3. (a) Spin representation of the trajectory of a massive relativistic parti-
cle starting at time t, and ending at time tb for N=7 and M= 17. (b) Quantum
lattice-gas representation of the same trajectory where the particle is stream-plus
(or "spin-up") as it moves to the right and stream-minus (or "spin-down") as it
moves to the left. Pre-collision spin orientations are shown.

Since the starting and ending points so andsN are fixed, they do not
appear in the sum on the R.H.S. of (10), and the condition (11) is equiva-
lent to fixing the spin magnetization M = -i si of a system of N + I spins.

At the i th step, the particle continues to move straight when si = si + 1,
and it changes direction when si = -si+l. As the particle moves (or
streams) to the right its spin orientation is "spin-up" and as it moves to
the left it is "spin-down," as shown in Fig. 3b. Therefore, the following
binary value counts the occurrence of a bend at the ith step:

10 l sisi+l) 0, no bend
2| 1, bend.

Hence, the following sum counts the total number of bends in a path:

I1N-1
R= 2 (1-sisi+l). (13)

i=0
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With a change of variables

V -I log iAt )C, (14)

(10) can be written as the partition function of an ensemble of spins with
nearest neighbor coupling and with fixed total magnetization

( •i ) e-V yN I (1-sisi+l) (5

KosN = E ( M, Tsi e- i=O (15)
(st, ..... SN - I

where the Kronecker delta 6 (a, b)= 1 for a =b and 6(a, b)-0 for a :-b.
We may write the Kronecker delta as follows:

• ( M_ Ni S i) = I( 
1 6 )

MEs -2N E eilwMEs)(6

i=0 n=-N

N

since M and i0 osi are integers. Then inserting (16) into (15) gives

1 i= i(Ž=fO
KsOsN=2N L- e-° (17)

n=-N {sI .... sN-1}
IN 0S, =_I N-1I(S

Now since Zi=0si=I(so+sN)' _-i (si+si+I), we pull down the sum-

mation in the argument of the exponential to form the following product:

N-1 I ei(-yn)Mei•()(so~sN)KsOSN =e e-- N

n=-N

N-I

x 1 J7 e-iT()(Si(si+i)-v(l-sisi+l) (18)
{S1 .... S"N I i=0

The components of a unitary transfer matrix qI are defined as

+ -e-v(-sisi+)-ihr( )(si+si+I), (19)

so that (18) becomes

I N-1 { (z L-n ,• M . S+n )1 ei

KsOSN e 2N -sOsN, (20)
n=-N
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where we have defined

g,"OSN = ' Y, T s0 ,s1 0s ,S2'" * OSN-1',Sl (21)
Sj=-+I SN-I±l

The matrix form of (19) is
Ok--{ //,1V•_I1 e-i2rn/N e-2V (22

•,6 '1 -1 '- , - J --- • , e - 2v ei27rn/N )( 2

and so (21) becomes simply an N - 1 fold matrix multiplication of Vi:

, _. 9 1, 1 -T '- 1 , " ( e - i27rn /N e - 2 V v N N

- (x1,-1 Y- ),-1=(, e-2v ei2rn)N (23)

2.4. Quantum Lattice Gas Representation

To simplify (20), we acknowledge the discretized nature of the space-
time lattice by using the following variable transformations:

27rn =pAz Z=Zb-Za =AzM t = tb - ta = AtN, (24)
N h

where Pn is the discretized momentum. From (14), the off-diagonal com-
ponents of (22) are e-2, =iAt ', and the transfer matrix (22) becomes

( '' CA2 iAt mc2

0(1 -i h 2 (f(Az2) ) (25)
i At 'cz I + i P-1 + (9(Az)"

Our basic approach to formulate the space-time translation degrees of
freedom in terms of the spin variables is to partition (25) into a product
of a temporal matrix and a spatial matrix

Wl =eS, (26)

where the temporal matrix is called the collision matrix

rmc'2A1
W = e (27a)

= ( nCAt i sin (C) 2 At

= •i sin(r ) cos ((2c7t)) (27b)

=~ 1 2 itIf+ (9(At2), (27c)
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and the spatial matrix is called the stream matrix

'=e-'z (28a)

= ef# 0ei~ (28b)

= (ip0 z + (9(Az2). (28c)
0 1 + i P ' ]'Z

The decomposition of W?' given in (26) is a quantum lattice gas representa-
tion of the transfer matrix. In this construction with Az = cAt where the
particles stream through space at a fixed unit velocity equal to the speed
of light, (23) becomes

.T = (cey) N (29a)

= ei( axmc 2 az-pnc)NAt/i 1h- (_9(At2). (29b)

Inserting (29b) into (20), the quantum lattice-gas kernel becomes

N-1 . A(O S) iOX C - ýcN tl
Kso0sN =-2N • ei~ e- •Z(sO+SN) [ei(fxmc2-ezpnc)N't/eI SON (30)

n=-N

As N approaches infinity in the continuum limit, we can neglect Az =cAt

compared with t = NAt (that is, N >> c), so we have

N-1 i [ei(Orxmc 2 _pnc)NAt.

KsosN = 2 e I (31)
n=-N

In the continuum limit, the summation goes over to an integral (1 En __

h f dp) and so we have

K,13(z,t) lim KsosN (32a)
N-+ood z 2•,,2h F0 dp ei• [ei(axmc -Uzpc)t/hll . (32b)

2h J~o L J afi

Our result (32) is equivalent to the result found by Jacobson and Schulman
[3]. However our derivation, based on the quantum lattice gas representa-
tion (26), is simpler. Furthermore, the quantum lattice gas representation
allows us to generalize the derivation to obtain the Dirac equation in 3+1
dimensions.
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3. 3+1 DIMENSIONS

3.1. Feynman Path Integral Representation of Non-relativistic Quantum
Mechanics

The probability amplitude that a quantum particle at position Pa

"" (xa, Ya, Za) at time ta will transfer to a new position Fb = (xb, Yb, Zb) at
time tb is given by the following path integral:

K (ata; Pbtb) =f D['(t)]ei J, (33)

where f D[F(t)] denotes integration over all trajectories i(t) for which
P(ta) =ia and P(tb)= b, and where the increase of the action

fttb
S = fadt L[i(t), r(t)], (34)

along a trajectory 7(t) is determined using the classical Lagrangian L.
Equation (33) is a solution of the quantum mechanical wave equation.(6)

3.2. Path summation Representation of Relativistic Quantum Mechanics

We introduce a discrete representation of the Feynman path integral
principle on a body-centered cubic spatial lattice with discrete time steps
to compute (33) for a relativistic quantum particle:

D mc2 At R
K (ra ta;btb)lim H 1 •Nf(R.) i -, (35)

w=l RI,>O Dii

where At = , where & and/• frepresented by initial and final spin vec-
tors of the form (sx,sy,sz) (+1, ±+1, 1), where K., is the kernel of a
4-spinor amplitude field, where the length of each step is Ar -c At, where
c is the speed of light, where m is the mass of the quantum particle, where
Ru, is the number of bends in a path counted by projecting the path along
the tii axis, and where D 'F&(Rw) is the number of allowable paths with Ru,
bends and N steps along the 6) axis, and where D is the number of spa-
tial dimensions. The separation distance between the starting and ending
points is:

Fb ai(Xb - Xa)2 + (Yb - Ya)2 + (Zb - Za)2. (36)
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(a) t=O
t= 1/ t=2 _ = t 5 t= =t=3 t=4 t=5t/" // 4)t=6

8t=7 t=8

6 7

(, 1 1 1• 1( ( ' ( , (- (- , -.i a a

(-1 -1 -i)

( 1, I• iii)

(1, -1, i.)

(b) -'

89

1

Fig. 4. (a) Spin representation of the trajectory of a massive relativistic parti-
cle. The components of each spin vector are shown. (b) Quantum lattice-gas rep-
resentation of an example trajectory of a relativistic particle (solid lines). The
coordinate system is chosen so that the final displacement (dashed line) is along
the 2-axis direction: the particle starts at location 7a = 0 at time ta = 0 (labeled
"0") and ends at 7,, = (8Az)2: at time tb = 10At (labeled "10"). The total num-
ber of steps is N = 10. There are 3 bends along k at = 2,rt= 5, and t =8; 3
bends along j• at t =3, t =7, and t = 10; and 2 bends along 2 at t =6At and
t= 7At. The particle moves at the speed of light c = Ar/At along three cubic

lattice directions simultaneously. The spin at each step specifies the direction of
motion for that step. Post-collision spin orientations are shown.
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An example three dimensional relativistic trajectory with 3 bends along x
and ý, and 2 bends along 2 is depicted in Fig. 4 where a bend occurs when
the particle changes its direction of motion along any axis. Equation (35)
reduces to the Feynman chessboard formula (7) when D = 1.

3.3. Spin System Representation

With three spatial dimensions, it is possible to enumerate all the paths
originating at point a and ending at point b using N + 1 spin variables
in = (Sxn, Syn, Szn), for n = 0, 1,2, .... ,N, and where Sum = ±-1 for w = x, y, z.
There are eight distinct spin vectors, one for each direction along a diag-
onal of the body centered cubic (bcc) lattice ;, = (±-1, ±1, ±1). This is
depicted in Fig. 5. Note that 'n is a discrete 3-vector whereas the spin vec-
tor 0 = (ax, cry, oz) is a 3-vector of 2 x 2 Pauli matrices. We shall see in the
following exactly how and why S' and 0' are related. The result is that a
Dirac particle quantum mechanically moves along a diagonal of the bcc
lattice with its spin vector 0 "parallel" to its direction of motion c.

Identifying ' with ;0 and fi with ;N, the summation (35) is equivalent
to:

K7oJ (Fata,; btb)= -i -- i R (37)
Z (- mcIAt

where R = I R,,, where R,, is a bend along the tii direction, and where
the set {;O, .... , U} specifies a discretized trajectory with a path length
constrained by the condition

., ...\ -................... .....
z

X( -1,- 1, -1 ..-) ( 1, , 1
(1,-1,-1) ~ - . .... . ............ ....... ..........1

Fig. 5. Lattice diagonal directions for a body-centered cubic spatial lattice for
a quantum particle starting at the origin ia = (0, 0, 0).
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N (XbXa YbYa Zb-Za(E -s = Y, --Y. Z (38)
\ Ax Ay Az

n =0

Since the starting and ending points ýo and SN are fixed, they do not
appear in the sum on the R.H.S. of (37), and the condition (38) is equiva-
lent to fixing the spin magnetization M = Y s of a system of N + 1 spins.

At the nth step, the particle continues to move straight when Wn,,
,,+l = D, reverses direction along on orthogonal axis when n" -,,+j = 1,

reverses directions along two orthogonal axes when ;n -;+I = -1, and
completely reverses (flips) direction when ;n "+ = -D. The following sum
counts the occurrence of a bend along the ib axis at the nth step:

S=0, no bend along w()
2 1 1, bend along tiv.

In turn, the following sum counts the total number of bends in a path
between 74 and hb:

1D N-1

R = 1 1: Z [1 -SuwnS,(n+I)]. (40)

w=1 n=O

With a simple generalizational of the change of variables (14) used in the
one-dimensional case

v I-- log imc2At (41)
2 Dli ) (

(37) can be written as the partition function of an ensemble of spins
with nearest neighbor coupling and with fixed total magnetization M--
(Mr, My, Mi):

ff l . . . . .D -.V n -,Vnnj ]KVN = E 3(~ ~ eE~oDnt~1 (42)

where the Kronecker delta is:

, n = Mu, Lsn)

6 MX T, Sxn) M'• Syn) Mz Szn) (43)n
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where

1 (" Sn N-1 ei-w (Mx>-E.Sx) (44a)
n 2NnxE-N

1 N-1ei'-(My- En syn) (44b)

i ny=-N
1. 2:rn.

Mz, ZSzn N•-- et-(Mz- En Sz) (44c)

iZ nz=-N

The total magnetization is related to the total displacement vector as
follows:

x (MxAx, MyAy, MzAZ). (45)

Furthermore, the wave number is defined as follows:

27r nx ny . (46)k•-N- (x' Ay' Az ) (46

Using (45) and (46), the Kronecker delta (43) becomes

( n I= Oe iei;kiiAryEn kin (47)
\ n=O / f(=(nx,ny,nz)

Then inserting (47) into (42) gives

KVosN-= (2N) 3 Leiý'A e e-iAr _:okn ' Z-vE-D D.0- .. (48)

We can proceed from (48) using the identity N = 1 - N

_n=00 +n ;"f(O"--N ) -

I 'EU--0(= +Onn+l), which allows us to pull down the summation in the
argument of the exponential to form the following product:
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K -ON 1 eik ;e- A rkf.i(10+.VN)K;O; - (N)3 e

N-I

S Z e7 eArk•'(.V, 1)- v[D-,+ (49a)
{;1 .... 1.. 1N- n=O

12N)3 1

N-1
× X e-g Arknu) (sinn+sm(n+l)- V(1-s"ins'(n+ 1))i .. (49b)

ISl .'..Suw(N-1)} n=O

As in the one-dimensional case, here again we use a unitary transfer
matrix. The components of the transfer matrix W for the cartesian axis z'
are defined as

su, s ) -- e Arknu(su)n +s,(n+l))-- v( I -- •,nsu,(n+I)) (50)

then (49b) becomes

K =OSN =213 eik 'xe- Ark (sO+I VSN) N, (51)
n

where we have defined

D

-•OS-N fl E lswOs", Wsud,1 ''w2 " Su(N-1),s",N (52)
11= 1 {su,1 .... Sw(N -l)}

The generic sum over all possible spin components in (52) can be rewrit-
ten explicitly as N - 1 binary sums:

D
YV;0•N =I 11 E ' .. Y, lwl""O&Su7I"""u'2"''su,(N-1)""N" (53)

1=l SIl--I=±I Suw(N 1l)=±l

The form of (53) suggests that we can write the transfer matrix (50)
for the 6) direction as a 2 x 2 matrix where the binary sums repre-
sent matrix multiplication, just as in the 1+1 dimensional case. However,
in accordance with the product IFu, in (53), the sums over the orthog-
onal cartesian axes tii directions must be kept independent. The only
alternative when enumerating the four spin components, Sum = ±-1 and
su,(n+1) = ±1, is to introduce D number of new token variables, say /u,,,
to keep the directional sums independent of each other. The kinetic term
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elrknu'(sn+sw(n+l) in (50) contributes to only the diagonal (non-rever-
sal) components in (55) when s,,,- = sw(n+l), and contributes 0 to the
non-diagonal (reversal) components when swn = -S,(n+I). For its diagonal
contribution, we take the local translation operator

e-iArkwnLw Swn 1

-+ e' Ark+Su) I+u, SI1,(n+l)=l, (54)e-7r( S ) 1 eiArkinw Sum = -1
Sui(n+l) = -1.

The mass term e-'( 1-s'-su,•n+1) in (50) contributes 0 to the diagonal (non-
reversal) components in (55) when sn,, = S,,(n+1) and contributes e-2v to
the non-diagonal (reversal) components when Sn = -S••(n+1). Hence, (50)
is written in 2 x 2 matrix form as follows:

( (V1i 1  V .1, )1 (e-iArkwniLw e-2vie)t (55)

Notice we have no need to employ a token variable that depends on w for
the off-diagonal components of (55) since the term e-2, for each tv direc-
tion contributes equally to the mass of the Dirac particle. That is, since
bends in the 1, 5, or ý directions equally contribute to the particle's mass,
all the e2v components in (51) may add together. So we can omit using
another token variable for the off-diagonal terms.

With (55), we see that (53) is simply an N - 1 fold matrix multiplica-
tion of V/:

On (_T _.ii = I I eirwn e-~2>w N (56)Yo__ €1,-1 9 e' '-1,1•-1 )1 "- H (e e-2v eiArk,,,nlw) . ( 6

1= 1

At this point, we have not yet determined a specific form of the object ,,.
This will be determined in the next section.

3.4. Fourier Transform of the Dirac Propagator

Just as we had previously in the one-dimensional case, we can rewrite
(51) using momentum variables. Along with (45) and (46), we have the fol-
lowing variable transformations:

Pun - ikum t = tb - ta = AtN. (57)

From our change of variables (14), the off-diagonal components of (55)
are e-2) =iAt m, and the transfer matrix (55) becomes
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e-iAr iAtM
i?1 = (58a)

iAt m e

e e-iaL pun Ar/+ i±rm -- At, (58b)

where a, and orz are Pauli matrices.
As in the 1+1 dimensional case, our basic approach here is to rep-

resent the spacetime translation degrees of freedom in terms of the spin
variables by writing (58b) as a product of a collision matrix and a stream
matrix

=e iU0Lw PAr/li el1 x 2 At (59a)

=gg~ 5,(59b)

where in the 3+1 dimensional case we now have

S=_ eixAt, (60)

and

51,, =_ e-i .az1u, punAr/1i (61)

Inserting (59) into (56), we have

D
T H (W'u') N (62a)

w= 1
D- 2- -)NAt

11e- .U nnC- (62b)

Now with (57), we have

D )2 t

(t) 7 e-(az/u"PwnC-rx'-t" (63)

We impose a physical constraint on Y(t) in (63) that the quantum
mechanical propagation of a Dirac particle be factorable in time as fol-
lows:

Y(tl + t2 ) = -T(t 2 )-T(t1 ). (64)

Let us square the propagator by choosing t1 = t and t2 = t so by inserting
(63) into (64) we have
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U)=l (1) I

1 e- • z.l uP c- ---

(-D L D CrxmC2) )
= 1-Z (Orzlt)'wpwnC-t..w= 1D

D rz~,pwnC___)t.. mc '
(65)

where in the Taylor expansions on the R.H.S we must keep all high
order terms since, in the continuum limit, t = limN+, NAt is not a
small parameter. The only way for the L.H.S. to equal the R.H.S. is
for the all the cross-terms to vanish. Now, all the cross-terms between
the momentum and time components automatically vanish because of the
anti-commutation of the Pauli matrices o-z and or. However, for all the
cross-terms between the momentum components to vanish requires our
token variables /tt. be anti-commuting Grassman variables:

Iti uj ±+" Ij Ai = 0, (66)

for I < i < D and 1 < j < D. We are free to represent the /t,,, variables in
terms of Pauli matrices by choosing

A, W rw. (67)

In this representation, 16 and Y become 4 x 4 matrices. The collision oper-
ator is

D 2 c
2

At

'= H eax lm -- eiexg®l (68a)
u)= I

Cos t M2 isinAtmc

- isinAt ) c ®01 (68b)

i (sinAt c+Cos(At )(c

( 1 iAt ,C2 1)
= m2 +- -(- (At') (68c)

iAt T1
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1 0 iAt _, 2  0

0 1 0 iA l (68d)

= iA t c2 0 1 0 (6 d

h00 iAt 'no2 0 1

and the stream operator is

= 171 e - eniA z ( ozi;ifi~c e - )0
e) = 1i 

a 
=

(69a)
A FjO 2)

(1- - +
0 1 + LA-r .oPo

S1- i•z _iAr(pn-ipy.) 0 0 (6b

Ii h
S i Ar (Pxn 7i+ipyn ) 1+ gýrz. 0 0

0-0 10 + irz Ar(pxn-ip.n)

0 0 iAr(pxn+ipyn) 1 -___

(69c)

Equation (69) is not diagonal and therefore it is a quantum mechanical
stream operator; a single particle moves from one place to multiple places
in one time At. Even a wave function of a massless particle will undergo
dispersion. So a quantum particle does not have a single trajectory since
its position continually spreads out as it moves. This is compatible with
the Heisenberg uncertainty principle.4

Finally, using (68a) and (69a), and neglecting terms proportional
to A- << At, the kernal (62b) becomes the following three dimensional

4Niels Bohr objected to Feynman's talk at the 1948 Pocono conference for the reason
that the classical paths Feynman was enumerating were not consistent with the Heisen-
berg uncertainty principle.(7) With our 3+1 dimensional solution, we see from (69) that
Bohr's objective could have been resolved by answering that the path integral formalism
does accommodate the notion of path spreading, consistent with the Heisenberg uncertainty
principle. However, Feynman used the viewpoint referred to as "calculate and shut-up"
in response to Bohr (the quote now attributed to David Mermin). By that time although
Feynman had worked out relativistic QED in 3+1 dimensions, he had only worked out dis-
crete spacetime pictures of the particle motion for the 1+1 dimensional square lattice, where
the translation is classical.
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discrete Fourier transform:
1 Eei Fe-4(z®Ucr.;ccx®lrnc2)t 1 70

K° - (2N) 3 _ I L (70)

In the continuum limit, we recover the kernel
dx3 f'3 1  F-.H3[1

""f d3 d 3 eiE'V e- HDiract ](71)K/-(2h)3 ap -fi

where the Dirac Hamiltonian is

HDirac = cOz 9 1 " pc -- x 1mc 2 . (72)

4. QUANTUM ALGORITHMS

4.1. One Particle Quantum Simulations

4.1.1. Finite-difference Equation in 1+1 Dimensions

According to (26), a single time step of the evolution of the relativis-

tic spinor field p is accomplished as follows:

((73VV(t + At) = W9Vf° (t). (73)

The first step is to analyze the streaming part of (73). To do this, we write
(28) as

YV z )= eio (z, t*),Z (74)

which in matrix form is

Y t(qz:t)) (1--Azaz 0 )a (otz't,)(5
0? l/(z t) -- 0 1 + Azaj \/P(z't)) 'I75

where the momentum operator is taken to be pn -+ -iiiaz. Equation (75)
as written is exact only in the continuum limit. It follows that a consistent
definition of the streaming operator for the discrete lattice is:

Y(a(z,t))' (a(z-Az,t) (76)
P kl(z, t)0 =( ((z+Az,t0) (

Taylor expanding the R.H.S. of (76) about z and keeping only the
first-order terms, we recover (75). There is a geometric interpretation of
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Fig. 6. Simulation of one relativistic quantum particle with m = 1, = 1, Az =

and At = 1. Plotted is the sum of the moduli squared of the spinor components,

ja12 + I/•12, using (77). The average location of the quantum particle oscillates in
time (white curve).

(76) where the a• component of the spinor field at node z streams (or hops)
to the neighboring node on the "right" at node z - Az and the P compo-
nent streams to node z + Az on the "left," as depicted in Fig. 3b.

The second step is to analysis the collision part of (73). Substituting
(27) and (76) into (73), we have

Po(Z, t+ At)' (c~ (mcLAt ) isn(.CA)h ýo(Z--AZ, t)

An example simulation using (77) is shown in Fig. 6. Simulations of this
sort have been carried out by Thaller (8). Taylor expanding the collision
operator to first-order in At, we have

(a(Z,t + At)') = ( 1 i 5t ) ( - Az't) (78)

kfi(z, t + At)A iAt 2 1i I (z + Az, t)
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Upon multiplying out the R.H.S. and Taylor expanding about z and t, to
first-order, we have

At a t)) ZAzz ) iAt--Crx (79)
t, : 0zt) =--AZ •fl(Z, t) ifP(z 0

which is the Dirac equation in one spatial dimension

i at * (z, t) = (arzpc - mc2ax) 4'(z, t). (80)

We can write (80) in propagator form

S(t) = e-i. ft/lki *(0), (81)

where the Hamiltonian is

f1 = arz pc - mc 20rx. (82)

This derivation of the Dirac Hamiltonian by the quantum lattice-gas
method is consistent with (32) where the Feynman path integral expressed
as the following Fourier transformation:

K(z, t) = df- dpel eift/'. (83)

4.1.2. Finite-difference Equation in Higher Dimensions

The wave function is specified on a spacetime lattice with grid spacing

Dc2 At 2 
- Ax 2 

- Ay 2 
- AZ 2 = 0. (84)

The local evolution equation of motion is

'=6* (85a)

Sx •z•e (85b)
ey 3 = (g a~ i A r a i ei -'M -( 8 C

-e _=l o®iLr ei~ 4,Atx&l (85c)

which approximates the Dirac equation in the continuum limit and in the
relativistic limit where liw-• -. c2 and uk -mc.

The 4 x 4 matrix

-10 0 0
Oaz 0 loz = 0- 1 0' (86)

(0 0 0 1
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operating with the z spatial derivative in (85c) is diagonal whereas the
matrices orz 9 cx and ouz ® u9, for the x and y partial derivatives, respec-
tively, are not diagonal.

We would like to transform 99 in (85) in such a way that all the
matrices operating with the spatial partial derivatives are diagonal (and
hence correspond to shifting qubits along the orthogonal lattice direc-
tions). To do this, we need the two identities:

e-i~xesaei"ax L=e e eiTyeeFaze- T - eEx, (87)

that follow from eirai - 1( (1+ iai). Then, using the identity 1 9 eia

=ei"O®a, the 2-spinor similarity transformations (87) can be generalized to
4-spinor transformatons

(l®e-irax) eFCz ®Oz (10 ei•;ax) =eeaz®0. (88a)
i ITay eaz N& (1 ) 7r __ ea Z~x

(1®ei y)e (10 e-i-Wy (88b)

which we will use to diagonalize the x and y components of 99. Using (88)
and defining

(CosO 0 isinO 0sn

(1)_eiOfx CosO 0 i se0 (89a)S1 isin O 0 Cos O
0 i sin 0 0 Cos 0

[Cos 0 i sin 0 0 0 "

x(2) _0eiOx = isin cos00 0 i00 ) (89b)

o i sin 0 cos0

and

cos0 sin0 0 0
2)--l®ei° -- ns=_sini cos 0 o0 0sin (89c)

0 0 - sinG0 cosO0)

and

S = SxSySz =-ez®azrV, (90)
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where S. =_ eaz®OzzAr, the product components of Y,2 = Y xIy z can be
written

-x = eaz®axAr)x 7-( )Sx73r)t (91a)

,y = e 7tZ S'yY A _2)tSy(2) (91b)

I'z = e z®arzArax = Sz, (91c)

so (85) can be rewritten as the following quantum algorithm:

V: _ = 03(2) S, ,M/(2)% tOF(2) t, _T(2) Sz T(l)

-, z-'7r f . C2.. . 4 . (92)

The quantum algorithm (92) has local qubit-qubit interaction operators
i 7r,') and W = (X(1)2 (quantum collision operators), as well as cubic~ mc At

lattice translation operators Sx, Sy, and Sz (classical stream operators). It
is demonstrated in 2+1 dimensions for a single massive Dirac particle, see
Fig. 7.

250
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0
0 50 100 150 200 250

y
Fig. 7. Simulation of one relativistic quantum particle with m = 1,'h= 1 in 2+1
dimensions (Ay = 1, Az = 1 and At = 1). Plotted is the sum of the moduli squared
of the spinor components, ja 12 + l1p12, at time t = 128At. The mean value of the
position of the quantum particle oscillates in time (white curve in center and
black curve in the expanded view on the right).
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For numerical purposes in the one particle case, the discrete ampli-
tude field is:

(/ ( , t)

\f(x, t))

where the spacetime point (., t) coincides with the nodes of a hypercubic
lattice with grid size Ar. The operators S,, induce a finite displacement

Swapf (X') = Vf (ý + Ar(az ® au,,,, ), (94)

of the components of the 4-spinor only along lattice directions:

[a (x + Ar, y, z)/A(x-Ar, y,z)\
Sx 4'(x, y," z) = [,(x -Ar, y,z)I ' (95a)

\v(x + Ar, y, z)/

C1 (x, y + Ar, z)/a(x, y- Ar, z)
Syi(X y, z) = fiz(x,-Az)IkX ~xy - Ar, z)] (95b)

\v(x, y + Ar, z))

and

(x, y,z + Ar)\

|fl(x, y, z - Ar)Szifr(x, y, z) = I (x, y, z- Ar) ". (95c)

\v(x, y,z + Ar)/

These streaming operators are data shifting operators causing permu-
tations of the components of the 4-spinor wave function across the
lattice. The collision operators act independently on each node of the lat-
tice and cause local quantum entanglement between component pairs of
the 4-spinor. The streaming operators in turn propagate this local on-site
entanglement to next nearest neighbors so that eventually quantum entan-
glement covers the entire lattice.

It is possible to rewrite (92) as a finite difference equation on a
body-centered cubical lattice. The resulting set of coupled finite differ-
ence equations are similar to the finite difference representation of the
3D Dirac equation given by Bialynicki-Birula in 1994.(9) A drawback of
expressing the algorithm as a finite-difference equation is its unsuitability
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for a quantum computer implementation using two-qubit quantum gates
whereas our manifestly unitary expression (92) is suitable.

A continuous effective field theory for *t = (oa, f, It, v) follows in
the continuum limit of the emergent finite-difference equations by Taylor
expanding in the small grid sizes. We obtain

Ar -P Ar
at p- = xa -- 1 +iAra c

A =At +i At _

(V) ( A) ( A~ K )
Ar (2i mc2+ iz + 9(cAr, At), (96)

which is exactly the Dirac equation

at =c orz ai i - ix o 1 mc2V, (97)
iI

when At ,- Ar - e are infinitesimal and when the partial derivative with
respect to time is defined as atl limAt, 0 Equation (92) gives riseAt "

to perfectly unitary evolution of the discretized wave function and, there-
fore, is an unconditionally stable numerical algorithm. The quantum algo-
rithm (92) for modeling (96) is less than 1st-order convergent; see Fig. 8.
For practical numerical purposes, we will need to modify (92) to improve
the algorithm's convergence properties.

4.1.3. Improved Finite-difference Equation in 3+1 Dimensions

Our basic approach to improving the accuracy of the quantum algo-
rithm is to set the grid size Ar to be smaller than the Compton wave-
length X = h of the modeled particlemc

h
Ar "-e--, (98)

mc

and to introduce a small temporal scale that is much smaller than
C

2h (99)

The diffusive ordering condition of spatial and temporal fluctuations typ-
ical of random walk processes, Ar 2 = vAt, provides a context to under-
stand the scaling behavior of the small parameter e. According to (98) and
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(99), the diffusive transport coefficient is v =4 and the unit lattice veloc-
ity is % , which approaches infinity as -- 0. In this limit, the meanAt F-•

velocity of the modeled quantum particle is relatively small, compared to
Ar/At, hence the resulting effective field theory corresponds to the non-
relativistic limit of the Dirac equation as --* 0.

To diagonalize the stream operators in (91), we used a fixed and finite
rotation angle 1 independent of the grid resolution. We will now diago-
nalize the stream operators using a small rotation angle proportional to
At. By (99), the rotation angle is 0 = mc2 At 2

h -- , which is dependent on
the grid resolution. The displacement operators in the Dirac equation can
be represented by interleaving stream and collision operators on a cubical
lattice as follows:

ax = eaz®Ara, - S2 ,4 g(2) S2,403(?2)tS Il3 03( 2 ) Sl,3 03(2)t (100)

and
9 2 y e~az®cr9ArAy - ,4 [ 2 (2)ts2,4X(2)Sl3X(2)tgl,3,T(2), (101)
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o 0.0001
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Fig. 8. L2 norm error T_- = z•_,,[I(xi)12
- [Iex(xi)1 21 plotted versus grid res-

olution Ax = -1 for numerical simulations of the ID Weyl equation (Dirac
equation with m = 0) with lattice sizes from L = 8 to L = 32768. The error
curve's slope of the original and improved algorithm is 0.5 (dashed line) and 2.5
(solid line), respectively. This demonstrates the high numerical accuracy of the
improved (symmetrized and interleaved) quantum algorithm.
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where the superscripts on the streaming operators refer to individual
components of the 4-spinor. For example, the classical streaming opera-
tors in (95) are Sw, = S2,3S1;4. The quantum stream operators (91a) and
(91b) are now redefined in terms of the respective component-wise classi-
cal stream operators separated by collision operators according to (100)
and (101). This kind of interleaving of streaming and collision opera-
tors removes the spurious check-board effect of independent sublattice
dynamics that otherwise occurs.(10"11) So far we treated the non-diagonal
quantum stream operators e'z®UxAr°O and ez®ayAray, but not the classical
operator eaz®azAr'z because no such improvement exists since it is diag-
onal. However, if instead of using the Dirac matrix az ® crz, we use an
alternative non-diagonal representation for the z-direction partial deriva-
tive, then we can again employ interleaving. Therefore, we consider the fol-
lowing alternate form of the Dirac equation:

MC2

at* -- Ct®z Q90xaxZ -- Caz (0OUy•a) +Cory ,1a~z -iax 0 1 -ik. (102)

Now the quantum stream operator in (102) for the z-direction can be
re-expressed in a fashion similar to (100) and (101) as

z e y®lArdz __,)_ S2,3l(1)S2,3 (1)tSIl4•(1)SI,4_T(1) (103)
Y •_ er z -Z z 6 zZ F (13

Then instead of (91), we use (100), (101), and (103) for an improved quan-
tum algorithm

(t -+- At)---xyYz*(t). (104)

In the interleaved algorithm (104), the mass term in the Dirac equation is
automatically produced at order e2.

It is possible to derive a finite-difference equation representation of
the quantum lattice-gas algorithm (104) by carrying out all the colli-
sion and streaming operations symbolically. The result expressed as a
finite-difference equation is no longer expressible using a stencil including
only the nearest neighbors of the body-centered cubic lattice. Nevertheless,
once again, a continuous effective field theory, in the one-particle sector of
the Hilbert space, for * = (et, P, it, v) follows in the continuum limit as we
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Taylor expand in Ar and in At:

Ar -a Ar
A t ~V At Y -

2(tt
"--" Ax ;r V i C 4,O

+i-a Ar + -A (105Ar j) -1 +i- ±O(Ar4, At2), (105)

At a ) +1

which approximates the Dirac equation (102) when At is small. In (105),
according to symbolic mathematics, the mass term arises at order E2, the
spatial terms arise at order s3, and the error terms arise at order e4.
Yet, according to numerical simulations, the effective field theory (105) is
1st-order convergent. With the quantum stream operator li= YxYyyz,
we define the dual operator l-5 liyltlz, by taking the adjoint of
the quantum stream operators and reversing the displacement directions.
Then, it is possible use a symmetrized evolution operator("1)

V, (t + At) = •5Ye- CAt2 V(t),1 (106)

where " is a constant parameter. According to numerical simulation, the
interleaved and symmetrized algorithm (106) is better than 2nd-order con-
vergent, as demonstrated in Fig. 8 for the 1+1 dimensional case.

4.2. Many Particle Quantum Simulations

A useful characteristic of the quantum algorithm to model a
many-body system of Dirac particles is that it uses the same protocol for
local collisions and local translations used to model the dynamical behav-
ior of the one-body problem governed by the Dirac equation. Therefore,
the computational overhead associated with the action of the unitary oper-
ators is fixed for both the one-body and many-body cases. What differs is
the number of quantum states (configurations of qubits) that must be dealt
with in the numerical simulation.

To model all the dynamics of many Dirac particles, we use an
interfering set of probability amplitudes defined on the lattice. All these
probability amplitudes, considered as an ordered finite set of complex
numbers, constitutes a discrete amplitude field with 2Q complex compo-
nents for a quantum computer with Q qubits. With 4 qubits per node on
a body-centered cubic lattice with V = L 3 nodes, the quantum state of the
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system is the following tensor product:

4 L L L

\IJ(t)) = (&(& &Iq(x, y,z,t)). (107)
q=l x=1 y=l z=1

The quantum algorithm amounts to unfolding a quantum mechani-
cal evolution operator into an ordered sequence on 2-qubit quantum gate
operations. We have analytically determined an accurate approximation of
the local Hamiltonian, say *, for the nth lattice site, finding it to be the
Dirac Hamiltonian az ®0 . j3 c +ax (9 lmc 2 with momentum j3 = (Px, Py, Pz)
and the Pauli spin matrices 6 = (or, oy, uz). The Dirac Hamiltonian is an
effective local Hamiltonian. The total system Hamiltonian 7-( formally gen-
erates the quantum mechanical evolution:

N

ei-/ (9 e-in At/t, (108)

n=O

represented by a 2Q x 2Q matrix. An analytical expression of 7-( could have
an infinite number of terms due to the Campbell-Baker-Hausdorff the-
orem and the non-commutability of the quantum gates ([,*n, #'m] # 0).
Nevertheless, this is a crucial feature of the quantum algorithm: it is possi-
ble to numerically compute an accurate approximation of R, a many-body
Dirac Hamiltonian, as a total system generator of the spacetime evolution.
It is in this sense that the quantum algorithm is isomorphic to a Feynman
path summation.

In general, the quantum mechanical evolution is expressed as a
Schr6dinger propagation equation as follows:

I'P(t + -0) = U I(t)). (109)

Equation (109) has an implied operator ordering that must be retained in
the quantum algorithmic representation. U depends on the local unitary
operator W/= 169, which changes the probability amplitudes on each node
independently. So the L3-fold tensor product over the lattice nodes is the
total quantum system evolution operator:

u = . (110)
f=l

Therefore, the specifying the many-particle form of the quantum algo-
rithms (92) and (106) entails representing Yp and W in (110) in terms of
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conservative and local 2-qubit quantum gates. This is accomplished using
fermionic ladder operators in a second quantized representation.

With 4, &a, and h = btaa denoting the fermionic creation, annihila-
tion, and number operator, respectively, of the ath qubit (I <a < 4L 3), the
collision operators (89) are the following:

X,0i(O) = 1 -i sinO(&ýt~ao +&ý,) + (cosO - 1)(h, +aho)

-2cosOh~hj (11la)
¢ ()= 1 + sin0(ý•t3o -btb,,) + (cos0 - 1)(h, +hfj)

-2 cos Ohcho, (11 lb)

where ca and fi index different qubits at the same site.00 ) Then (89) are
rewritten as

(I)

-( --* 213(0)224(0) (112a)
_(2)a2--* X 12 (0)-' 34 (0) (112b)
(2) _

*• 2 - 12 (0)Y 34 (0)" (112c)

2L3 applications of either XLa or are required for a single collision
step.

Streaming occurs by successive application of the interchange opera-
tor(12)

$/Iv == I + atla + bvt~j It V it +h. (113)

(L - 1)3 number of applications of Sý,v (/t refers to one qubit-component
at some site and v to the same component at its neighboring site) are
required to stream each qubit along a cubic lattice direction.

The total evolution operator E is the product of collision operators X"
and 0Y and streaming operator S corresponding to algorithm (92) or some
variant of (104) depending on the desired degree of numerical accuracy.

With the new ket IIP'(t + At))= !kl4i(t)), the resulting probability of
finding a particle at site x is

4

P( ) - l I(114)
i=l

where a the index of the 1st qubit at X'.
With 4 qubits per node, the local propagator 0& is represented by a

16 x 16 size matrix. This appears to be larger than necessary, because there
are only 4 component to a Dirac spinor. However, for the purpose of
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being able to model a many-body quantum system, we require one qubit
for each component of the Dirac spinor.

One may strive to execute the maximum possible number of quantum
gates in parallel to save physical time in the actual implementation because
of the experimental limitations due to de-phasing related to spin-spin de-
coherence and spin relaxation. The issue of operator ordering is handled
intrinsically by the quantum algorithm in the case when quantum gates
are applied in parallel to different and non-overlapping pairs of qubits (see
Table 1).

4.2.1. Algorithmic Complexity

To quantify the algorithmic complicity associated with evolving the
modeled quantum wave function by one unit time At, we count the
total number of required basic quantum logic operations. We count each
conservative collide operator, X and ON defined in (111), as one basic
quantum logic operation. So according to (112), the quantum mechani-
cal collide operators each take 2 basic quantum logic operations. Further-
more, we count the operation (113) of streaming a single qubit between
neighboring nodes as one basic quantum logic operation. That is, stream-
ing a single component of the Dirac spinor along one orthogonal lattice
direction (cubic lattice vector) counts as one quantum logic operation.

The algorithmic complexity for numerical simulations a system of
Dirac particles in 3+1 dimensions for one time step scales as C =2pcL3

+ps(L - 1)3, where Pc and p, are the number of operations per node
for collisions and streaming, respectively. This measure of the algorithmic
complexity counts the total number of quantum gate operations required
to updated the modeled wave function, whether or not those operations
are performed in a serial or parallel fashion. For the simplest algorithm
(92), Pc = 5 and p, = 12, and for the improved algorithm (104), Pc = 12
and ps- 24. Both Pc and ps double when we use a symmetrized rule
like (106) but are a fixed-cost overhead. With Q = 4L3 qubits, the size of

Table 1. Summary of the number of local quantum gate oper-
ation per node

Algorithmic variant EQ. No. 2 pc p., TOTAL OPS.

Standard (92) 10 12 22
Interleaved (104) 24 24 48
Symmetrized interleaved (106) 49 48 97
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the Hilbert space is exponential 2 Q, whereas the complexity C = P Q + ps,

[Q -(2Q)I + (2Q)3 -1] for all the variants of our quantum algorithm
is dominantly linear in Q.

5. CONCLUSION

5.1. Summary

We have presented a solution of Feynman's chessboard problem in
3+1 dimensions. With this result, we have shown how to design a quan-
tum algorithm suitable for implementation on a quantum computer to
accurately model one or more Dirac particles. In the one-body case, the
mechanical wave equation is the Dirac equation (or Weyl equation in the
case when m = 0). We say the quantum computer performs analog com-
putation because it relies on one physical quantum mechanical system (a
system of qubits with only local qubit-qubit interaction) to model another
physical quantum mechanical system, a relativistic Dirac system. Each
qubit contained within the quantum computer is embodied by a two-
level quantum system, such as a spin-! nucleus. Every quantum logic gate
operation between local qubit pairs may be embodied by a local inter-
action Hamiltonian, say a secular dipolar Hamiltonian for the spin-spin
coupling.

The initial state of a quantum node is an unequally weighted super-
position of states over the Hilbert space of that node, generated by tip-
ping, or rotating, each qubit of the quantum node independently. The
quantum algorithm approximates a spatially continuous wave function
using a numerical grid with finite resolution, and that provides a natural
cut-off. From the point-of-view of the modeler, there exists a small numer-
ical grid-level scale below the physical microscopic scale of the modeled
quantum mechanical system.

Through the combined actions of the unitary collision and translation
operators, all the quantum mechanical pathways of the possible motions
of the modeled quantum particles are numerically treated. The numerical
model can be viewed as a kind of kinetic system of locally interacting spins
on the small grid-level scale. There also exists a large scale, which corre-
sponds to the long wavelength limit of the dynamical modes in the discrete
spin system. This numerical large scale is equivalent to the physical micro-
scopic scale where the many-body wave function of the modeled quantum
mechanical system in question is well defined. A continuous wave function
is accurately approximated as one approaches the continuum limit where
the grid resolution of the spatial lattice become infinite (the lattice cell size
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approaches zero). In the long wave length limit, the dynamical amplitude
field is both continuous and differentiable in space and time. An emergent
effective field theory, such as (96) or (105), is analytically determined by
Taylor expanding a finite-difference equation representation of the dynam-
ics. What is physical in the model is the finite-difference equation. That is, it
is this finite-difference equation that governs the dynamical amplitude field.
The effective field theory, such as (96) or (105), is actually a partial differ-
ential equation of infinite order. Only the low-order time and space partial
derivatives are numerically relevant during the early stage of evolution of
the wave function and all the higher order partial derivatives are considered
error terms during this early stage.

5.2. Final Remarks

The method can be used to analytically derive the relativistic
Hamiltonian for a small number of Dirac particles. For example, the few-
body Hamiltonians, and the associated coupled set of partial differential
equations of motion, will be presented in a subsequent paper. In any case,
to be a practical and useful algorithm, it must have at least second-order
convergence which means that decreasing the grid cell size by a factor of
two causes the numerical error inherent in the algorithm to decrease by a
factor of four. We have demonstrated it is possible to improve the numerical
convergence of the quantum algorithmic method to meet this requirement.

All the qubits in the quantum computer must remain phase-coherent,
i.e. globally entangled, over the entire course of the quantum com-
putation. In any practical experimental implementation, this quantum
algorithm may therefore require the use of extra qubits to correct for
bit-flip and phase errors,(13,14) significantly increasing the number of
required qubits per node.

Quantum logical operations are embodied in the spin-spin coupling
mechanism, or some other mathematically equivalent two-qubit coupling
mechanism appropriate to the particular experimental realization. The form
of a naturally occurring interaction Hamiltonian can be effectively altered
by applying appropriately timed spin rotations using externally applied elec-
tromagnetic pulses, whose frequency, strength, polarization, and pulse dura-
tion depends on the particular experimental realization, so that the natural
coupling along with the program of externally applied pulses together cause
the desired quantum lattice-gas collision operation. (15-17)5

5 A subsequent paper will address how to use nuclear magnetic resonance spectroscopy of a
solid-state crystal with a secular dipolar Hamiltonian for two spin-I nuclei to emulate both
the quantum lattice-gas collision and stream operators for numerically predicting space-time
dependent solutions for the wave function of a system of Dirac particles.
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In relativistic formuatlions one typically sees space and time as intrin-
sically coupled, yet the quantum algorithm presented here based on local
stream and collide operators rigidly seems to enforce a Galilean-like sepa-
ration between space and time-space and time are geometrically coupled
in a regular lattice structure. Yet since the fundamental stream and col-
lide operators do not commute, the continuous Lorentz transformations
of special relativity emerge in the long-wave length limit. Furthermore, the
dynamical equation of motion governing the continuous four spinor field
modeled by this method remains invariant under the Lorentz transforma-
tion, but only in the continuum limit. The four spinor field may be treated
as a continuous Dirac field in the case when the lattice has infinite resolu-
tion (this is, when the lattice cell size is infinitesimal). So any Galilean-like
separation can occur only at a very small scale. If the operative relativis-
tic quantum mechanical evolution is generated by the Dirac Hamiltonian,
leading to an effective field theory perfectly first order in its space and
time derivatives, then the small scale (lattice cell size) must be infinitesi-
mal, and hence it would always be beyond experimental detectably. How-
ever, if a discrete sub-lattice were a physical property of spacetime, and it
had a finite cell size (perhaps on the order of the Planck scale), then there
may be physical significance to the hyper bcc spacetime lattice. It remains
an outstanding open problem to determine whether or not it is possible
experimentally to measure any lattice property of spacetime, such as a fun-
damental grid size.
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