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I. SINGLETON LADDER OPERATORS

There are two basic operators from which all other
quantum operator are constructed. These operators
are

(
0 0
1 0

)
and

(
0 1
0 0

)
, which by matrix multiplication

generate
(

0 0
0 1

)
and

(
1 0
0 0

)
. A one in each slot—what

could be simpler? Each of these four operators carries
physical significance. They are named for their function.

Raising ladder operator:

a† =
(

0 0
1 0

)
=

1
2

(σ1 − iσ2) (1a)

Lowering ladder operator:

a =
(

0 1
0 0

)
=

1
2

(σ1 + iσ2) . (1b)

1 number (particle) operator:

n =
(

0 0
0 1

)
= a†a =

1
2

(1− σ3) . (1c)

0 number (hole) operator:

h = n̄ =
(

1 0
0 0

)
= a a† =

1
2

(1 + σ3) . (1d)

Operating on logical states (qubit basis states), the sin-
gleton ladder operators give

a†|0〉 = |1〉 Raise 0 to 1 (2a)

a†|1〉 =
(

0
0

)
Exclusion of 1’s (2b)

a|0〉 =
(

0
0

)
Exclusion of 0’s (2c)

a|1〉 = |0〉 Lower 1 to 0, (2d)

where the state
(

0
0

)
is called oblivion. Furthermore,

operating on the logical states, the singleton number op-
erators give

n|0〉 =
(

0
0

)
Exclusion of 0’s (3a)

n|1〉 = |1〉 Counts 1’s (3b)
h|0〉 = |0〉 Counts 0’s (3c)

h|1〉 =
(

0
0

)
Exclusion of 1’s. (3d)

From the simple identity

n+ h = 1 (4)

follows the anticommutation relation algebraically ex-
pressing the local exclusion principle

a†a+ a a† = 1. (5)

In this lecture we use 1 ≡ 12. Finally, the observable
number “1” (a bit of information) is implicitly defined as
the eigenvalue of n:

n|1〉 =
(

0 0
0 1

)(
0
1

)
= 1
(

0
1

)
= 1|1〉. (6)

II. MULTIPLE OBJECTS

A. Qubits

Tensor product state–the state of independent qubits:
Q⊗
i=1

|qi〉 = |q1〉 ⊗ |q2〉 ⊗ · · · ⊗ |qQ〉

= |q1〉|q2〉 · · · |qQ〉 used for a few qubits, Q / 3
= |q1q2 · · · qQ〉 numbered state, |qi〉 = |0〉 or |1〉,

for all i = 1, . . . , Q.



III FERMIONIC LADDER OPERATORS

B. Qubit number operators

Using the singleton number operator (Q = 1)

n =
(

0 0
0 1

)
, (7)

we can generate the multiple qubit number operators. So,
the two qubit number operators (Q = 2) are expressed
as the following tensor products of n with identity

n
(2)
1 ≡ n⊗ 1 (8a)

=
(

0 0
0 1

)
⊗
(

1 0
0 1

)
(8b)

=

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 (8c)

and

n
(2)
2 ≡ 1⊗ n (9a)

=
(

1 0
0 1

)
⊗
(

0 0
0 1

)
(9b)

=

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 , (9c)

where 1 denotes the 2× 2 identity matrix. Similarly, the
three qubit number operators (Q = 3) are expressed as
the following tensor products

n
(3)
1 = n⊗ 1⊗ 1 (10a)

n
(3)
2 = 1⊗ n⊗ 1 (10b)

n
(3)
3 = 1⊗ 1⊗ n. (10c)

For any system with Q qubits, the αth number operator,
nα can be expressed in a way that depends on a single
n placed at the αth position within the following tensor
product:

nα =

Q−terms︷ ︸︸ ︷
1⊗ 1⊗ · · · ⊗ n ⊗︸ ︷︷ ︸

αth−term

· · · ⊗ 1 (11a)

= 1⊗α ⊗ n. (11b)

This identity represents the unfolding of the Q-qubit sys-
tem number operator as a tensor product.

III. FERMIONIC LADDER OPERATORS

All quantum gate operations can be represented in
terms of the fermionic qubit creation and qubit annihi-
lation operators in the number representation, denoted

a†α and aα respectively. This approach serves as a gen-
eral computational formulation applicable to any quan-
tum algorithm. Acting on a system of Q qubits, a†α and
aα create and destroy a fermionic number variable at the
αth qubit

a†α|n1 . . . nα . . . nQ〉 =
{

0 , nα = 1
ε |n1 . . . 1 . . . nQ〉 , nα = 0

(12)

aα|n1 . . . nα . . . nQ〉 =
{
ε |n1 . . . 0 . . . nQ〉 , nα = 1

0 , nα = 0 ,

(13)

where the phase factor is

ε = (−1)
Pα−1
i=1 ni . (14)

See page 17 of Ref. (Fetter and Walecka, 1971) for this
way of determining ε used by condensed matter theo-
rists. The fermionic ladder operators satisfy the anti-
commutation relations

{aα, a†β} = δαβ (15)

{aα, aβ} = 0

{a†α, a
†
β} = 0.

The number operator nα ≡ a†αaα has eigenvalues of 1 or
0 in the number representation when acting on a pure
state, corresponding to the αth qubit being in state |1〉
or |0〉 respectively.

A. Jordan-Wigner transformation

With the logical one state of a qubit |1〉 =
(

0
1

)
, notice

that σz|1〉 = −|1〉, so one can count the number of pre-
ceding bits that contribute to the overall phase shift due
to fermionic bit exchange involving the ith qubit with
tensor product operator, σ⊗i−1

z |ψ〉 = (−1)Ni |ψ〉. The
phase factor is determined by the number of bit crossings
Ni =

∑i−1
k=1 nk in the state |ψ〉 and where the Boolean

number variables are nk ∈ [0, 1]. Hence, an annihilation
operator is decomposed into a tensor product known as
the Jordan-Wigner transformation (Jordan and Wigner,
1928)

ai = σ⊗i−1
z ⊗ a⊗ 1⊗Q−i (16)

for integer i ∈ [1, Q].
That is, begin with the single annihilation operator

a =
(

0 0
1 0

)
. Then, the ith fermionic annihilation operator

is a system of Q qubits has a matrix representation that
is expressible as the tensor product of i − 1 number of
Pauli σ3 matrices, one single a, followed by Q− i number
of ones as follows:

ai =

(
i−1⊗
k=1

σ3

)
⊗ a⊗

(
Q⊗

k′=i+1

1

)
. (17)

2



A Jordan-Wigner transformation III FERMIONIC LADDER OPERATORS

Since (17) is the tensor product of Q elements, each one a
2×2 matrix, the resulting representation of ai is a matrix
of size 2Q × 2Q, as expected. Since all the components
of ai are real (i.e. 0, 1, or −1), the ith creation operator
is simple enough to compute by just transposing (17),
a†i = aT. That (17) satisfies the usual anticommutation
relations is straightforward to prove.

First, using (17) and since σ2
3 = 1 and {a, a†} = 1, we

know that

{ai, a†i} =

(
i−1⊗
k=1

1

)
⊗{a, a†}⊗

(
Q⊗

k′=i+1

1

)
(18a)

=
Q⊗
k=1

1 (18b)

= 12Q . (18c)

Similarly, {ai, ai} = 0 and {a†i , a
†
i} = 0 follow from the

singleton anticommutators {a, a} = 0 and {a†, a†} = 0,
respectively. Second, and without loss of generality, for
the case of i < j, we have

{ai, a†j} =

 i−1⊗
k=1

σ2
3

⊗ aσ3⊗

 j−1⊗
k′=i+1

σ3

⊗ a†⊗
 Q⊗
k′′=j+1

1

+

 i−1⊗
k=1

σ2
3

⊗σ3a⊗

 j−1⊗
k′=i+1

σ3

⊗ a†⊗
 Q⊗
k′′=j+1

1


(19a)

=

 i−1⊗
k=1

1

⊗ aσ3⊗

 j−1⊗
k′=i+1

σ3

⊗ a†⊗
 Q⊗
k′′=j+1

1

+

 i−1⊗
k=1

1

⊗σ3a⊗

 j−1⊗
k′=i+1

σ3

⊗ a†⊗
 Q⊗
k′′=j+1

1


(19b)

=

 i−1⊗
k=1

1

⊗{a, σ3}⊗

 j−1⊗
k′=i+1

σ3

⊗ a†⊗
 Q⊗
k′′=j+1

1

 (19c)

= 0, (19d)

since {a, σ3} = 0. Similarly, we know {ai, aj} = 0 and
{a†i , a

†
j} = 0. Thus, we arrive at the end of the proof by

combining what we have learned from (18) and (19)

{ai, a†j} = δij {ai, aj} = 0 {a†i , a
†
j} = 0,

for any i and j.

B. Matrix representation

In the basis where qubits |q1〉 and |q2〉 are ordered left
to right |q1q2〉, the creation operators are

a†1 = a† ⊗ 1

=
(

0 0
1 0

)
⊗
(

1 0
0 1

)

=

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

 ,

a†2 = σ3 ⊗ a†

=
(

1 0
0 −1

)
⊗
(

0 0
1 0

)

=

0 0 0 0
1 0 0 0
0 0 0 0
0 0 −1 0

 .

(20)

Since a†1 and a†2 have real components, the annihilation
operators are the transposes of the matrices given in (20),

3



IV REPRESENTATIONS OF PERPENDICULAR QUANTUM GATES

a1 = (a†1)T and a1 = (a†1)T :

a1 = a⊗ 1

=
(

0 1
0 0

)
⊗
(

1 0
0 1

)

=

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 ,

a2 = σ3 ⊗ a

=
(

1 0
0 −1

)
⊗
(

0 1
0 0

)

=

0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0

 .

(21)

IV. REPRESENTATIONS OF PERPENDICULAR
QUANTUM GATES

A type of quantum logic gate useful for casting quan-
tum algorithms in various computational physics applica-
tions is a conservative quantum gate. It is a 2-qubit uni-
versal quantum gate associated with perpendicular pair-
wise entanglement. A conservative quantum gate con-
serves the “bit count” in the number representation of
the qubit system (i.e. the total spin magnetization of a
spin- 1

2 system). If conservative quantum gates are used
to model basic qubit-qubit interactions in a large qubit
system, then the large scale dynamics of the qubit system
is ultimately constrained by a number continuity equa-
tion, as was mentioned earlier.

In the most general situation, it is sufficient to consider
only a block diagonal matrix that has a 2× 2 sub-block,
which causes entanglement and is a member of the special
unitary group SU(2). We can neglect the overall phase
factor because this does not affect the quantum dynamics
and therefore our sub-block need not be a member of the
more general unitary group U(2). If U is a member of
SU(2), it can be parameterized using three real numbers,
ξ, ζ, and ϑ, as follows

U ≡
(

eiξ cosϑ −eiζ sinϑ
−e−iζ sinϑ −e−iξ cosϑ

)
=
(
A B
C D

)
. (22)

We can represent a general conservative quantum log-
ical gate by the 4× 4 unitary matrix

Υ =

(
1 0 0 0
0 A B 0
0 C D 0
0 0 0 E

)
. (23)

We choose this form for Υ because we want to entan-
gle only two of the basis states, |01〉 with |10〉, so as to
conserve particle number, and that is why we call Υ a
conservative quantum gate. The component in the top-
left corner is set to unity because we do not want Υ to
alter the vacuum state |00〉 in any way. However, we
may allow the component in the bottom-right corner to
be arbitrary. We will see that the value of this component
will depend on the particle statistics, reflecting whether
quantum logic gates are used to model quantum gases
with particles obeying Fermi statistics or not.

A. Ladder operator representation

It is instructive to work out the ladder operators in the
Q = 2 case, where it is simple to write down the matrix
representation. Remarkably, all the results carry over to
the arbitrary size qubit systems with Q ≥ 2. Consider
the following five quadratic operators:

a†1a2 =

(
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

)
a†2a1 =

(
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

)
, (24)

including the compound number operators

n1(1− n2) =

(
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

)
(1− n1)n2 =

(
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

)

n1n2 =

(
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

)
.

(25)
The conservative quantum gate (23) can be expressed in
terms of the operators (24) and (25) given above:

Υ = 1 + (A− 1)(1− n1)n2 +Ba†2a1 + Ca†1a2

+ (D − 1)n1(1− n2) + (E − 1)n1n2 (26a)

= 1 + (A− 1)n2 +Ba†2a1 + Ca†1a2

+ (D − 1)n1 − (A+D − E − 1)n1n2. (26b)

We would like to find the Hamiltonian, H say, associated
with Υ. Letting z denote a complex parameter, we begin
by parametrizing (26b) in terms of z

Υ(z) = ezH , (27)

and then we solve for H. To do this, we series expand in
the parameter z:

Υ(z) = 1 + zH +
z2

2
H2 + · · · . (28)

There are two cases of interest: first when the Hamilto-
nian is idempotent, H2 = H, then (28) reduces to

Υ(z) = 1 + (ez − 1)H, (29)

and second when H2 6= H but H3 = H and H4 = H2,
then (27) reduces to

Υ(z) = 1 + sinh z H + (cosh z − 1)H2. (30)

These cases are worked out below. A remarkable feature
of this approach to deriving is that the imposition of the
idempotent or tri-idempotent constraint will gives us a
novel way to derive the exchange properties associated
with Fermi statistics.

1. H2 = H case

From (23) and (29), we can solve for H:

H =
1

ez − 1
(Υ− 1) =

1
ez − 1

(
0 0 0 0
0 A− 1 B 0
0 C D − 1 0
0 0 0 E − 1

)
.

(31)

4



A Ladder operator representation IV REPRESENTATIONS OF PERPENDICULAR QUANTUM GATES

Let us pick a new set of variables to simplify matters:

A =
A− 1
ez − 1

B =
B

ez − 1
(32a)

C =
C

ez − 1
D =

D − 1
ez − 1

(32b)

δ =
E − 1
ez − 1

. (32c)

Then inserting (32) into (31), the Hamiltonian has the
simple matrix and operator representation

H =

(
0 0 0 0
0 A B 0
0 C D 0
0 0 0 δ

)
, (33)

and from this we deduce the operator form of the idem-
potent Hamiltonian

H = Ba†2a1 +Ca†1a2 +Dn1(1−n2)+A(1−n1)n2 +δn1n2.
(34)

Next, inserting the new variables (32) into (23) and
(26b), the matrix and operator representations for the
conservative quantum logic gate become

Υ(z) = ezH (35a)

=

(
1 0 0 0
0 (ez − 1)A+ 1 (ez − 1)B 0

0 (ez − 1)B† (ez − 1)D + 1 0
0 0 0 (ez − 1)δ + 1

)
(35b)

= 1 + (ez − 1)
[
Ba†2a1 + Ca†1a2

+ Dn1(1− n2) +A(1− n1)n2 + δn1n2

]
. (35c)

Since the Hamiltonian must be Hermitian, H = H†, we
know that C = B† and δ = δ†, so δ must be a real val-
ued number. Also, since the Hamiltonian is idempotent,

H2 = H, we get the additional constraint equations on
the components:

A2 −A+ |B|2 = 0 (35d)
A+D = 1 (35e)

D2 −D + |B|2 = 0, (35f)

which admit the solutions:

A =
1
2

(
1±

√
1− 4|B|2

)
(35g)

D =
1
2

(
1∓

√
1− 4|B|2

)
. (35h)

Then inserting (35g) and (35h) into (33) and (34), we
can specify the idempotent Hamiltonian with only one
free complex parameter:

H =

0 0 0 0

0 1
2 ±

1
2

p
1− 4|B|2 B 0

0 B† 1
2 ∓

1
2

p
1− 4|B|2 0

0 0 0 δ

 (36a)

= Ba†2a1 + B†a†1a2 +
1
2

(
1∓

√
1− 4|B|2

)
n1(1− n2)

+
1
2

(
1±

√
1− 4|B|2

)
(1− n1)n2 + δn1n2 (36b)

= Ba†2a1 + B†a†1a2 +
1
2

(
1∓

√
1− 4|B|2

)
n1

+
1
2

(
1±

√
1− 4|B|2

)
n2 + (δ − 1)n1n2. (36c)

The associated conservative quantum logic gate can also
be rewritten by inserting (35g) and (35h) into (35a):

Υ(z) =

1 0 0 0

0 1
2 (ez + 1)± 1

2 (ez − 1)
p

1− 4|B|2 (ez − 1)B 0

0 (ez − 1)B† 1
2 (ez + 1)∓ 1

2 (ez − 1)
p

1− 4|B|2 0
0 0 0 (ez − 1)δ + 1


(37a)

= 1 + (ez − 1)
[
Ba†2a1 + B†a†1a2

+
1
2

(
1∓

√
1− 4|B|2

)
n1 +

1
2

(
1±

√
1− 4|B|2

)
n2 + (δ − 1)n1n2

]
. (37b)

A useful special case occurs if we choose B = − 1
2e
−iξ:

H =

0 0 0 0

0 1
2 − 1

2 e
−iξ 0

0 − 1
2 e
iξ 1

2 0
0 0 0 δ

 (38a)

= −1
2

(
a†1a2e

iξ + a†2a1e
−iξ − n1 − n2

)
+ (δ − 1)n1n2.

(38b)

Since n1 = a†1a1 and n2 = a†2a2, we can rewrite the idem-
potent Hamiltonian as follows:

H =
1
2

(a†1 − e−iξa
†
2)(a1 − eiξa2) + (δ − 1)n1n2. (39)

5



A Ladder operator representation IV REPRESENTATIONS OF PERPENDICULAR QUANTUM GATES

Also,

Υ(z) =

1 0 0 0

0 1
2 (ez + 1) − 1

2 (ez − 1)e−iξ 0

0 − 1
2 (ez − 1)eiξ 1

2 (ez + 1) 0
0 0 0 (ez − 1)δ + 1


(40a)

= 1 + (ez − 1)
[1

2

(
a†1 − e−iξa

†
2

) (
a1 − eiξa2

)
+(δ − 1)n1n2

]
. (40b)

2. swap gate and entangling
√

swap gate

Finally, for z = iπ we get the quantum swap gate

Υ(iπ) =


1 0 0 0
0 0 e−iξ 0
0 eiξ 0 0
0 0 0 1− 2δ

 (41a)

= 1−
(
a†1 − e−iξa

†
2

) (
a1 − eiξa2

)
− 2(δ − 1)n1n2.

(41b)

For ξ = 0 and δ = 0, (41a) is a classical swap gate.

To satisfy the unitary condition for our quantum logic
gate, ΥΥ† = 1, we must restrict the real-valued compo-
nent δ by the following constraint equation:

(1− 2δ)2 = 1, (42)

which implies that either δ = 0 or δ = 1. Then, our
quantum swap gate (41a) can be rewritten as:

Υ(iπ) =


1 0 0 0
0 0 e−iξ 0
0 eiξ 0 0
0 0 0 ±1

 , (43)

where the plus sign applies for the δ = 0 case and the
minus sign for the δ = 1 case. For z = iπ

2 we get the
entangling

√
swap gate

Υ
(
iπ

2

)
=


1 0 0 0
0 1

2 + i
2

(
1
2 −

i
2

)
e−iξ 0

0
(

1
2 −

i
2

)
eiξ 1

2 + i
2 0

0 0 0 (i− 1)δ + 1

 (44a)

= 1 + (i− 1)
[

1
2

(
a†1 − e−iξa

†
2

) (
a1 − eiξa2

)
+ (δ − 1)n1n2

]
. (44b)

3. H3 = H case

There exists an alternative Hamiltonian that is not
idempotent but has a similar property at third order,
H3 = H but H2 6= H (and not an involution, i.e.
H2 6= 1), which can generate a conservative quantum
logic gate of the form (23). In this second case, the series
expansion of the quantum gate (27) reduces to the form
(30), which is

Υ(z) = 1 + (cosh z − 1)H2 + sinh zH.

Our approach will be to assume the Hamiltonian still has
the form (33) and that its square has a diagonal matrix
form:

H2 =

(
0 0 0 0
0 A B 0

0 B† D 0
0 0 0 δ

)
·

(
0 0 0 0
0 A B 0

0 B† D 0
0 0 0 δ

)
=

(
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 δ

)
(45a)

= n1(1− n2) + (1− n1)n2 + δn1n2 (45b)
= n1 + n2 + (δ − 2)n1n2, (45c)

where as in the previous case either δ = 0 or δ = 1.
This imposes the following constraint equations on the
components:

A2 = 1− |B|2 (46a)
A+D = 0 (46b)
D2 = 1− |B|2, (46c)

which admit the solutions:

A = ±
√

1− |B|2 (47a)

D = ∓
√

1− |B|2. (47b)

6



A Ladder operator representation IV REPRESENTATIONS OF PERPENDICULAR QUANTUM GATES

Then, the Hamiltonian has the form

H =

0 0 0 0

0 ±
p

1− |B|2 B 0

0 B† ∓
p

1− |B|2 0
0 0 0 δ

 (48a)

= B a†2a1 + B†a†1a2 ∓
√

1− |B|2 n1(1− n2)

±
√

1− |B|2 (1− n1)n2 + δn1n2 (48b)

= B a†2a1 + B†a†1a2 ∓
√

1− |B|2 n1

±
√

1− |B|2 n2 + δn1n2, (48c)

and hence, using (30), the matrix representation of the
conservative quantum gate becomes

Υ(z) =

1 0 0 0

0 cosh z ±
p

1− |B|2 sinh z B sinh z 0

0 B† sinh z cosh z ∓
p

1− |B|2 sinh z 0
0 0 0 (ez − 1)δ + 1


(49a)

= 1 + (cosh z − 1) [n1 + n2 + (δ − 2)n1n2]

+ sinh z
[
B a†2a1 + B† a†1a2 ∓

√
1− |B|2n1 ±

√
1− |B|2n2 + δn1n2

]
(49b)

= 1 + sinh zB a†2a1 + sinh zB† a†1a2

+ (cosh z − 1∓
√

1− |B|2)n1 + (cosh z − 1±
√

1− |B|2)n2

+ [(ez − 1)δ − 2(cosh z − 1)]n1n2. (49c)

A useful special case occurs for B = ie−iξ. Then,

H =

0 0 0 0

0 0 ie−iξ 0

0 −ieiξ 0 0
0 0 0 δ

 (50a)

= ie−iξa†2a1 − ieiξa†1a2 + δn1n2 (50b)

=
(
a†1 + ie−iξa†2

)(
a1 − ieiξa2

)
− n1 − n2 + δn1n2.

(50c)

The quantum gate has the form:

Υ(z) =

1 0 0 0

0 cosh z ie−iξ sinh z 0

0 −ieiξ sinh z cosh z 0
0 0 0 (ez − 1)δ + 1

 (51a)

= 1 + i sinh z
(
e−iξa†2a1 − eiξa†1a2

)
+ (cosh z − 1)(n1 + n2)
+ [(ez − 1)δ − 2(cosh z − 1)]n1n2. (51b)

4. aswap gate and entangling
√

aswap gate

Finally, for z = iπ
2 we get the asymmetric quantum

gate

Υ
(
iπ

2

)
=


1 0 0 0
0 0 −e−iξ 0
0 eiξ 0 0
0 0 0 (i− 1)δ + 1

 (52)

= 1 + eiξa†1a2 − e−iξa†2a1

− n1 − n2 + [(i− 1)δ + 2]n1n2. (53)

For ξ = 0 and δ = 0, (52) is the classical antisymmetric
swap gate.

For z = iπ
4 we get the entangling

√
aswap gate

7
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Υ
(
iπ

4

)
=


1 0 0 0
0 1√

2
− 1√

2
e−iξ 0

0 1√
2
eiξ 1√

2

0 0 0 (e
iπ
4 − 1)δ + 1

 (54a)

= 1 +
1√
2

(
eiξa†1a2 − e−iξa†2a1

)
+
(

1√
2
− 1
)(

n1 + n2 − 2n1n2

)
+
(
e
iπ
4 − 1

)
δn1n2.

(54b)
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