Status of WU Nitride Photocathode Development

Jim Buckley and Dan Leopold
10/5/2010
Recent Measurements

• Improvements made to RHEED system
• Construction of tube sealing/transfer/QE system
• Low-temperature growth of amorphous GaN and InGaN cathodes.
 • Cathode was fabricated with increased In concentration (25%). Growth for about 3 hours, ~100 nm/hour.
• QE and electron diffraction as a function of annealing.
• Optical transmission measurements.
• Photo of lab showing recent additions
Amorphous Cathodes

- Began experimenting with a-GaN cathode produced a number of years ago for NMR materials studies.

- Restored surface, Cs-activated. Obtained QEs ~5%, encouraging further studies.

- Grew ~0.3micron, InGaN cathode with 25% Indium, looked at RHEED data and QE as a function of annealing.
RHEED Measurements

Sapphire - 70deg

Sapphire - 10deg
RHEED Measurements

Sapphire - 70deg

Sapphire - 10deg

a-InGaN no anneal
RHEED Measurements

Sapphire - 70deg

Sapphire - 10deg

a-InGaN no anneal

a-InGaN 300C

Tuesday, October 5, 2010
RHEED Measurements

Sapphire - 70deg

Sapphire - 10deg

a-InGaN no anneal

a-InGaN 300C

a-InGaN 390C
Increased Indium

- Increased Indium concentration to 25% - increased quantum efficiency at all wavelengths, improved QE at long wavelengths
• Measured optical absorption using a Xe-lamp, double-grating monochromometer, UDT UV-enhanced reference photodiode and Keithley electrometer. Absorption is normalized to a measurement for an identical sapphire substrate with no coating.

• Compared with crystalline or amorphous GaN, broader band-edge, more absorption at long wavelengths showing band shifting.
Conclusions

- Increasing In concentration improves response at longer wavelengths (out to >400nm)
Conclusions

• Increasing In concentration improves response at longer wavelengths (out to >400nm)

• Annealing improves QE up to about 300°C, above which performance gain levels off.
Conclusions

- Increasing In concentration improves response at longer wavelengths (out to >400nm)

- Annealing improves QE up to about 300C, above which performance gain levels off.

- For amorphous cathodes, repeated exposure to Cs (with delay) increases QE even up to third activation.
Conclusions

• Increasing In concentration improves response at longer wavelengths (out to >400nm)

• Annealing improves QE up to about 300C, above which performance gain levels off.

• For amorphous cathodes, repeated exposure to Cs (with delay) increases QE even up to third activation.

• QE at UV increases to similar level as prior crystalline/epitaxial cathodes!
Conclusions

- Increasing In concentration improves response at longer wavelengths (out to >400nm)

- Annealing improves QE up to about 300C, above which performance gain levels off.

- For amorphous cathodes, repeated exposure to Cs (with delay) increases QE even up to third activation.

- QE at UV increases to similar level as prior crystalline/epitaxial cathodes!

- Amorphous cathode growth allows use of new substrates - conductive coatings on glass for HV bias.
Future Work

Task List
Future Work

Task List

• Optimize cathode structures
Future Work

Task List

- Optimize cathode structures

- Deposit a-InGaN on ITO-coated window, apply grid electrodes, apply voltage bias and measure gain-QE product versus voltages
Future Work

Task List

• Optimize cathode structures

• Deposit a-InGaN on ITO-coated window, apply grid electrodes, apply voltage bias and measure gain-QE product versus voltages

• Experiment with “capping” cathodes with In, stripping methods for transfer.
Future Work

Task List

• Optimize cathode structures

• Deposit a-InGaN on ITO-coated window, apply grid electrodes, apply voltage bias and measure gain-QE product versus voltages

• Experiment with “capping” cathodes with In, stripping methods for transfer.

• Transfer a-InGaN cathode grown on glass window to ANL (Spring 2011)
Future Work

Task List

• Optimize cathode structures

• Deposit a-InGaN on ITO-coated window, apply grid electrodes, apply voltage bias and measure gain-QE product versus voltages

• Experiment with “capping” cathodes with \textit{In}, stripping methods for transfer.

• Transfer a-InGaN cathode grown on glass window to ANL (Spring 2011)

• Transfer glass MCP directly coated with nitride cathode material (Fall 2011)
Future Work

Task List

• Optimize cathode structures

• Deposit a-InGaN on ITO-coated window, apply grid electrodes, apply voltage bias and measure gain-QE product versus voltages

• Experiment with “capping” cathodes with In, stripping methods for transfer.

• Transfer a-InGaN cathode grown on glass window to ANL (Spring 2011)

• Transfer glass MCP directly coated with nitride cathode material (Fall 2011)

• Finish development of new vacuum transfer stage for hot/cold indium sealing for transfer, transmission-mode QE measurements
Growth Parameters
Device Optimization

Growth Parameters

• Study a-InGaN cathodes on different substrates (sapphire windows, stainless steel, other glass windows with or without conductive coatings)
Device Optimization

Growth Parameters

- Study a-InGaN cathodes on different substrates (sapphire windows, stainless steel, other glass windows with or without conductive coatings)

- Study effects of thermal annealing
Device Optimization

Growth Parameters

• Study a-InGaN cathodes on different substrates (sapphire windows, stainless steel, other glass windows with or without conductive coatings)

• Study effects of thermal annealing

• Study effects of variations in activation procedure: repeating Cs coatings, incorporation of oxygen during activation
Device Optimization

Growth Parameters

- Study a-InGaN cathodes on different substrates (sapphire windows, stainless steel, other glass windows with or without conductive coatings)
- Study effects of thermal annealing
- Study effects of variations in activation procedure: repeating Cs coatings, incorporation of oxygen during activation
- Increase In concentration
Device Optimization

Growth Parameters

• Study a-InGaN cathodes on different substrates (sapphire windows, stainless steel, other glass windows with or without conductive coatings)

• Study effects of thermal annealing

• Study effects of variations in activation procedure: repeating Cs coatings, incorporation of oxygen during activation

• Increase In concentration

• Change doping levels
Device Optimization

Growth Parameters

- Study a-InGaN cathodes on different substrates (sapphire windows, stainless steel, other glass windows with or without conductive coatings)
- Study effects of thermal annealing
- Study effects of variations in activation procedure: repeating Cs coatings, incorporation of oxygen during activation
- Increase In concentration
- Change doping levels

Characterization

- In-situ QE measurements versus wavelength (WU)
- RHEED measurements and analysis during growth (WU)
- Room-temperature optical transmission measurements (WU)
- Hall measurements of carrier densities, conductivity (ANL)
Tube Testing and Sealing

- Tube-sealing system
- Photocathode/sapphire window
- Evaporation system
- To MBE system
- Housing holder
- Linear/rotary motion probe
- Evaporation source and mask
- Translation stage for compression seal
• Develop tube sealing/transfer/testing system
Tube Testing and Sealing

- Develop tube sealing/transfer/testing system

- Transmission-mode QE measurements for comparison with reflection mold measurements
Tube Testing and Sealing

- Develop tube sealing/transfer/testing system
 - Transmission-mode QE measurements for comparison with reflection mold measurements
- Hot (150 C) and Cold Indium seals
• Develop tube sealing/transfer/testing system

• Transmission-mode QE measurements for comparison with reflection mold measurements

• Hot (150 C) and Cold Indium seals

• Ti evaporator for coating of window and housing in vacuum, compression of In wire in O-ring groove
Tube Testing and Sealing

- Develop tube sealing/transfer/testing system

- Transmission-mode QE measurements for comparison with reflection mold measurements

- Hot (150 C) and Cold Indium seals
 - Ti evaporator for coating of window and housing in vacuum, compression of In wire in O-ring groove
 - Incorporate SAES getter into housing
Push-rod Detail

- Tube housing
- Adaptor
- Docking flange
- Indium O-ring groove
- Reducing flange with HV and signal feedthroughs
Push-rod Detail

- Tube housing
- Adaptor
- Docking flange
- Indium O-ring groove
- Spring clip
- Small offset demate interface
- Reducing flange with HV and signal feedthroughs
Push-rod Detail

- Tube housing
- Adaptor
- Docking flange
- Indium O-ring groove
- Spring clip
- Small offset demate interface
- Clip release screws

Reducing flange with HV and signal feedthroughs

Docking flange detail

Adaptor detail

LAPPD Godparent Review, Oct 5, 2010

Tuesday, October 5, 2010
Push-rod Detail

- Tube housing
- Adaptor
- Docking flange
- Indium O-ring groove
- Spring clip
- Small offset demate interface
- Clip release screws
- Reducing flange with HV and signal feedthroughs
- Ceramic spacer
Push-rod Detail

- Tube housing
- Adaptor
- Docking flange
- Indium O-ring groove
- Spring clip
- Small offset demate interface
- Clip release screws
- Ceramic spacer
- Wire adaptors to match tube pin-out

- Reducing flange with HV and signal feedthroughs
Resources Needed
Resources Needed

- Salary support (0.75 FTE Dan Leopold, 0.5 Grad Student)
Resources Needed

- Salary support (0.75 FTE Dan Leopold, 0.5 Grad Student)
 - Request in to DOE as part of our 3-year operating proposal
Resources Needed

- Salary support (0.75 FTE Dan Leopold, 0.5 Grad Student)
 - Request in to DOE as part of our 3-year operating proposal
- Theory support
Resources Needed

- Salary support (0.75 FTE Dan Leopold, 0.5 Grad Student)
 - Request in to DOE as part of our 3-year operating proposal
- Theory support
 - Band engineering/reverse-engineering for heterostructures, doping profiles, amorphous materials
Resources Needed

- Salary support (0.75 FTE Dan Leopold, 0.5 Grad Student)
 - Request in to DOE as part of our 3-year operating proposal
- Theory support
 - Band engineering/reverse-engineering for heterostructures, doping profiles, amorphous materials
- Measurement support
Resources Needed

- Salary support (0.75 FTE Dan Leopold, 0.5 Grad Student)
 - Request in to DOE as part of our 3-year operating proposal
- Theory support
 - Band engineering/reverse-engineering for heterostructures, doping profiles, amorphous materials
- Measurement support
 - Carrier densities, X-ray diffraction for crystalline cathodes, AFM of surfaces
Resources Needed

- Salary support (0.75 FTE Dan Leopold, 0.5 Grad Student)
 - Request in to DOE as part of our 3-year operating proposal
- Theory support
 - Band engineering/reverse-engineering for heterostructures, doping profiles, amorphous materials
- Measurement support
 - Carrier densities, X-ray diffraction for crystalline cathodes, AFM of surfaces
- Supplies ($20k/year ?)
Resources Needed

- Salary support (0.75 FTE Dan Leopold, 0.5 Grad Student)
 - Request in to DOE as part of our 3-year operating proposal
- Theory support
 - Band engineering/reverse-engineering for heterostructures, doping profiles, amorphous materials
- Measurement support
 - Carrier densities, X-ray diffraction for crystalline cathodes, AFM of surfaces
- Supplies ($20k/year ?)
 - Indium wire (2m length, cost?)
Resources Needed

- Salary support (0.75 FTE Dan Leopold, 0.5 Grad Student)
 - Request in to DOE as part of our 3-year operating proposal
- Theory support
 - Band engineering/reverse-engineering for heterostructures, doping profiles, amorphous materials
- Measurement support
 - Carrier densities, X-ray diffraction for crystalline cathodes, AFM of surfaces
- Supplies ($20k/year ?)
 - Indium wire (2m length, cost?)
 - Cs-Ion source ($1.4k)
Resources Needed

- Salary support (0.75 FTE Dan Leopold, 0.5 Grad Student)
 - Request in to DOE as part of our 3-year operating proposal
- Theory support
 - Band engineering/reverse-engineering for heterostructures, doping profiles, amorphous materials
- Measurement support
 - Carrier densities, X-ray diffraction for crystalline cathodes, AFM of surfaces
- Supplies ($20k/year ?)
 - Indium wire (2m length, cost?)
 - Cs-Ion source ($1.4k)
 - Epitaxial sapphire substrates ($4k estimate for ~20)
Resources Needed

- Salary support (0.75 FTE Dan Leopold, 0.5 Grad Student)
 - Request in to DOE as part of our 3-year operating proposal
- Theory support
 - Band engineering/reverse-engineering for heterostructures, doping profiles, amorphous materials
- Measurement support
 - Carrier densities, X-ray diffraction for crystalline cathodes, AFM of surfaces
- Supplies ($20k/year ?)
 - Indium wire (2m length, cost?)
 - Cs-Ion source ($1.4k)
 - Epitaxial sapphire substrates ($4k estimate for ~20)
 - Source materials ($1k)
Resources Needed

- Salary support (0.75 FTE Dan Leopold, 0.5 Grad Student)
 - Request in to DOE as part of our 3-year operating proposal
- Theory support
 - Band engineering/reverse-engineering for heterostructures, doping profiles, amorphous materials
- Measurement support
 - Carrier densities, X-ray diffraction for crystalline cathodes, AFM of surfaces
- Supplies ($20k/year ?)
 - Indium wire (2m length, cost?)
 - Cs-Ion source ($1.4k)
 - Epitaxial sapphire substrates ($4k estimate for ~20)
 - Source materials ($1k)
 - SAES getters (5m strip, ST-707-CTS-NI-8D, $130)
Resources Needed

- Salary support (0.75 FTE Dan Leopold, 0.5 Grad Student)
 - Request in to DOE as part of our 3-year operating proposal
- Theory support
 - Band engineering/reverse-engineering for heterostructures, doping profiles, amorphous materials
- Measurement support
 - Carrier densities, X-ray diffraction for crystalline cathodes, AFM of surfaces
- Supplies ($20k/year ?)
 - Indium wire (2m length, cost?)
 - Cs-Ion source ($1.4k)
 - Epitaxial sapphire substrates ($4k estimate for ~20)
 - Source materials ($1k)
 - SAES getters (5m strip, ST-707-CTS-NI-8D, $130)
 - ~150C heater (components ~$2k)
Resources Needed

- Salary support (0.75 FTE Dan Leopold, 0.5 Grad Student)
 - Request in to DOE as part of our 3-year operating proposal
- Theory support
 - Band engineering/reverse-engineering for heterostructures, doping profiles, amorphous materials
- Measurement support
 - Carrier densities, X-ray diffraction for crystalline cathodes, AFM of surfaces
- Supplies ($20k/year ?)
 - Indium wire (2m length, cost?)
 - Cs-Ion source ($1.4k)
 - Epitaxial sapphire substrates ($4k estimate for ~20)
 - Source materials ($1k)
 - SAES getters (5m strip, ST-707-CTS-NI-8D, $130)
 - ~150C heater (components ~$2k)
 - Power supply (HP 6552A power supply $3.5k)
Resources Needed

- Salary support (0.75 FTE Dan Leopold, 0.5 Grad Student)
 - Request in to DOE as part of our 3-year operating proposal
- Theory support
 - Band engineering/reverse-engineering for heterostructures, doping profiles, amorphous materials
- Measurement support
 - Carrier densities, X-ray diffraction for crystalline cathodes, AFM of surfaces
- Supplies ($20k/year ?)
 - Indium wire (2m length, cost?)
 - Cs-Ion source ($1.4k)
 - Epitaxial sapphire substrates ($4k estimate for ~20)
 - Source materials ($1k)
 - SAES getters (5m strip, ST-707-CTS-NI-8D, $130)
 - ~150C heater (components ~$2k)
 - Power supply (HP 6552A power supply $3.5k)
 - Machine shop time for transfer system ($5k)
Backup Slides
Eventually we might try more advanced band-engineering to achieve solid state PM