8.1 The Nature of Polarized Light

It has already been established that light may be treated as a
transverse electromagnetic wave. Thus far we have considered
only linearly polarized or plane-polarized light, that is, light
for which the orientation of the electric field is constant,
although its magnitude and sign vary in time (Fig. 3.14). In
that case, the electric field or optical disturbance resides in
what is known as the plane-of-vibration. That fixed plane
contains both E and Kk, the electric field vector and the propa-
gation vector in the direction of motion.

Imagine two harmonic, linearly polarized lightwaves of the
same frequency, moving through the same region of space, in
the same direction. If their electric field vectors are colinear,
the superimposing disturbances will simply combine to form a
resultant linearly polarized wave. Its amplitude and phase will
be examined in detail, under a diversity of conditions, in the
next chapter, when we consider the phenomenon of interfer-
ence. On the other hand, if the two lightwaves are such that
their respective electric-field directions are mutually perpen-
dicular, the resultant wave may or may not be linearly polar-
ized. The exact form the light takes (i.e., its state of
polarization) and how we can observe it, produce it, change it,
and make use of it is the concern of this chapter.

8.1.1 Linear Polarization

The two orthogonal optical disturbances that were considered
above can be represented as

E: = ﬁEo,\. cos (kz — wt) 8.1)

and E)v(z, t) = iEO_V cos (kz — wt + ¢) (8.2)

where ¢ is the relative phase difference between the waves,
both of which are traveling in the z-direction. Keep in mind
from the start that because the phase is in the form (kz — wr),
the addition of a positive € means that the cosine function in
Eq. (8.2) will not attain the same value as the cosine in Eq.
(8.1) until a later time (&/ ). Accordingly, E, lags E, by £ >
0. Of course, if € is a negative quantity, E, leads E, by £ < 0.
The resultant optical disturbance is the vector sum of these
two perpendicular waves:

E(z, ) =E.z.1) + Eyz, 1) (8.3)

If £ is zero or an integral multiple of 27, the waves are said

Many animals can see variations in polarization just as we see variations
in color. The pygmy octopus is one such creature. The varying pattern
of polarized light reflected from its surface suggests it might be “com-
municating” with other pygmy octopuses, the way birds display color.
(Photo courtesy Thomas W. Coronin and Nadav Shashar, University of Maryland.)
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Figure 8.1 Linear light. (a) The E-field linearly polarized in the first and third quadrants. (b) That same
oscillating field seen head on. (¢) Light linearly polarized in the second and fourth quadrants.

to be in-phase. In that case Eq. (8.3) becomes

E = (iEy, + jEo) cos (kz — wt) (8.4)
The resultant wave has a fixed amplitude equal to (iEo\ +
JEo.); in other words, it too is linearly polarized (Fig. 8.1). The
waves advance toward a plane of observation where the fields
are to be measured. There one sees a single resultant E oscil-
lating, along a tilted line, cosinusoidally in time (Fig. 8.1b).
The E-field progresses through one complete oscillatory cycle
as the wave advances along the z-axis through one wave-
length. This process can be carried out equally well in reverse;
that is, we can resolve any plane-polarized wave into two
orthogonal components.

Suppose now that ¢ is an odd integer multiple of * 7. The
two waves are 180° out-of-phase, and

E = (iEy, — jEo) cos (kz — wt) (8.5)

This wave is again linearly polarized, but the plane-of-vibra-
tion has been rotated (and not necessarily by 90°) from that of
the previous condition, as indicated in Fig. 8.2.

Figure 8.2 Linear light oscillating in the second and fourth quadrants.



Figure 8.3 Right-circular light. (a) Here the electric field, which has a
constant amplitude, rotates clockwise with the same frequency with
which it oscillates. (b) Two perpendicular antennas radiating with a 90¢
phase difference produce circularly polarized electromagnetic waves.

wt = n/2

wt = 3n/4

wt = /4
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8.1.2 Circular Polarization

Another case of particular interest arises when both con-
stituent waves have equal amplitudes (i.e., Eo, = Ey, = Ey),
and in addition, their relative phase difference ¢ = —7/2 +
2mmr, where m = 0, =1, =2 ... In other words, e = —m/2 or
any value increased or decreased from —r/2 by whole-num-
ber multiples of 27. Accordingly

E)x(z, t) = on cos (kz — wt) (8.6)

and E,(z. 1) = |Eysin (kz — 1) 8.7)

The consequent wave is

~

E-= Ey[i cos (kz — wt) + i sin (kz — wt)] (8.8)

(Fig. 8.3). Notice that now the scalar amplitude of _E) that
is, (E)-_E))'/2 = E, 1s a constant. But the direction of E is time-
varying, and it’s not restricted, as before, to a single plane.
Figure 8.4 depicts what is_l)lappening at some arbitrary point
7o on the axis. At ¢+ = 0, E lies along the reference axis in
Fig. 8.4a, and so

= 2 = 2 .
E,=1Eycoskzy, and E, = jE;sin kzg

. =3 2 - =2
At a later time, t = kzo/w, E, = iEo, E, = 0, and E is along
the x-axis. The resultant electric-field vector E is rotating
clockwise at an angular frequency of w, as seen by an observ-

/
as

Figure 8.4 Rotation of the electric vector in a
right-circular wave. Note that the rotation rate is
(b) w and kz = w/4.
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Figure 8.5 Right-circular light. Looking down the z-axis toward the ori-
gin, we see the electric field vector rotates clockwise as the wave
advances toward the observer.

er toward whom the wave is moving (i.e., looking back at the
source). Such a wave is right-circularly polarized (Fig. 8.5),
and one generally simply refers to it as right-circular light.
The E-vector makes one complete rotation as the wave
advances through one wavelength. In comparison, if ¢ = 77/2,
5m/2,97/2, and so on (i.e., ¢ = /2 + 2mmr, where m = 0,
+1,*2 %3,...), then

E= Eo[i cos (kz — wt) — isin (kz — wi)] 8.9)
The amplitude is unaffected, but E now rotates counterclock-
wise, and the wave is left-circularly polarized.

A linearly polarized wave can be synthesized from two
oppositely polarized circular waves of equal amplitude. In par-
ticular, if we add the right-circular wave of Eq. (8.8) to the
left-circular wave of Eq. (8.9), we get

E= 2E0€ cos (kz — wt) (8.10)
which has a constant amplitude vector of 2E(ﬁ and is therefore
linearly polarized.

8.1.3 Elliptical Polarization

As far as the mathematical description is concerned, both lin-
ear and circular light may be considered to be special cases of
elliptically polarized light, or more simply elliptical light.
This means that, in general, the resultant electric-field vector

E will rotate, and change its magnitude, as well. In such cas-
es the endpoint of E will trace out an ellipse, in a fixed-space
perpendicular to l_; as the wave sweeps by. We can see this
better by actually writing an expression for the curve traversed
by the tip of E. To that end, recall that

E, = Eq, cos (kz — wr) (8.11)

and E, = E,, cos (kz — wt +¢) (8.12)

The equation of the curve we are looking for should not be a
function of either position or time; in other words, we should
be able to get rid of the (kz — wr) dependence. Expand the
expression for E, into

E./Ey, = cos (kz — wt) cos £ — sin (kz — wt) sin €

and combine it with E, /E,, to yield
E. E

E(.)\' EOx
It follows from Eq. (8.11) that

cos £ = —sin (kz — wt) sine  (8.13)
sin (kz — wf) = [1 — (E(/Eg)?]'"?
so Eq. (8.13) leads to
E, E. 2 E N2 .,
——cose| =|1—(—] |sin" ¢
(EO\' EOr ) [ (EOV) :|
Finally, on rearranging terms, we have

E. N\ (E N _(E\/(E -
(E ) +<E ) —2(E )(E )coss=sme
Ov Ox Ox Oy (814)

This is the equation of an ellipse making an angle « with the
(E,, E,)-coordinate system (Fig. 8.6) such that
2E4.Ey, cos ¢

EZO.\' - E20\'
Equation (8.14) might be a bit more recognizable if the princi-
pal axes of the ellipse were aligned with the coordinate axes,
thatis, « = 0 or equivalently ¢ = *7/2, *37/2, *57/2, ...,
in which case we have the familiar form
E, + E, =1
E%\' E%\'

tan 2a = (8.15)

(8.16)

Furthermore, if Ey, = Ey, = E,, this can be reduced to

E:+ Ei=E; (8.17)
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Figure 8.6 Elliptical light. The endpoint of the electric field vector
sweeps out an ellipse as it rotates once around.

which, in agreement with our previous results, is a circle. If €
is an even multiple of 7, Eq. (8.14) yields

Ey,
E, =2F, (8.18)
’ EOX
and similarly for odd multiples of ,
Ey,
E = ——"E, (8.19)
’ EO,\'
E‘ leads E by: /4 3m/2 S5w/4

3n/4
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These are both straight lines having slopes of =E,. /Eg, ; in
other words, we have linear light.

Figure 8.7 diagrammatically summarizes most of these
conclusions. This very important diagram is labeled across the
bottom “E, leads E, by: 0, 7/4, 7/2, 37/4,...,” where these
are the positive values of ¢ to be used in Eq. (8.2). The same
set of curves will occur if “E, leads E, by: 2, 7m/4, 31/2,
Sw/4,....,” and that happens when ¢ equals —2, —77/4,
— 37/2, —5m/4, and so forth. Figure 8.7b illustrates how E,
leading E, by /2 is equivalent to E, leading E, by 3m/2
(where the sum of these two angles equals 27r). This will be of
continuing concern as we go on to shift the relative phases of
the two orthogonal components making up the wave.

We are now in a position to refer to a particular lightwave
in terms of its specific state of polarization. We shall say that
linearly polarized or plane-polarized light is in a P-state, and
right- or left-circular light is in an R- or ¥-state, respectively.
Similarly, the condition of elliptical polarization corresponds
to an &é-state. We’ve already seen that a %P-state can be repre-
sented as a superposition of #- and #-states [Eg. (8.10)], and
the same is true for an &-state. In this case, as shown in Fig.
8.8, the amplitudes of the two circular waves are different. (An
analytical treatment is left for Problem 8.3.)

w2 /4 0

/AN

- -
E leads E, by: 3m/4

(a)

Sw/4

372 T4 2

Figure 8.7 (a) Various polarization configurations. The light would be
circular with e = 7/2 or 37/2 if Eo, = Eq,, but here for the sake of gener-
ality E,, was taken to be larger than E,. (b) E, leads E, (or E, lags E,) by
/2, or alternatively, E, leads E, (or E, lags E,) by 3/2.
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Figure 8.8 Elliptical light as the superposition of an %- and #state.

8.1.4 Natural Light

An ordinary light source consists of a very large number of
randomly oriented atomic emitters. Each excited atom radiates
a polarized wavetrain for roughly 10™® s. All emissions hav-
ing the same frequency will combine to form a single resultant
polarized wave, which persists for no longer than 10~ % s. New
wavetrains are constantly emitted, and the overall polarization
changes in a completely unpredictable fashion. If these
changes take place at so rapid a rate as to render any single
resultant polarization state indiscernible, the wave is referred
to as natural light. It is also known as unpolarized light, but
this is a misnomer, since in actuality the light is composed of
a rapidly varying succession of the different polarization
states. Randomly polarized is probably a better way to speak
of it.

We can mathematically represent natural light in terms of
two arbitrary, incoherent, orthogonal, linearly polarized waves
of equal amplitude (i.e., waves for which the relative phase
difference varies rapidly and randomly).

Keep in mind that an idealized monochromatic plane wave
must be depicted as an infinite wavetrain. If this disturbance
is resolved into two orthogonal components perpendicular to
the direction of propagation, they, in turn, must have the same
frequency, be infinite in extent, and therefore be mutually
coherent (i.e., € = constant). In other words, a perfectly
monochromatic plane wave is always polarized. In fact, Eqs.
(8.1) and (8.2) are just the Cartesian components of a trans-
verse (E. = 0) harmonic plane wave.

Whether natural in origin or artificial, light is generally
neither completely polarized nor completely unpolarized;
both cases are extremes. More often, the electric-field vector
varies in a way that is neither totally regular nor totally irregu-

lar, and such an optical disturbance is partially polarized.
One useful way of describing this behavior is to envision it as
the result of the superposition of specific amounts of natural
and polarized light.

8.1.5 Angular Momentum and the
Photon Picture

We have already seen that an electromagnetic wave impinging
on an object can impart both energy and linear momentum to
that body. Moreover, if the incident plane wave is circularly
polarized, we can expect electrons within the material to be set
into c1rcular motion in response to the force generated by the
rotating E-field. Alternatively, we might picture the field as
being composed of two orthogonal P-states that are 90°
out-of-phase. These simultaneously drive the electron in two
perpendicular directions with a /2 phase difference. The
resulting motion is again circular. In effect, the torque exerted
by the B-field averages to zero over an orbit, and the E-field
drives the electron with an angular velocity w equal to the fre-
quency of the electromagnetic wave. Angular momentum will
thus be imparted by the wave to the substance in which the
electrons are imbedded and to which they are bound. We can
treat the problem rather simply without actually going into the
details of the dynamics. The power delivered to the system is
the energy transferred per unit time, d%/dt. Furthermore, the
power generated by a torque I acting on a rotating body is just
I (which is analogous to vF for linear motion), so

s

o=l (8.20)

Since the torque is equal to the time rate-of-change of the
angular momentum L, it follows that on the average

dé€ _ dL

— = 8.21

ar  “dr @21
A charge that absorbs a quantity of energy & from the incident
circular wave will simultaneously absorb an amount of angu-
lar momentum L such that

(8.22)
. . . . . ==
If the incident wave is in an R-state, its E-vector rotates clock-

wise, looking toward the source. This is the direction in which
a positive charge in the absorbing medium would rotate, and



the angular momentum vector is therefore taken to point in the
direction opposite to the propagation direction,* as shown in
Fig. 8.9.

According to the quantum-mechanical description, an elec-
tromagnetic wave transfers energy in quantized packets or
photons such that € = hv. Thus € = hw (where h = h /21),
and the intrinsic or spin angular momentum of a photon is
either —# or +A, where the signs indicate right- or left-hand-
edness, respectively. Notice that the angular momentum of a
photon is completely independent of its energy. Whenever a
charged particle emits or absorbs electromagnetic radiation,
along with changes in its energy and linear momentum, it will
undergo a change of *4 in its angular momentum.

The energy transferred to a target by an incident mono-
chromatic electromagnetic wave can be envisaged as being
transported in the form of a stream of identical photons. We
can anticipate a corresponding quantized transport of angular
momentum. A purely left-circularly polarized plane wave will
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Figure 8.9 Angular momentum of a photon.

“This choice of terminology is admittedly a bit awkward. Yet its use in
Optics is fairly well established, even though it is completely antithetic to
the more reasonable convention adopted in elementary particle physics.

TAs a rather important yet simple example, consider the hydrogen

atom. It is composed of a proton and an electron, each having a spin of
h/2. The atom has slightly more energy when the spins of both particles
are in the same direction. It is possible, however, that once in a very
long time, roughly 107 years, one of the spins will flip over and be
antiparallel to the other. The change in angular momentum of the atom
1s then £, and this is imparted to an emitted photon which carries off the
slight excess in energy as well. This is the origin of the 21-cm

microwave emission, which is so significant in radio astronomy.
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impart angular momentum to the target as if all the constituent
photons in the beam had their spins aligned in the direction of
propagation. Changing the light to right circular reverses the
spin orientation of the photons, as well as the torque exerted
by them on the target. In 1935, using an extremely sensitive
torsion pendulum, Richard A. Beth was actually able to per-
form such measurements.*

Thus far we’ve had no difficulty in describing purely right-
and left-circular light in the photon picture; but what is linear-
ly or elliptically polarized light? Classically, light in a P-state
can be synthesized by the coherent superposition of equal
amounts of light in - and £-states (with an appropriate phase
difference). Any single photon whose angular momentum is
somehow measured will be found to have its spin either total-
ly parallel or antiparallel to k. A beam of linear light will inter-
act with matter as if it were composed, at that instant, of equal
numbers of right- and left-handed photons. There is a subtle
point that has to be made here. We cannot say that the beam is
actually made up of precisely equal amounts of well-defined
right- and left-handed photons; the photons are all identical.
Rather, each individual photon exists in either spin state with
equal likelihood. If we measured the angular momentum of
the constituent photons, —# would result as often as +#A. This
is all we can observe. We are not privy to what the photon is
doing before the measurement (if indeed it exists before the
measurement). As a whole, a linearly polarized light beam will
impart no total angular momentum to a target.

In contrast, if each photon does not occupy both spin states
with the same probability, one angular momentum, say +#,
will be found to occur somewhat more often than the other,
—h. In this instance, a net positive angular momentum will
therefore be imparted to the target. The result en masse is
elliptically polarized light, that is, a superposition of unequal
amounts of - and #-light bearing a particular phase
relationship.

8.2 Polarizers

Now that we have some idea of what polarized light is, the
next logical step is to develop an understanding of the tech-
niques used to generate, change, and manipulate it to fit our
needs. An optical device whose input is natural light and

*Richard A. Beth, “Mechanical Detection and Measurement of the
Angular Momentum of Light,” Phys. Rev. 50, 115 (1936).
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whose output is some form of polarized light is a polarizer.
For example, recall that one possible representation of unpo-
larized light is the superposition of two equal-amplitude, inco-
herent, orthogonal #-states. An instrument that separates these
two components, discarding one and passing on the other, is
known as a linear polarizer. Depending on the form of the
output, we could also have circular or elliptical polarizers. All
these devices vary in effectiveness down to what might be
called leaky or partial polarizers.

Polarizers come in many different configurations, but they
are all based on one of four fundamental physical mecha-
nisms: dichroism, or selective absorption; reflection; scatter-
ing; and birefringence, or double refraction. There is,
however, one underlying property that they all share: there
must be some form of asymmetry associated with the process.
This is certainly understandable, since the polarizer must
somehow select a particular polarization state and discard all
others. In truth, the asymmetry may be a subtle one related to
the incident or viewing angle, but usually it is an obvious
anisotropy in the material of the polarizer itself.

8.2.1 Malus’s Law

One matter needs to be settled before we go on: how do we
determine experimentally whether or not a device is actually a
linear polarizer?

By definition, if natural light is incident on an ideal linear
polarizer, as in Fig. 8.10, only light in a %-state will be trans-
mitted. That P-state will have an orientation parallel to a spe-
cific direction called the transmission axis of the polarizer.
Only the component of the optical field parallel to the trans-
mission axis will pass through the device essentially unaffect-
ed. If the polarizer in Fig 8.10 is rotated about the z-axis, the
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Figure 8.10 Natural light incident on a linear polarizer tilted at an
angle 6 with respect to the vertical.

reading of the detector (e.g., a photocell) will be unchanged
because of the complete symmetry of unpolarized light. Keep
in mind that we are dealing with waves, but because of the
very high frequency of light, our detector will measure only
the incident irradiance. Since the irradiance is proportional to
the square of the amplitude of the electric field [Eq. (3.44)],
we need only concern ourselves with that amplitude.

Now suppose that we introduce a second identical ideal lin-
ear polarizer, or analyzer, whose transmission axis is vertical
(Fig. 8.11). If the amplitude of the electric field transmitted by
the first polarizer is Eq;, only its component, Eqy; cos 6, paral-
lel to the transmission axis of the analyzer will be passed on to
the detector (assuming no absorption). According to Eg.
(3.44), the irradiance reaching the detector is then given by

1) = ? E2, cos?6 (8.23)

The maximum irradiance, 1(0) = ceqEg;/2 = I, occurs when the
angle 6 between the transmission axes of the analyzer and polar-

Figure 8.11 A linear polarizer and ana
lyzer—Malus'’s Law. Natural light of irradi
ance /, is incident on a linear polarizer
tilted at an angle 6 with respect to the
vertical. The irradiance leaving the first
linear polarizer is I, = I(g). The irradiance
leaving the second linear polarizer (which
makes an angle 6 with the first) is 1(6).




izer is zero. Equation (8.23) can be rewritten as

1(6) = 1(0) cos* 0 (8.24)
This is known as Malus’s Law, having first been published in
1809 by Etienne Malus, military engineer and captain in the
army of Napoleon.

Keep in mind that 7(0) is the irradiance arriving on the ana-
lyzer. Thus, if 1000 W/m? of natural light impinges on the
first linear polarizer in Fig. 8.11, assuming that polarizer is
ideal, it will pass 500 W/m? of linear light on to the analyzer;
that’s 1(0). Depending on 6, we can use Eq. (8.24) to calculate
the transmitted irradiance /(6). Alternatively, suppose the inci-
dent beam is 1000 W/m? of linear light parallel to the trans-
mission axis of the first polarized. In that case I(0) = 1000
W/m.

Observe that 1(90°) = 0. This arises from the fact that the
electric field that passed through the polarizer is perpendicular
to the transmission axis of the analyzer (the two devices so
arranged are said to be crossed). The field is therefore parallel
to what is called the extinction axis of the analyzer and has no
component along the transmission axis. We can use the setup
of Fig. 8.11 along with Malus’s Law to determine whether a
particular device is a linear polarizer.

As we’ll see presently, the most common kind of linear
polarizer used today is the Polaroid filter. And although you
certainly can confirm Malus’s Law with two ordinary
Polaroids, you’ll have to be careful to use light in the range
from =450 nm to =650 nm. Ordinary Polaroids are not very
good at polarizing IR.

8.3 Dichroism

Inits broadest sense, the term dichroism refers to the selective
absorption of one of the two orthogonal %-state components
of an incident beam. The dichroic polarizer itself is physically
anisotropic, producing a strong asymmetric or preferential
absorption of one field component while being essentially
transparent to the other.

8.3.1 The Wire-Grid Polarizer

The simplest device of this sort is a grid of parallel conducting
wires, as shown in Fig. 8.12. Imagine that an unpolarized elec-
tromagnetic wave impinges on the grid from the right. The
electric field can be resolved into the usual two orthogonal
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components, in this case, one chosen to be parallel to the wires
and the other perpendicular to them. The y-component of the
field drives the conduction electrons along the length of each
wire, thus generating a current. The electrons in turn collide
with lattice atoms, imparting energy to them and thereby heat-
ing the wires (joule heat). In this manner energy is transferred
from the field to the grid. In addition, electrons accelerating
along the y-axis radiate in both the forward and backward
directions. As should be expected, the incident wave tends to
be canceled by the wave reradiated in the forward direction,
resulting in little or no transmission of the y-component of the
field. The radiation propagating in the backward direction
simply appears as a reflected wave. In contrast, the electrons
are not free to move very far in the x-direction, and the corre-
sponding field component of the wave is essentially unaltered
as it propagates through the grid. The transmission axis of the
grid is perpendicular to the wires. It is a common error to
assume naively that the y-component of the field somehow
slips through the spaces between the wires.

One can easily confirm our conclusions using microwaves
and a grid made of ordinary electrical wire. It is not so easy a
matter, however, to fabricate a grid that will polarize light, but
it has been done! In 1960 George R. Bird and Maxfield Par-
rish, Jr., constructed a grid having an incredible 2160 wires per
mm.* Their feat was accomplished by evaporating a stream of
gold (or at other times aluminum) atoms at nearly grazing inci-
dence onto a plastic diffraction grating replica (see Section
10.2.7). The metal accumulated along the edges of each step in
the grating to form thin microscopic “wires” whose width and
spacing were less than one wavelength across.

Figure 8.12 A wire-grid polarizer. The grid eliminates the vertical
component (i.e., the one parallel to the wires) of the E-field and passes
the horizontal component.

*G. R. Bird and M. Parrish, Jr., “The Wire Grid as a Near-Infrared
Polarizer,” J. Opt. Soc. Am. 50, 886 (1960).
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Although the wire grid is useful, particularly in the
infrared, it is mentioned here more for pedagogical than prac-
tical reasons. The underlying principle is shared by other,
more common, dichroic polarizers.

8.3.2 Dichroic Crystals

Certain materials are inherently dichroic because of an
anisotropy in their respective crystalline structures. Probably
the best known of these is the naturally occurring mineral tour-
maline, a semiprecious stone often used in jewelry. Actually
there are several tourmalines, which are boron silicates of dif-
fering chemical composition [e.g., NaFe;B3Al¢SigO,7(OH),].
For this substance there is a specific direction within the crys-
tal known as the principal or optic axis, which is determined by
its atomic configuration. The electric-field component of an
incident lightwave that is perpendicular to the principal axis is
strongly absorbed by the sample. The thicker the crystal, the
more complete the absorption (Fig. 8.13). A plate cut from a
tourmaline crystal parallel to its principal axis and several mil-
limeters thick will serve as a linear polarizer. In this instance
the crystal’s principal axis becomes the polarizer’s transmis-
sion axis. But the usefulness of tourmaline is rather limited by
the fact that its crystals are comparatively small. Moreover,
even the transmitted light suffers a certain amount of absorp-
tion. To complicate matters, this undesirable absorption is
strongly wavelength dependent, and the specimen will there-
fore be colored. A tourmaline crystal held up to natural white
light might appear green (they come in other colors as well)
when viewed normal to the principal axis and nearly black
when viewed along that axis, where all the E-fields are perpen-
dicular to it (ergo the term dichroic, meaning rwo colors).

There are several other substances that display similar char-
acteristics. A crystal of the mineral hypersthene, a ferromag-
nesium silicate, might look green under white light polarized
in one direction and pink for a different polarization direction.

We can get a qualitative picture of the mechanism that
gives rise to crystal dichroism by considering the microscopic
structure of the sample. (You might want to take another look
at Section 3.5.) Recall that the atoms within a crystal are
strongly bound together by short-range forces to form a peri-
odic lattice. The electrons, which are responsible for the opti-
cal properties, can be envisioned as elastically tied to their
respective equilibrium positions. Electrons associated with a
given atom are also under the influence of the surrounding
nearby atoms, which themselves may not be symmetrically
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Figure 8.13 A dichroic crystal. The E-field parallel to the optic axis is
transmitted without any diminution.The naturally occurring ridges evident
in the photograph of the tourmaline crystals correspond to the optic
axis. (Photo by E.H.)

distributed. As a result, the elastic binding forces on the elec-
trons will be different in different directions. Consequently,
their response to the harmonic electric field of an incident
electromagnetic wave will vary with the direction of E. If in
addition to being anisotropic the material is absorbing, a
detailed analysis would have to include an orientation-depen-
dent conductivity. Currents will exist, and energy from the
wave will be converted into joule heat. The attenuation, in
addition to varying in direction, may be dependent on fre-
quency as well. This means that if the incoming white light is
in a P-state, the crystal will appear colored, and the color will



depend on the orientation of E. Substances that display two or
even three different colors are said to be dichroic or trichroic.
respectively.*

8.3.3 Polaroid

In 1928 Edwin Herbert Land, then a 19-year-old undergradu-
ate at Harvard College, invented the first dichroic sheet polar-
izer, known commercially as Polaroid J-sheet. It incorporated
a synthetic dichroic substance called herapathite, or quinine
sulfate periodide.” Land’s own retrospective account of his
early work is rather informative and makes fascinating read-
ing. It is particularly interesting to follow the sometimes
whimsical origins of what is now, no doubt, the most widely
used group of polarizers. The following is an excerpt from
Land’s remarks:

In the literature there are a few pertinent high spots in the
development of polarizers, particularly the work of William
Bird Herapath, a physician in Bristol, England, whose pupil, a
Mr. Phelps, had found that when he dropped iodine into the
urine of a dog that had been fed quinine, little scintillating
green crystals formed in the reaction liquid. Phelps went to his
teacher, and Herapath then did something which I [Land] think
was curious under the circumstances; he looked at the crystals
under a microscope and noticed that in some places they were
light where they overlapped and in some places they were
dark. He was shrewd enough to recognize that here was a
remarkable phenomenon, a new polarizing material [now
known as herapathite]....

Herapath’s work caught the attention of Sir David Brew-
ster, who was working in those happy days on the kaleido-
scope.... Brewster, who invented the kaleidoscope, wrote a
book about it, and in that book he mentioned that he would like
to use herapathite crystals for the eyepiece. When I was read-
ing this book, back in 1926 and 1927, I came across his refer-
ence to these remarkable crystals, and that started my interest
in herapathite.

*More will be said about these processes later on when we consider
birefringence. Suffice it to say now that for crystals classified as uniaxial
there are two distinct directions, and therefore two colors may be dis-
played by absorbing specimens. In biaxial crystals there are three dis-
tinct directions and the possibility of three colors.

'E. H. Land, “Some Aspects of the Development of Sheet Polarizers,” J.
Opt. Soc. Am. 41, 957 (1951).
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A pair of crossed polaroids. Each polaroid appears gray because it
absorbs roughly half the incident light. (Photo by E.H.)

Land’s initial approach to creating a new form of linear
polarizer was to grind herapathite into millions of submicro-
scopic crystals, which were naturally needle-shaped. Their
small size lessened the problem of the scattering of light. In his
earliest experiments, the crystals were aligned nearly parallel
to each other by means of magnetic or electric fields. Later,
Land found that they would be mechanically aligned when a
viscous colloidal suspension of the herapathite needles was
extruded through a long narrow slit. The resulting J-sheet was
effectively a large flat dichroic crystal. The individual submi-
croscopic crystals still scattered light a bit, and as a result, J-
sheet was somewhat hazy.

In 1938 Land invented H-sheet, which is now probably the
most widely used linear polarizer. It does not contain dichroic
crystals but is instead a molecular analogue of the wire grid. A
sheet of clear polyvinyl alcohol is heated and stretched in a
given direction, its long hydrocarbon molecules becoming
aligned in the process. The sheet is then dipped into an ink
solution rich in iodine. The iodine impregnates the plastic and
attaches to the straight long-chain polymeric molecules, effec-
tively forming a chain of its own. The conduction electrons
associated with the iodine can move along the chains as if they
were long thin wires. The component of E in an incident wave
that is parallel to the molecules drives the electrons, does work
on them, and is strongly absorbed. The transmission axis of
the polarizer is therefore perpendicular to the direction in
which the film was stretched.

Each separate miniscule dichroic entity is known as a
dichromophore. In H-sheet the dichromophores are of molec-
ular dimensions, so scattering represents no problem. H-sheet
is a very effective polarizer across the entire visible spectrum,
but is somewhat less so at the blue end. When a bright white
light is viewed through a pair of crossed H-sheet Polaroids the
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extinction color will be a deep blue as a result of this leakage.
HN-50 would be the designation of a hypothetical, ideal H-
sheet having a neutral color (N) and transmitting 50% of the
incident natural light while absorbing the other 50%, which is
the undesired polarization component. In practice, however,
about 4% of the incoming light will be reflected back at each
surface (antireflection coatings are not generally used), leav-
ing about 92%. Half of this is presumably absorbed, and thus
we might contemplate an HN-46 Polaroid. Actually, large
quantities of AN-38, HN-32, and HN-22, each differing by the
amount of iodine present, are produced commercially and are
readily available (Problem 8.10).

Many other forms of Polaroid have been developed.*
K-sheet, which is humidity- and heat-resistant, has as its
dichromophore the straight-chain hydrocarbon polyvinylene.
A combination of the ingredients of H- and K-sheets leads to
HR-sheet, a near-infrared polarizer. And there are commer-
cially available dichroic sheet linear polarizers that function in
the ultraviolet from =300 nm to =400 nm.

Remember that sheet dichroic polarizers are designed for a
specific wavelength range. A pair of crossed sheet linear
polarizers intended to block the visible will leak substantially
below =450 nm and above =650 nm.

Polaroid vectograph is a commercial material at one time
designed to be incorporated in a process for making three-
dimensional photographs. The stuff never was successful at its
intended purpose, but it can be used to produce some rather
thought-provoking, if not mystifying, demonstrations. Vecto-
graph film is a water-clear plastic laminate of two sheets of
polyvinyl alcohol arranged so that their stretch directions are
at right angles to each other. In this form there are no conduc-
tion electrons available, and the film is not a polarizer. Using
an iodine solution, imagine that we draw an X on one side of
the film and a Y overlapping it on the other. Under natural illu-
mination the light passing through the X will be in a %-state
perpendicular to the %-state light coming from the Y. In other
words, the painted regions form two crossed polarizers. They
will be seen superimposed on each other. Now, if the vecto-
graph is viewed through a linear polarizer that can be rotated,
either the X, the Y, or both will be seen. Obviously, more
imaginative drawings can be made. (One need only remember
to make the one on the far side backward.)

*See Polarized Light: Production and Use, by Shurcliff, or its more read-
able little brother, Polarized Light, by Shurcliff and Ballard.

8.4 Birefringence

Many crystalline substances (i.e., solids whose atoms are
arranged in some sort of regular repetitive array) are optically
anisotropic. Their optical properties are not the same in all
directions within any given sample. The dichroic crystals of
the previous section are but one special subgroup. We saw
there that if the crystal’s lattice atoms were not completely
symmetrically arrayed, the binding forces on the electrons
would be anisotropic. Earlier, in Fig. 3.38b we represented the
isotropic oscillator using the simple mechanical model of a
spherical charged shell bound by identical springs to a fixed
point. This was fine for optically isotropic substances (amor-
phous solids, such as glass and plastic, are usually, but not
always, isotropic). Figure 8.14 shows another charged shell,
this one bound by springs of differing stiffness (i.e., having
different spring constants). An electron that is displaced from
equilibrium along a direction parallel to one set of “springs”
will evidently oscillate with a different characteristic frequen-
cy than it would were it displaced in some other direction.

As was pointed out previously, light propagates through a
transparent substance by exciting the atoms within the medi-
um. The electrons are driven by the E—field, and they reradiate;
these secondary wavelets recombine, and the resultant refract-
ed wave moves on. The speed of the wave, and therefore the
index of refraction, is;)determined by the difference between
the frequency of the E-field and the natural frequency of the

Figure 8.14 Mechanical model depicting a negatively charged shell
bound to a positive nucleus by pairs of springs having different stiffness.
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Figure 8.15 Refractive index versus frequency along two axes in a
crystal. Regions where dn/dw < O correspond to absorption bands.

atoms. An anisotropy in the binding force will be manifest in
an anisotropy in the refractive index. For example, if %-state
light was to move through some hypothetical crystal so that it
encountered electrons that could be represented by Fig. § 8.14,

its speed would be governed by the orientation of E.IfE was
parallel to the stiff springs, that is, in a direction of strong
binding, here along the x-axis, the electron’s natural frequen-
cy would be high (proportional to the square root of the spring
constant). In contrast, with E along the y-axis, where the bind-
ing force is weaker, the natural frequency would be somewhat
lower. Keeping in mind our earlier discussion of dispersion
and the n(w) curve of Fig. 3.41, the appropriate indices of
refraction might look like those in Fig. 8.15. A material of this
sort, which displays two different indices of refraction, is said
to be birefringent.*

If the crystal is such that the frequency of the incident light
appears in the vicinity of w,, in Fig. 8.15, it resides in the
absorption band of ny(w). A crystal so illuminated will be
strongly absorbing for one polarization direction (y) and trans-
parent for the other (x). A birefringent material that absorbs

“The word refringence used to be used instead of our present-day term
refraction. It comes from the Latin refractus by way of an etymological
route beginning with frangere, meaning to break.
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one of the orthogonal P-states, passing on the other, is
dichroic. Furthermore, suppose that the crystal symmetry is
such that the binding forces in the y- and z-directions are iden-
tical; in other words, each of these springs has the same natur-
al frequency and they are equally lossy. The x-axis now defines
the direction of the optic axis. Inasmuch as a crystal can be
represented by an array of these oriented anisotropic charged
oscillators, the optic axis is actually a direction and not mere-
ly a single line. The model works rather nicely for dlchrmc
crystals, since if light was to propagate along the optic axis (E
in the yz-plane), it would be strongly absorbed, and if it moved
normal to that axis, it would emerge linearly polarized.

Often the natural frequencies of birefringent crystals are
above the optical range, and they appear colorless. This is rep-
resented by Fig. 8.15 where the incident light is now consid-
ered to have frequencies in the region of w,. Two different
indices are apparent, but absorption for either polarization is
negligible. Equation (3.71) shows that n(w) varies inversely
with the natural frequency. This means that a large effective
spring constant (i.e., strong binding) corresponds to a low
polarizability, a low dielectric constant, and a low refractive
index.

We will construct, if only pictorially, a linear polarizer uti-
lizing birefringence by causing the two orthogonal %-states to
follow different paths and separate. Even more fascinating
things can be done with birefringent crystals, as we shall see
later.

8.4.1 Calcite

Let’s spend a moment relating the above ideas to a typical
birefringent crystal, calcite. Calcite or calcium carbonate
(CaCO,) is a common naturally occurring substance. Both
marble and limestone are made up of many small calcite crys-
tals bonded together. Of particular interest are the beautiful
large single crystals, which, although they are becoming rare,
can still be found, particularly in India, Mexico, and South
Africa. Calcite is the most common material for making linear
polarizers for use with high-power lasers.

Figure 8.16 shows the distribution of carbon, calcium, and
oxygen within the calcite structure; Fig. 8.17 is a view from
above, looking down along what has, in anticipation, been
labeled the optic axis in Fig. 8.16. Each CO; group forms a tri-
angular cluster whose plane is perpendicular to the optic axis.
If Fig. 8.17 is rotated about a line normal to and passing
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through the center of any one of the carbonate groups, the
same exact configuration of atoms would appear three times
during each revolution. The direction designated as the optic
axis corresponds to a special crystallographic orientation, in
that it is an axis of 3-fold symmetry. The large birefringence
displayed by calcite arises from the fact that the carbonate
groups are all in planes normal to the optic axis. The behavior
of their electrons, or rather the mutual interaction of the
induced oxygen dipoles, is markedly different when E is either
in or normal to those planes (Problem 8.25). In any event the
asymmetry is clear enough.

Calcite samples can readily be split, forming smooth sur-
faces known as cleavage planes. The crystal is essentially
made to come apart between specific planes of atoms where
the interatomic bonding is relatively weak. All cleavage
planes in calcite (Fig. 8.17) are normal to three different direc-
tions. As a crystal grows, atoms are added layer upon layer,
following the same pattern. But more raw material may be
available to the growth process on one side than on another,
resulting in a crystal with an externally complicated shape.
Even so, the cleavage planes are dependent on the atomic con-
figuration, and if one cuts a sample so that each surface is a
cleavage plane, its form will be related to the basic arrange-

Figure 8.16 Arrangement of atoms in calcite.

Figure 8.17 Atomic arrangement for calcite looking down the
optical axis.

ment of its atoms. Such a specimen is referred to as a cleav-
age form. In the case of calcite it is a rhombohedron, with
each face a parallelogram whose angles are 78° 5" and 101°
55’ (Fig. 8.18).

There are only two blunt corners where the surface planes
meet to form three obtuse angles. A line passing through the
vertex of either of the blunt corners, oriented so that it makes
equal angles with each face (45.5°) and each edge (63.8°), is
clearly an axis of 3-fold symmetry. (This would be a bit more
obvious if we cut the rhomb to have edges of equal length.)



Figure 8.18 Calcite cleavage form.

Evidently, such a line must correspond to the optic axis. What-
ever the natural shape of a particular calcite specimen, you
need only find a blunt corner and you have the optic axis.

In 1669 Erasmus Bartholinus (1625-1692), doctor of med-
icine and professor of mathematics at the University of Copen-
hagen (and incidentally, the father-in-law of Ole Romer, the
man who in 1679 first measured the speed of light), came
upon a new and remarkable optical phenomenon in calcite,
which he called double refraction. Calcite had been discovered
not long before, near Eskifjordur in Iceland, and was then
known as Iceland spar. In the words of Bartholinus:*

Greatly prized by all men is the diamond, and many are the
joys which similar treasures bring, such as precious stones and
pearls... but he, who, on the other hand, prefers the knowledge
of unusual phenomena to these delights, he will, I hope, have
no less joy in a new sort of body, namely, a transparent crystal,
recently brought to us from Iceland, which perhaps is one of
the greatest wonders that nature has produced....

As my investigation of this crystal proceeded there showed
itself a wonderful and extraordinary phenomenon: objects
which are looked at through the crystal do not show, as in the
case of other transparent bodies, a single refracted image, but
they appear double.

The double image referred to by Bartholinus is quite evi-
dent in the accompanying photograph. If we send a narrow
beam of natural light into a calcite crystal normal to a cleavage
plane, it will split and emerge as two parallel beams. To see
the same effect quite simply, we need only place a black dot

*W. F. Magie, A Source Book in Physics.
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Double image formed by a calcite crystal (not cleavage form).
(Photo by E.H.)

on a piece of paper and then cover it with a calcite rhomb. The
image will now consist of two gray dots (black where they
overlap). Rotating the crystal will cause one of the dots to
remain stationary while the other appears to move in a circle
about it, following the motion of the crystal. The rays forming
the fixed dot, which is the one invariably closer to the upper
blunt corner, behave as if they had merely passed through a
plate of glass. In accord with a suggestion made by Bartholi-
nus, they are known as the ordinary rays, or o-rays. The rays
coming from the other dot, which behave in such an unusual
fashion, are known as the extraordinary rays, or e-rays. If
the crystal is examined through an analyzer, it will be found
that the ordinary and extraordinary images are linearly polar-
ized (see photo). Moreover, the two emerging %-states are
orthogonal.

ngotne simple mechanid

A calcite crystal (blunt corner on the bottom). The transmission axes of
the two polarizers are parallel to their short edges. Where the image is
doubled the lower, undeflected one is the ordinary image. Take a long
look: there’s a lot in this one. (Photo by E.H.)
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Any number of planes can be drawn through the rhomb so
as to contain the optic axis, and these are all called principal
planes. More specifically, if the principal plane is also normal
to a pair of opposite surfaces of the cleavage form, it slices the
crystal across a principal section. Evidently, three of these
pass through any one point; each is a parallelogram having
angles of 109° and 71°. Figure 8.19 is a diagrammatic repre-
sentation of an initially unpolarized beam traversing a princi-
pal section of a calcite rhomb. The filled-in circles and arrows
drawn along the rays indicate that the o-ray has its electric-
field vector normal to the principal section, and the field of the
e-ray is parallel to the principal sectlon

To simplify matters a bit, let E in the incident plane wave
be linearly polarized perpendicular to the optic axis, as
shown in Fig. 8.20. The wave strikes the surface of the crys-
tal, thereupon driving electrons into oscillation, and they in
turn reradiate secondary wavelets. The wavelets superimpose
and recombine to form the refracted wave, and the process is
repeated over and over again until the wave emerges from the
crystal. This represents a cogent physical argument for
applying the ideas of scattering via Huygens’s Principle.
Huygens himself, though without benefit of electromagnetic
theory, used his construction to explain many aspects of dou-
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Figure 8.19 A light beam with two orthogonal field components tra-
versing a calcite principal section.

Optic axis

o-wave

Figure 8.20 An incident plane wave polarized perpendicular to the
principal section.

ble refraction in calcite as long ago as 1690. It should be
made clear from the outset, however, that his treatment is
incomplete,* in which form it is appealingly, though decep-
tively, simple.

Inasmuch as the E-field is perpendicular to the optic axis,
one assumes that the wavefront stimulates countless atoms on
the surface, which then act as sources of spherical wavelets, all
of which are in-phase. Presumably, as long as the field of the
wavelets is everywhere normal to the optic axis, they will
expand into the crystal in all directions with a speed v, as
they would in an isotropic medium. (Keep in mind that the
speed is a function of frequency.) Since the o-wave displays
no anomalous behavior, this assumption seems reasonable.
The envelope of the wavelets is essentially a portion of a plane
wave, which in turn stimulates a distribution of secondary
atomic point sources. The process continues, and the wave
moves straight across the crystal.

In contrast, consider the incident wave in Fig. 8.21 whose
E-field is parallel to the principal section. Notice that E
now has a component normal to the optic axis, as well as a
component parallel to it. Since the medium is birefringent,
light of a given frequency polarized parallel to the optic axis
propagates with a speed v, , where v; # v,. In particular for
calcite and sodium yellow light (A = 589 nm), 1.486v, =
1.658v, = ¢.What kind of Huygens’s wavelets can we expect

*A. Sommerfeld, Optics, p. 148.
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Figure 8.21 An incident plane wave polarized parallel to the
principal section.

now? At the risk of oversimplifying matters, we represent
each e-wavelet, for the moment at least, as a small sphere
(Fig. 8.22). But v, > v, so that the wavelet will elongate in all
directions normal to the optic axis. We therefore speculate, as
Huygens did, that the secondary wavelets associated with the
e-wave are ellipsoids of revolution about the optic axis. The
envelope of all the ellipsoidal wavelets is essentially a portion
of a plane wave parallel to the incident wave. This plane wave,
however, will evidently undergo a sidewise displacement in
traversing the crystal. The beam moves in a direction parallel
to the lines connecting the origin of each wavelet and the point

Figure 8.22 Wavelets
within calcite.
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of tangency with the planar envelope. This is known as the ray
direction and corresponds to the direction in which energy
propagates. Clearly, in an anisotropic crvstal the direction of
the ray is not normal to the wavefront.

If the incident beam is natural light, the two situations
depicted in Figs. 8.20 and 8.21 will exist simultaneously, with
the result that the beam will split into two orthogonal linearly
polarized beams (Fig. 8.19). You can actually see the two
diverging beams w1thm a crystal by using a properly oriented
narrow laserbeam (E neither normal nor parallel to the princi-
pal plane, which is usually the case). Light will scatter off
internal flaws, making its path fairly visible.

The electromagnetic description of what is happening is
rather complicated but well worth examining at this point,
even 1f only superficially. Recall from Chapter 3 that the inci-
dent E-field will polarize the dielectric; that is, it will shift the
distribution of charges, thereby creating electric dipoles. The
field within the dielectric is thus altered by the inclusion of an
induced field, and one is led to introduce a new quantlty, the
dtsplacemenr D (see Appendix 1). In isotropic media D is
related to E by a scalar quantity, and the two are therefore
always parallel. In anisotropic crystals D and E are related by
a tensor and are not always parallel. If we now apply
Maxwell’s Equations to the problem of a wave moving
through such a medium, we find that the fields v1bratmg with-
in the wavefront are ] D and B and not, as before, E and B. The
propagation vector k which is normal to the surfaces of con-
stant phase is now perpendicular to D rather than E. In fact, D
E. and K are all coplanar. The ray ¢ direction corresponds to the
direction of the Poynting vector S = v%Ex B which is gen-
erally different from that of K. Because of the manner in which
the atoms are distributed, E and D will, however, be colinear
when they are both either parallel or perpendicular to the optic
axis.* This means that the o-wavelet will encounter an effec-
tively isotropic medium and thus be spherical, having S and K
colinear. In contrast, the e-wavelets will have S and k or
equivalently E and D, parallel only in directions along or nor-
mal to the optic axis. At all other points on the wavelet it is D

*In the oscillator model, the general case corresponds to the situation in
which E is not parallel to any of the spring directions. The field will drive
the charge, but its resultant motion will not be in the direction of E
because of the anisotropy of the binding forces. The charge will be dis-
placed most, for a given force component, in the direction of weakest
restraint. The induced field will thus not have the same orientation as E.
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Figure 8.23 Orientations of the E—, D, §-, and K-vectors.

that is tangent to the ellipsoid, and therefore it is always D that
ends up in the envelope or composite planar wavefront within
the crystal (Fig. 8.23).

8.4.2 Birefringent Crystals

Cubic crystals, such as sodium chloride (i.e., common salt),
have their atoms arranged in a relatively simple and highly
symmetric form. (There are four 3-fold symmetry axes, each
running from one corner to an opposite corner, unlike calcite,
which has one such axis.) Light emanating from a point source
within such a crystal will propagate uniformly in all directions
as a spherical wave. As with amorphous solids, there will be
no preferred directions in the material. It will have a single
index of refraction and be optically isotropic (see photo). In
that case all the springs in the oscillator model will evidently
be identical.

Crystals belonging to the hexagonal, tetragonal, and
trigonal systems have their atoms arranged so that light
propagating in some general direction will encounter
an asymmetric structure. Such substances are optically
anisotropic and birefringent. The optic axis corresponds to

Crystals of potassium chloride, calcium carbonate (calcite), and sodium
chloride (table salt). Only the calcite produces a double image. It's
because of this that calcite is said to be birefringent. (Photo by E.H.)

a direction about which the atoms are arranged symmetrically.
Crystals like these, for which there is only one such direction,
are known as uniaxial.

A point source of natural light embedded within one of
these specimens gives rise to spherical o-wavelets and ellip-
soidal e-wavelets. It is the orientation of the field with respect
to the optic axis that determines the speeds with which these
wavelets expand. The E)-ﬁeld of the o-wave is everywhere nor-
mal to the optic axis, so it moves at a speed v, in all directions.
Similarly, the e-wave has a speed v, only in the direction of
the optic axis (Fig. 8.22), along which it is always tangent to
the o-wave. Normal to this direction, Eis parallel to the optic
axis, and that portion of the wavelet expands at a speed v,
(Fig. 8.24). Uniaxial materials have two principal indices of
refraction, n, = ¢/v, and n, = ¢/v, (Problem 8.36) as indicat-
ed in Table 8.1.

The difference An = (n,—n,) is a measure of the birefrin-
gence, and it’s often called the birefringence. In calcite v, >
vy, (n.—n,) is —0.172, and it is negative uniaxial. In com-
parison, there are other crystals, such as quartz (crystallized
silicon dioxide) and ice, for which v, > v,. Consequently, the
ellipsoidal e-wavelets are enclosed within the spherical o-
wavelets, as shown in Fig. 8.25. (Quartz is optically active
and therefore actually a bit more complicated.) In that case,
(n, — n,) is positive, and the crystal is positive uniaxial.

The remaining crystallographic systems, namely
orthorhombic, monoclinic, and triclinic, have two optic axes
and are said to be biaxial. Such substances, for example, mica
[KH,AI;(Si04);], have three different principal indices of
refraction. Each set of springs in the oscillator model would
then be different. The birefringence of biaxial crystals is mea-
sured as the numerical difference between the largest and
smallest of these indices.
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Figure 8.24 Wavelets in a negative uniaxial crystal. The arrows and
dots represent the E-fields of the extraordinary and ordinary waves,
respectively. The E-field of the o-wave is everywhere perpendicular

to the optic axis.

8.4.3 Birefringent Polarizers

It will now be an easy matter, at least conceptually, to make
some sort of linear birefringent polarizer. Any number of
schemes for separating the o- and e-waves have been
employed, all of them relying on the fact that n, # n,,.

The most renowned birefringent polarizer was introduced
in 1828 by the Scottish physicist William Nicol (1768-1851).
The Nicol prism is now mainly of historical interest, having

TABLE 8.1 Refractive Indices of Some
Uniaxial Birefringent Crystals (Ao = 589.3 nm)

Crystal n, n,
Tourmaline 1.669 1.638
Calcite 1.6584 1.4864
Quartz 1.5443 1.5534
Sodium nitrate 1.5854 1.3369
Ice 1.309 1.313

Rutile (Ti0,) 2.616 2.903
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Figure 8.25

Wavelets in a positive uniaxial crystal. The arrows and
dots represent the Efields of the extraordinary and ordinary waves,
respectively. The E-field of the o-wave is everywhere perpendicular to
the optic axis.

long been superseded by other, more effective polarizers.
Putting it rather succinctly, the device is made by first grind-
ing and polishing the ends (from 71° to 68°; see Fig. 8.20) of a
suitably long, narrow calcite rhombohedron; after cutting the
rhomb diagonally, the two pieces are polished and cemented
back together with Canada balsam (Fig. 8.26). The balsam
cement is transparent and has an index of 1.55 almost midway
between n, and n,. The incident beam enters the “prism.” The
o- and e-rays are refracted; they separate and strike the balsam
layer. The critical angle at the calcite-balsam interface for the
o-ray is about 69° (Problem 8.38). The o-ray (entering within
a narrow cone of roughly 28°) will be totally internally reflect-
ed and thereafter absorbed by a layer of black paint on the
sides of the rhomb. The e-ray emerges laterally displaced but
otherwise essentially unscathed, at least in the optical region
of the spectrum. (Canada balsam absorbs in the ultraviolet.)

The Glan—Foucault polarizer (Fig. 8.27) is constructed of
nothing other than calcite, which is transparent from roughly
5000 nm in the infrared to about 230 nm in the ultraviolet. It
therefore can be used over a broad spectral range. The incom-
ing ray strikes the surface normally, and E can be resolved into
components that are either completely parallel or perpendicu-
lar to the optic axis. The two rays traverse the first calcite sec-
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Figure 8.26 The Nicol prism. The little flat on the blunt corner locates
the optic axis. (Photo by E.H.)

tion without any deviation. (We’ll come back to this point lat-
er on when we talk about retarders.) If the angle-of-incidence
on the calcite-air interface is 6, one need only arrange things
so that n, < 1/sin 6 < n,, in order for the o-ray, and not the e-
ray. to be totally internally reflected. If the two prisms are now

cemented together (glycerine or mineral oil are used in the
ultraviolet) and the interface angle is changed appropriately,
the device is known as a Glan—Thompson polarizer. Its field
of view is roughly 30°, in comparison to about 10° for the
Glan-Foucault, or Glan-Air, as it is often called. The latter,
however, has the advantage of being able to handle the con-
siderably higher power levels often encountered with lasers.
For example, whereas the maximum irradiance for a
Glan—-Thompson could be about 1 W /cm? (continuous wave
as opposed to pulsed), a typical Glan—Air might have an upper
limit of 100 W/cm? (continuous wave). The difference is due
to deterioration of the interface cement (and the absorbing
paint, if it’s used).

The Wollaston prism is a polarizing beamsplitter because it
passes both orthogonally polarized components. It can be
made of calcite or quartz in the form indicated in Fig. 8.28.
The two component rays separate at the diagonal interface.
There, the e-ray becomes an o-ray, changing its index accord-
ingly. In calcite n, < n,,, and the emerging o-ray is bent toward
the normal. Similarly, the o-ray, whose field is initially per-
pendicular to the optic axis, becomes an e-ray in the right-hand
section. This time, in calcite the e-ray is bent away from the
normal to the interface (see Problem 8.39). The deviation
angle between the two emerging beams is determined by the
prism’s wedge angle, 0. Prisms providing deviations ranging
from about 15° to roughly 45° are available commercially.
They can be purchased cemented (e.g., with castor oil or glyc-
erine) or not cemented at all (i.e., optically contacted), depend-
ing on the frequency and power requirements.

8.5 Scattering and Polarization

Sunlight streaming into the atmosphere from one direction is
scattered in all directions by the air molecules (see Section
4.2). Without an atmosphere, the daytime sky would be as
black as the void of space, a point well made in the Apollo
lunar photographs. You would then see only light that shone
directly at you. With an atmosphere, the red end of the spec-
trum is, for the most part, undeviated, whereas the blue or
high-frequency end is substantially scattered. This high-fre-
quency scattered light reaches the observer from many direc-
tions, making the entire sky appear bright and blue (Fig. 8.29).

The smoke rising from the end of a lighted cigarette is
made up of particles that are smaller than the wavelength of
light, making it appear blue when seen against a dark back-
ground. In contrast, exhaled smoke contains relatively large
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Figure 8.27 The Glan-Foucault prism.
(Photo by E.H.)

water droplets and appears white. Each droplet is larger than
the constituent wavelengths of light and thus contains so many
oscillators that it is able to sustain the ordinary processes of
reflection and refraction. These effects are not preferential to
any one frequency component in the incident white light.
The light reflected and refracted several times by a droplet
and then finally returned to the observer is therefore also
white. This accounts for the whiteness of small grains of salt
and sugar, fog, clouds, paper, powders, ground glass, and,
more ominously, the typical pallid, polluted city sky.
Particles that are approximately the size of a wavelength
(remember that atoms are roughly a fraction of a nanometer
across) scatter light in a very distinctive way. A large distribu-

[filt / -

tion of such equally sized particles can give rise to a whole %
range of transmitted colors. In 1883 the volcanic island Kraka-

toa, located in the Sunda Strait west of Java, blew apart in a Lol .
fantastic conflagration. Great quantities of fine volcanic dust | v,, . Calcﬂe _' .
were spewed high into the atmosphere and drifted over vast " 0
regions of the Earth. For a few years afterward the Sun and

Moon repeatedly appeared green or blue, and sunrises and

sunsets were abnormally colored. Figure 8.28 The Wollaston prism.
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A half-Earth hanging in the black Moon sky. (Photo courtesy of NASA)
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Figure 8.29 Scattering of sky light.

8.5.1 Polarization by Scattering

Imagine a linearly polarized plane wave incident on an air
molecule, as pictured in Fig. 8.30. The orientation of the elec-
tric field of the scattered radiation (i.e., E,) follows the dipole

Figure 8.30 Scattering of polarized light by a molecule.

pattern such that E:, the Poynting vector § and the oscillating
dipole are all coplanar (Fig. 3.31). The vibrations induced in
the atom are parallel to the E-field of the incoming lightwave
and so are perpendicular to the propagation direction. Observe
once again that the dipole does not radiate in the direction of
its axis. Now if the incident wave is unpolarized, it can be rep-
resented by two orthogonal, incoherent %-states, in which case
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Figure 8.31 Scattering of unpolarized light by a molecule.

the scattered light (Fig. 8.31) is equivalent to a superposition
of the conditions shown in Fig. 8.30, a and b. Evidently, the
scattered light in the forward direction is completely unpolar-
ized; off that axis it is partially polarized, becoming increas-
ingly more polarized as the angle increases. When the
direction of observation is normal to the primary beam, the
light is completely linearly polarized.

You can easily verify these conclusions with a piece of
Polaroid. Locate the Sun and then examine a region of the sky
atroughly 90° to the solar rays. That portion of the sky will be
partially polarized normal to the rays (see photo). It’s not
completely polarized mainly because of molecular
anisotropies, the presence of large particles in the air, and the
depolarizing effects of multiple scattering. The latter condition
can be illustrated by placing a piece of waxed paper between
crossed Polaroids (see photo). Because the light undergoes a
good deal of scattering and multiple reflections within the
waxed paper, a given oscillator may “see’ the superposition of
many essentially unrelated E-fields. The resulting emission is
almost completely depolarized.

As a final experiment, put a few drops of milk in a glass of
water and illuminate it (perpendicular to its axis) using a
bright flashlight. The solution will appear bluish white in scat-
tered light and orange in direct light, indicating that the opera-
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A pair of crossed polarizers. The upper polaroid is noticeably
darker than the lower one, indicating the partial polarization of sky
light. (Photo by E.H.)

A piece of waxed paper between crossed polarizers. (Photo by E.H.)

tive mechanism is Rayleigh Scattering. The scattered light will
also be partially polarized.

Using very much the same ideas, Charles Glover Barkla
(1877—-1944) in 1906 established the transverse wave nature of
X-ray radiation by showing that it could be polarized in certain
directions as a result of scattering off matter.
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8.6 Polarization by Reflection

One of the most common sources of polarized light is the
ubiquitous process of reflection from dielectric media. The
glare spread across a window pane, a sheet of paper, or a bald-
ing head, the sheen on the surface of a telephone, a billiard
ball, or a book jacket are all generally partially polarized.

The effect was first studied by Etienne Malus in 1808. The
Paris Academy had offered a prize for a mathematical theory
of double refraction, and Malus undertook a study of the prob-
lem. He was standing at the window of his house in the Rue
d’Enfer one evening, examining a calcite crystal. The Sun was
setting, and its image reflected toward him from the windows
of the Luxembourg Palace not far away. He held up the crys-
tal and looked through it at the Sun’s reflection. To his aston-
ishment, he saw one of the double images disappear as he
rotated the calcite. After the Sun had set, he continued to veri-
fy his observations into the night, using candlelight reflected
from the surfaces of water and glass.* The significance of
birefringence and the actual nature of polarized light were first
becoming clear. At that time no satisfactory explanation of
polarization existed within the context of the wave theory.
During the next 13 years the work of many people, principal-
ly Thomas Young and Augustin Fresnel, finally led to the rep-
resentation of light as some sort of transverse vibration. (Keep
in mind that all this predates the electromagnetic theory of
light by roughly 40 years.)

The electron-oscillator model provides a remarkably sim-
ple picture of what happens when light is polarized on reflec-
tion. Unfortunately, it’s not a complete description, since it
does not account for the behavior of magnetic nonconducting
materials.” Nonetheless, consider an incoming plane wave lin-
early polarized so that its E-field is perpendicular to the plane
of incidence (Fig. 8.32). The wave is refracted at the interface,
entering the medium at some transmission angle 6,. Its electric
field drives the bound electrons, in this case normal to the
plane-of-incidence, and they in turn reradiate. A portion of

“Try it with a candle flame and a piece of glass. Hold the glass at
6, = 56° for the most pronounced effect. At near glancing incidence
both of the images will be bright, and neither will vanish as you
rotate the crystal—Malus apparently lucked out at a good angle to
the palace window.

TW. T. Doyle, “Scattering Approach to Fresnel’s Equations and
Brewster's Law,” Am. J. Phys. 53, 463 (1985).

that reemitted energy appears in the form of a reflected wave.
It should be clear then from the geometry and the dipole radi-
ation pattern that both the reflected and refracted waves must
also be in P-states normal to the incident plane.” In contradis-
tinction, if the incoming E-field is in the incident plane, the
electron-oscillators near the surface will vibrate under the
influence of the refracted wave, as shown in Fig. 8.32b.
Observe that a rather interesting thing is happening to the
reflected wave. Its flux density is now relatively low because
the reflected ray direction makes a small angle 6 with the
dipole axis. If we could arrange things so that 8 = 0, or equiv-
alently 6, + 6, = 90°, the reflected wave would vanish entire-
ly. Under those circumstances, for an incoming unpolarized
wave made up of two incoherent orthogonal P-states, only the
component polarized normal to the incident plane and there-
fore parallel to the surface will be reflected. The particular
angle-of-incidence for which this situation occurs is designat-
ed by 6, and referred to as the polarization angle or Brew-
ster’s angle, whereupon 6, + 6, = 90°. Hence, from Snell’s
Law
n;sin 6, = n, sin 6,

and the fact that 8, = 90° — 6, it follows that
n; sin 6, = n, cos 0,

and tan 0, = n,/n; (8.25)
This is known as Brewster’s Law after the man who discov-
ered it empirically, Sir David Brewster (1781-1868), profes-
sor of physics at St. Andrews University and, of course,
inventor of the kaleidoscope.

When the incident beam is in air n; = 1, and if the trans-
mitting medium is glass, in which case n, = 1.5, the polariza-
tion angle is = 56°. Similarly, if an unpolarized beam strikes
the surface of a pond (n, = 1.33 for H,O) at an angle of 53_‘)’,
the reflected beam will be completely polarized with its E-
field perpendicular to the plane-of-incidence or, if you like,
parallel to the water’s surface (see photo on page 350). This
suggests a rather handy way to locate the transmission axis of
an unmarked polarizer; one just needs a piece of glass ora
pond.

*The angle of reflection is determined by the scattering array, as dis-
cussed in Section 10.2.7. The scattered wavelets in general combine
constructively in only one direction, yielding a reflected ray at an angle
equal to that of the incident ray.
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Figure 8.32 (a) A wave reflecting and refracting at an i
Brewster's Law. (c) The dipole radiation pattern. (d) The p
from a dielectric, such as glass, water, or plastic. At 6,
to the plane-ofincidence. The transmitted bea
incidence and weak in P-state light perpendic

The problem immediately encountered in utilizing this phe-
nomenon to construct an effective polarizer lies in the fact that
the reflected beam, although completely polarized, is weak,
and the transmitted beam, although strong, is only partially
polarized. One scheme, illustrated in Fig. 8.33, is often
referred to as a pile-of-plates polarizer. It was invented by
Dominique F. J. Arago in 1812. Devices of this kind can be
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(d)

Waves in the
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nterface. (b) Electron-oscillators and
olarization of light that occurs on reflection
the reflected beam is a %-state perpendicular
m is strong in @-state light parallel to the plane-of-

ular to the plane-of-ncidence—it's partially polarized.

fabricated with glass plates in the visible, silver chloride plates
in the infrared, and quartz or vycor in the ultraviolet. It’s an
easy matter to construct a crude arrangement of this sort with
a dozen or so microscope slides. (The beautiful colors that
may appear when the slides are in contact are discussed in the

next chapter.)
The beamsplitter cube uses the same idea to create two
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(a)

orthogonal linearly polarized beams that are conveniently sep-
arated by 90° (Fig. 8.34). The diagonal face of one of the two
prisms is coated with multiple layers of different transparent
dielectric films. Because there’s little or no absorption, the
device is well suited for laserbeam applications where you
would want a high damage threshold and low transmitted
wavefront distortion.

Figure 8.33 The pile-of-plates polarizer.

Light reflecting off a puddle is partially polarized.
(a) When viewed through a Polaroid filter whose
transmission axis is parallel to the ground, the
glare is passed and visible. (b) When the
Polaroid’s transmission axis is perpendicular to
the water's surface, most of the glare vanishes.
(Photo courtesy Martin Seymour.)
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Figure 8.34 A polarizing cube contains a mutilayer dielectric thin film
structure on its diagonal face. Reflection from that structure polarizes
the incident light, much as would a pile-of-plates.

8.6.1 An Application of the Fresnel Equations

In Section 4.6.2 we obtained a set of formulas known as the
Fresnel Equations, which describe the effects of an incoming
electromagnetic plane wave falling on the interface between
two different dielectric media. These equations relate the
reflected and transmitted field amplitudes to the incident
amplitude by way of the angles-oﬁ;incidence 6; and transmis-
sion 6,. For linear light having its E-field parallel to the plane-



of-incidence, we defined the amplitude reflection coefficient
as r; = [Ey,/Eq];, that is, the ratio of the reflected to incident
electric-field amplitudes. Similarly, when the electric field is
normal to the incident plane, we have r, = [E,,/E,],. The
corresponding irradiance ratio (the incident and reflected
beams have the same cross-sectional area) is known as the
reflectance, and since irradiance is proportional to the square
of the amplitude of the field,

Ry=ri=(Eo/En) and R, =ri=[Eo/En]}

Squaring the appropriate Fresnel Equations yields

tan®(6; — 0,)
=t 8.26
" tan(6; + 6,) (8.26)
sin? @;—6)
and =" (8.27)

sin? (6; + 6,)

Whereas R, can never be zero, R is indeed zero when the
denominator is infinite, that i&) when 6; + 6, = 90°. The
reflectance, for linear light with E parallel to the plane-of-inci-
dence, thereupon vanishes; E,, = 0 and the beam is complete-
ly transmitted. This is the essence of Brewster’s Law.

If the incoming light is unpolarized, we can represent it by
two now familiar orthogonal, incoherent, equal-amplitude %-
states. Incidentally, the fact that they are equal in amplitude
means that the amount of energy in one of these two polariza-
tion states is the same as that in the other (i.e., I;, = ;] =
1;/2), which is quite reasonable. Thus

I = Irﬂli/zlill =R\[;/2

and in the same way I,, = R,I;/2. The reflectance in natural
light, R = I,/ is therefore given by

Ly + 1y

R =
I;

=R+ Ry (8.28)
Figure 8.35 is a plot of Eqs. (8.26), (8.27), and (8.28) for the
particular case when n; = 1 and n, = 1.5. The middle curve,
which corresponds to incident natural light, shows that only
about 7.5% of the incoming light is reflected when 6; = 6,
The transmitted light is then evidently partially polarized.
When 6; # 6, both the transmitted and reflected waves are
partially polarized.
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Reflectance

Figure 8.35 Reflectance versus incident angle.

It is often desirable to make use of the concept of the
degree of polarization V, defined as

I

P

V=
I +1,

(8.29)

in which /1, and I, are the constituent flux densities of polar-
ized and “unpolarized” or natural light. For example, if I, = 4
W/m?and I, = 6 W/m?, then V = 40% and the beam is par-
tially polarized. With “unpolarized™ light I, = 0 and obvious-
ly V = 0, whereas at the opposite extreme, if /, = 0, V= 1 and
the light is completely polarized; thus 0 = V = |. One fre-
quently deals with partially polarized, linear, quasimonochro-
matic light. In that case, if we rotate an analyzer in the beam,
there will be an orientation at which the transmitted irradiance
is maximum (/,,,), and perpendicular to this, a direction

where it is minimum (/). Clearly I, = Inax — Imin, and so
V= Imax — Imin (8.30)
Imax + Imin '

Note that V is actually a property of the beam, which may be
partially or even completely polarized before encountering
any sort of polarizer.
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8.7 Retarders

We now consider a class of optical elements known as
retarders, which serve to change the polarization of an inci-
dent wave. In principle, the operation of a retarder is quite
simple. One of the two constituent coherent P-states is some-
how caused to have its phase lag behind that of the other by a
predetermined amount. Upon emerging from the retarder, the
relative phase of the two components is different than it was
initially, and thus the polarization state is different as well.
Once we have developed the concept of the retarder, it will be
possible to convert any given polarization state into any other
and in so doing create circular and elliptic polarizers as well.

8.7.1 Wave Plates and Rhombs

Recall that a plane monochromatic wave incident on a uniax-
ial crystal, such as calcite, is generally divided in two, emerg-
ing as an ordinary and an extraordinary beam. In contrast, we
can cut and polish a calcite crystal so that its optic axis will be
normal to both the front and back surfaces (Fi& 8.36). A nor-
mally incident plane wave can only have its E-field perpen-
dicular to the optic axis. The secondary spherical and ellip-
soidal wavelets will be tangent to each other in the direction
of the optic axis. The o- and e-waves, which are envelopes of
these wavelets, will be coincident, and a single undeflected
plane wave will pass through the crystal; there are no relative
phase shifts and no double images.*

Now suppose that the direction of the optic axis is arranged
to be parallel to the front and back surfaces, as shown in Fig.
8.37. If the E-field of an incident monochromatic plane wave
has components parallel and perpendicular to the optic axis,
two separate plane waves will propagate through the crystal.
Since v, > v, n, > n,, and the e-wave will move across the
specimen more rapidly than the o-wave. After traversing a
plate of thickness d, the resultant electromagnetic wave is the
superposition of the e- and o-waves, which now have a relative
phase difference of A¢. Keep in mind that these are harmonic
waves of the same frequency whose E-fields are orthogonal.

“If you have a calcite rhomb, find the blunt corner and orient the crystal
until you are looking along the direction of the optic axis through one of
the faces. The two images will converge until they completely overlap.

P 0 =Y
A Optic axis B

Optic
axis

Figure 8.36 A calcite plate cut perpendicular to the optic axis.

The relative optical path length difference is given by

A =d(n, — n,)) (8.31)

and since Ap = kgA, the phase difference, in radians, is

A(p = zjzd(lnn - nel) (832)
Ao

where A, as always, is the wavelength in vacuum. (The form

containing the absolute value of the index difference is the

most general statement.) The state of polarization of the

emergent light evidently depends on the amplitudes of the

incoming orthogonal field components and of course on Ag.

A
o-wave
e-wave
_ L E
%
=y
|
B l
Optic Optic
axis axis

Figure 8.37 A calcite plate cut parallel to the optic axis.



The Full-Wave Plate

If A is equal to 2, the relative retardation is one wave-
length; the e- and o-waves are back in-phase, and there is no
observable effect on the polarization of the incident mono-
chromatic beam. When the relative retardation Ag, which is
also known as the retardance, is 360° the device is called a
full-wave plate or full-wave retarder. (This does not mean
that d = A.) In general, the quantity |n, — n,| in Eq. (8.32)
changes little over the optical range, so that Ap varies effec-
tively as 1/A. Evidently, a full-wave plate can function only
in the manner discussed for a particular wavelength, and
retarders of this sort are thus said to be chromatic. If such a
device is placed at some arbitrary orientation between crossed
linear polarizers, all the light entering it (in this case let it be
white light) will be linear. Only the one wavelength that satis-
fies Eq. (8.32) will pass through the retarder unaffected, there-
after to be absorbed in the analyzer. All other wavelengths will
undergo some retardance and will accordingly emerge from
the wave plate as various forms of elliptical light. Some por-
tion of this light will proceed through the analyzer, finally
emerging as the complementary color to that which was extin-
guished. It is a common error to assume that a full-wave plate
behaves as if it were isotropic at all frequencies; it obviously
doesn’t.

Recall that in calcite, the wave whose E-field vibrations are
parallel to the optic axis travels fastest, that is, v, > v,. The
direction of the optic axis in a negative uniaxial retarder is
therefore often referred to as the fast axis, and the direction
perpendicular to it is the slow axis. For positive uniaxial crys-
tals, such as quartz, these principal axes are reversed, with the
slow axis corresponding to the optic axis.

The full-wave retarder is often used to eliminate inadver-
tent changes in the polarization state of light passing through
an optical system. For example, linear light reflected from a
metal-surfaced mirror will have phase shifts introduced that
cause it to emerge as elliptical light. This can be corrected by
passing the beam through a full-wave plate that has been tilted
slightly about either its fast or slow axis.

The Half-Wave Plate

A retardation plate that introduces a relative phase difference
of 7 radians or 180° between the o- and e-waves is known as
a half-wave plate or half-wave retarded. Suppose that the
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plane-of-vibration of an incoming beam of linear light makes
some arbitrary angle 6 with the fast axis, as shown in Fig.
8.38. In a negative material the e-wave will have a higher
speed (same v) and a longer wavelength than the o-wave.
When the waves emerge from the plate, there will be a relative
phase shift of Ay/2 (that is, 277/2 radians), with the effect that
E will have rotated through 26 (Fig. 8.39). In fact, half-wave
retarders are sometimes called polarization rotators for just
that reason. Going back to Fig. 8.7, it should be evident that a
half-wave plate will similarly flip elliptical light. In addition,
it will invert the handedness of circular or elliptical light,
changing right to left and vice versa.

As the e- and o-waves progress through any retardation
plate, their relative phase difference A¢ increases, and the
state of polarization of the wave therefore gradually changes
from one point in the plate to the next. Figure 8.7 can be envi-
sioned as a sampling of a few of these states at one instant in
time taken at different locations. Evidently, if the thickness of

Figure 8.38 A half-wave plate showing how a net phase shift accumu-
lates with the retarder.
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Figure 8.39 A half-wave plate rotates light initially linearly polarized at
an angle 6 through a total angle of 26. Here light was incident oscillating
in the first and third quadrants, and it emerged oscillating in the second
and fourth quadrants.

the material is such that
d(|n, — nJ) = 2m + 1HAe/2

where m = 0, 1, 2,..., it will function as a half-wave plate (A
=, 3, 5, etc.).

Although its behavior is simple to visualize, calcite is not
often used to make retardation plates. It is brittle and difficult
to handle in thin slices, but more than that, its birefringence,
the difference between n, and n,, is a bit too large for conve-
nience. On the other hand, quartz with its much smaller bire-
fringence is frequently used, but it has no natural cleavage
planes and must be cut, ground, and polished, making it rather
expensive. The biaxial crystal mica is used most often. Sever-
al forms of mica serve the purpose admirably, for example,
fluorophlogopite, biotite, or muscovite. The most commonly
occurring variety is the pale brown muscovite. It is very easi-
ly cleaved into strong, flexible, and exceedingly thin large-
arca sections. Moreover, its two principal axes are almost
exactly parallel to the cleavage planes. Along those axes the
indices are about 1.599 and 1.594 for sodium light, and
although these numbers vary slightly from one sample to the
next, their difference is fairly constant. The minimum thick-
ness of a mica half-wave plate is about 60 microns. Crystalline
quartz, single crystal magnesium fluoride (for the IR range
from 3000 nm to about 6000 nm), and cadmium sulfide (for
the IR range from 6000 nm to about 12,000 nm) are also wide-
ly used for wave plates.

Retarders are also made from sheets of polyvinyl alcohol
that have been stretched so as to align their long-chain organ-

ic molecules. Because of the evident anisotropy, electrons in
the material do not experience the same binding forces along
and perpendicular to the direction of these molecules. Sub-
stances of this sort are therefore permanently birefringent,
even though they are not crystalline.

A rather nice half-wave plate can be made by just attaching
a strip of old-fashioned glossy cellophane tape over the sur-
face of a microscope slide. (Not all varieties work—the best is
LePage’s “Transparent Tape.”) The fast axis, that is, the vibra-
tion direction of the faster of the two waves, corresponds to the
transverse direction across the tape’s width, and the slow axis
is along its length. During its manufacture, cellophane (which
is made from regenerated cellulose extracted from cotton or
wood pulp) is formed into sheets, and in the process its mole-
cules become aligned, leaving it birefringent. If you put your
half-wave plate between crossed linear polarizers, it will show
no effect when its principal axes coincide with those of the
polarizers. If, however, it is set at 45° with respect to the polar-
izer, the E-field emerging from the tape will be flipped 90°
and will be parallel to the transmission axis of the analyzer.
Light will pass through the region covered by the tape as if it
were a hole cut in the black background of the crossed polar-
izers (see photo). A piece of cellophane wrapping will gener-
ally also function as a half-wave plate. See if you can
determine the orientation of each of its principal axes using the
tape retarder and crossed Polaroids. (Notice the fine parallel
ridges on the sheet cellophane.)

A hand holding a piece of Scotch tape stuck to a microscope slide
between two crossed polaroids. (Photo by E.H.)



The Quarter-Wave Plate

The quarter-wave plate is an optical element that introduces
a relative phase shift of Ap = 7r/2 between the constituent
orthogonal o- and e-components of a wave. It follows once
again from Fig. 8.7 that a phase shift of 90° will convert linear
to elliptical light (or circular light) and vice versa. It should be
apparent that linear light incident parallel to either principal
axis will be unaffected by any sort of retardation plate. You
can’t have a relative phase difference without having two
components. With incident natural light, the two constituent
P-states are incoherent; that is, their relative phase difference
changes randomly and rapidly. The introduction of an addi-
tional constant phase shift by any form of retarder will still
result in a random phase difference and thus have no notice-
able effect. When linear light at 45° to either principal axis is
incident on a quarter-wave plate, its 0- and e-components have
equal amplitudes. Under these special circumstances, a 90°
phase shift converts the wave into circular light (Fig. 8.40).
Similarly, an incoming circular beam will emerge linearly
polarized.

Quarter-wave plates are also usually made of quartz, mica,
or organic polymeric plastic. In any case, the thickness of the
birefringent material must satisfy the expression

d(n, — n,) = (4m + 1)Aq/4

You can make a crude quarter-wave plate using household
plastic food wrap, the thin stretchy stuff that comes on rolls.
Like cellophane, it has ridges running in the long direction,
which coincides with a principal axis. Overlap about a half
dozen layers, being careful to keep the ridges parallel. Position
the plastic at 45° to the axes of a polarizer and examine it
through a rotating analyzer. Keep adding one layer at a time
until the irradiance stays roughly constant as the analyzer
turns; at that point you will have circular light and a quarter-
wave plate. This is easier said than done in white light, but it’s
well worth trying.

Commercial wave plates are generally designated by their
linear retardation, which might be, for example, 140 nm for a
quarter-wave plate. This simply means that the device has a 90°
retardance only for green light of wavelength 560 nm (i.e., 4 X
140). The linear retardation is usually not given quite that pre-
cisely; 140 = 20 nm is more realistic. The retardation of a wave
plate can be increased or decreased from its specified value by
tilting it somewhat. If the plate is rotated about its fast axis, the
retardation will increase, whereas a rotation about the slow axis
has the opposite effect. In this way a wave plate can be tuned to
a specific frequency in a region about its nominal value.
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Figure 8.40 A quarter-wave plate transforms light initially linearly
polarized at an angle 45° (oscillating in the first and third quadrants)
into left circular light (rotating counterclockwise looking toward

the source).

Retarders (Wave Plates)—Some General
Considerations

A retarder can be one of three general types: zero-order, multi-
ple-order, or compound zero-order. A zero-order retarder has
the minimum thickness necessary to produce the required phase
difference. For example, consider a quartz quarter-wave plate
with a birefringence of only 0.009 2 at 550 nm. Equation (8.32)
with A@ = 7/2 tells us that a zero-order quarter-wave retarder
will be only 15 wm thick, and therefore will be rather fragile and
difficult to fabricate. It does, however, have a large angular
field-of-view.

A multiple-order retarder would have a thickness that cor-
responded to a whole number of 27 phase shifts plus the desired
A, whether that’s 277, 77, or 77/2. These devices are easier to
make and less expensive, but they tend to be very sensitive to
wavelength, incident angle, and temperature, and have a nar-
row field-of-view.

By combining two multiple-order retarders whose retar-
dance difference yields the desired value of Ag, we arrive at
the compound zero-order wave plate. That's accomplished
by aligning the fast axis of one with the slow axis of the other.
This compensates for temperature variations that tend to can-
cel, but it, too, has a narrow field-of-view.

Birefringent polymers have a small birefringence and so
can conveniently be made into zero-order retarders. They have
a wide field-of-view and can be made with large apertures.
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Figure 8.41 The Fresnel rhomb.

The Fresnel Rhomb

We saw in Chapter 4 that the process of total internal reflec-
tion introduced a relative phase difference between the two
orthogonal field components. The components parallel and
perpendicular to the plane-of-incidence were shifted in phase
with respect to each other. In glass (n = 1.51) a shift of 45°
accompanies internal reflection at the particular incident angle
of 54.6° (Fig. 4.44¢). The Fresnel rhomb shown in Fig. 8.41
utilizes this effect by causing the beam to be internally reflect-
ed twice, thereby imparting a 90° relative phase shift to its
components. If the incoming plane wave is linearly polarized
at 45° to the plane-of-incidence, the field components [E;]; and
[E;], will initially be equal. After the first reflection, the wave
within the glass will be elliptically polarized. After the second

Figure 8.42 The Mooney rhomb.

reflection, it will be circular. Since the retardance is almost
independent of frequency over a large range, the rhomb is
essentially an achromatic 90° retarder. By combining two
rhombs end-to-end, we can produce Ao/2 retardation over a
broad wavelength band ( =2000 nm). The Mooney rhomb (n
= 1.65) shown in Fig. 8.42 is similar in principle, although its
operating characteristics are different in some respects.

8.7.2 Compensators and Variable Retarders

A compensator is an optical device that is capable of impress-
ing a controllable retardance on a wave. Unlike a wave plate
where A is fixed, the relative phase difference arising from a
compensator can be varied continuously. Of the many different
kinds of compensators, we shall consider only two of those that
are used most widely. The Babinet compensator, depicted in
Fig. 8.43, consists of two independent calcite, or more com-
monly quartz, wedges whose optic axes are indicated by the
lines and dots in the figure. A ray passing vertically downward
through the device at some arbitrary point will traverse a thick-
ness of d, in the upper wedge and d, in the lower one. The rel-
ative phase difference imparted to the wave by the first crystal
is 2md\(In, — n.|)/Ao, and that of the second crystal is
—2md,(|n, — n.|)/Ao. As in the Wollaston prism, which this
system closely resembles but which has larger angles and is
much thicker, the o0- and e-rays in the upper wedge become the
e- and o-rays, respectively, in the bottom wedge.

The compensator is thin (the wedge angle is typically about
2.5°), and thus the separation of the rays is negligible. The

Figure 8.43

The Babinet compensator.



total phase difference, or retardance, is then

27
A‘P = /\_(dl - d2)(|nu - na'l)
0

(8.33)
If the compensator is made of calcite, the e-wave leads the o-
wave in the upper wedge, and therefore if d| > d,, Ag corre-
sponds to the total angle by which the e-component leads the
o-component. The converse is true for a quartz compensator;
in other words, if d; > d,, Ag is the angle by which the o-
wave leads the e-wave. At the center, where d, = d>, the effect
of one wedge is exactly canceled by the other, and
A¢ = 0 for all wavelengths. The retardation will vary from
point to point over the surface, being constant in narrow
regions running the width of the compensator along which the
wedge thicknesses are themselves constant. If light enters by
way of a slit parallel to one of these regions and if we then
move either wedge horizontally with a micrometer screw, we
can get any desired A to emerge.

When the Babinet is positioned at 45° between crossed
polarizers, a series of parallel, equally spaced, dark extinction
fringes will appear across the width of the compensator. These
mark the positions where the device acts as if it was a full-
wave plate. In white light the fringes will be colored, with the
exception of the black central band (A¢ = 0). The retardance
of an unknown plate can be found by placing it on the com-
pensator and examining the fringe shift it produces. Because
the fringes are narrow and difficult to “read” electronically,
the Babinet has become less popular than it once was. It can be
modified to produce a uniform retardation over its surface by
merely rotating the top wedge 180° about the vertical, so that
its thin edge rests on the thin edge of the lower wedge. This
configuration will, however, slightly deviate the beam.

Another variation of the Babinet, which has the advantage
of producing a uniform retardance over its surface and no
beam deviation, is the Soleil compensator shown in Fig. 8.44.
Generally made of quartz (although MgF, and CdS are used in
the infrared), it consists of two wedges and one plane-parallel
slab whose optic axes are oriented as indicated. The quantity
d, corresponds to the total thickness of both wedges, which is
constant for any setting of the positioning micrometer screw.

8.8 Circular Polarizers

Earlier we concluded that linear light whose E-field is at 45°
to the principal axes of a quarter-wave plate will emerge from
that plate circularly polarized. Any series combination of an

8.8 Circular Polarizers 357

Figure 8.44 The Soleil compensator.

appropriately oriented linear polarizer and a 90° retarder will
therefore perform as a circular polarizer. The two elements
function completely independently, and whereas one might be
birefringent, the other could be of the reflection type. The
handedness of the emergent circular light depends on whether
the transmission axis of the linear polarizer is at +45° or —45°
to the fast axis of the retarder. Either circular state, £ or %,
can be generated quite easily. In fact, if the linear polarizer is
situated between two retarders, one oriented at +45° and the
other at —45°, the combination will be “ambidextrous.” In
short, it will yield an %-state for light entering from one side
and an Z-state when the input is on the other side.

CP-HN is the commercial designation for a popular one-
piece circular polarizer. It is a laminate of an HN Polaroid and
a stretched polyvinyl alcohol 90° retarder. The input side of
such an arrangement is evidently the face of the linear polariz-
er. If the beam is incident on the output side (i.e., on the
retarder), it will thereafter pass through the H-sheet and can
only emerge linearly polarized.

A circular polarizer can be used as an analyzer to determine
the handedness of a wave that is already known to be circular.
To see how this might be done, imagine that we have the four
elements labeled A, B, C, and D in Fig. 8.45. The first two, A
and B, taken together form a circular polarizer, as do C and D.
The precise handedness of these polarizers is unimportant
now, as long as they are both the same, which is tantamount to
saying that the fast axes of the retarders are parallel. Linear
light coming from A receives a 90° retardance from B, at
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Figure 8.45 Two linear polarizers and two quarter-wave plates.

which point it is circular. As it passes through C, another 90°
retardance is added on, resulting once more in a linearly polar-
ized wave. In effect, B and C together form a half-wave plate,
which merely flips the linear light from A through a spatial
angle of 20, in this case 90°. Since the linear wave from C is
parallel to the transmission axis of D, it passes through it and
out of the system.

In this simple process we’ve actually proved something
that is rather subtle. If the circular polarizers A + Band C + D
are both left-handed, we’ve shown that left-circular light
entering a left-circular polarizer from the output side will be
transmitted. Furthermore, it should be apparent, at least after
some thought, that right-circular light will produce a P-state
perpendicular to the transmission axis of D and so will be
absorbed. The converse is true as well; that is, of the two cir-
cular forms, only light in an R-state will pass through a right-
circular polarizer having entered from the output side.

A crumpled piece of
cellophane placed between
two crossed Polaroids
shows a rainbow of colors.
Depending on its thickness
and the frequency of the
light, the cellophane
rotates the Efield by differ-
ent amounts. Rotating
either one of the Polaroids
will shift the colors to therr
complements.

8.9 Polarization of Polychromatic
Light

8.9.1 Bandwidth and Coherence Time
of a Polychromatic Wave

By its very nature purely monochromatic light, which is of
course not a physical reality, must be polarized. The two
orthogonal components of such a wave have the same fre-
quency, and each has a constant amplitude. If the amplitude of
either sinusoidal component varied, it would be equivalent to
the presence of other additional frequencies in the Fourier-
analyzed spectrum. Moreover, the two components have a
constant relative phase difference; that is, they are coherent. A
monochromatic disturbance is an infinite wavetrain whose
properties have been fixed for all time; whether it is in an %-,
Z-, P-, or E-state, the wave is completely polarized.

Actual light sources are polychromatic; they emit radiant
energy having a range of frequencies. Let’s now examine what
happens on a submicroscopic scale, paying particular attention
to the polarization state of the emitted wave. Envision an elec-
tron-oscillator that has been excited into vibration (possibly by
a collision) and thereupon radiates. Depending on its precise
motion, the oscillator will emit some form of polarized light.

As in Section 7.4.3, we picture the radiant energy from a
single atom as a wavetrain having a finite spatial extent Al.
Assume for the moment that its polarization state is essential-
ly constant for a duration of the order of the coherence time
At. (which, as you recall, corresponds to the temporal extent
of the wavetrain, i.e., Al./c). A typical source generally con-
sists of a large collection of such radiating atoms, which can
be envisioned as oscillating with different phases at some
dominant frequency v. Suppose then that we examine the light
coming from a very small region of the source, such that the
emitted rays arriving at a point of observation are essentially
parallel. During a time that is short in comparison with the
average coherence time, the amplitudes and phases of the
wavetrains from the individual atoms will be essentially con-
stant. This means that if we were to look toward the source in
some direction, we would, at least for an instant, “see” a
coherent superposition of the waves emitted in that direction.
We would “see” a resultant wave having a given polarization
state. That state would only last for an interval less than the
coherence time before it changed, but even so it would corre-
spond to a great many oscillations at the frequency v. Clearly,
if the bandwidth Av is broad, the coherence time (Az. = 1/Av)



will be small, and any polarization state will be short-lived.
Evidently the concepts of polarization and coherence are
related in a fundamental way.

Now consider a wave whose bandwidth is very small in
comparison with its mean frequency, a quasimonochromatic
wave. It can be represented by two orthogonal harmonic %-
states, as in Egs. (8.1) and (8.2), but here the amplitudes and
initial phase angles are functions of time. Furthermore, the fre-
quency and propagation number correspond to the mean values
of the spectrum present in the wave, namely, & and k. Thus

—>

E.(t) = iEOX(t) cos [kz — @t + &(1)] (8.34a)

and E, (1) = JEo,(1) cos [kz — @t + e(1)]  (8.34b)
The polarization state, and accordingly Eq (1), Eq.(t), € (1),
and £,(t), will vary slowly, remaining essentially constant over
a large number of oscillations. Keep in mind that the narrow
bandwidth implies a relatively large coherence time. If we
watch the wave during a much longer interval, the amplitudes
and phase angles will vary somehow, either independently or
in some correlated fashion. If the variations are completely
uncorrelated, the polarization state will remain constant only
for an interval that is small compared to the coherence time. In
other words, the ellipse describing the polarization state may
change shape, orientation, and handedness. Since, speaking
practically, no existing detector could discern any one partic-
ular state lasting for so short a time, we would conclude that
the wave was unpolarized.

Antithetically, if the ratio Eq,(t)/Eq,(t) was constant even
though both terms varied, and if € = ¢,(1) — &,(t) was constant
as well, the wave would be polarized. Here the necessity for
correlation among these different functions is obvious. Yet we
can actually impress these conditions on the wave by merely
passing it through a polarizer, thereby removing any undesired
constituents. The time interval over which the wave thereafter
maintains its polarization state is no longer dependent on the
bandwidth because the wave’s components have been appro-
priately correlated. The light could be polychromatic (even
white), yet completely polarized. It will behave very much like
the idealized monochromatic waves treated in Section 8.1.

Between the two extremes of completely polarized and
unpolarized light is the condition of partial polarization. In
fact, it can be shown that any quasimonochromatic wave can
be represented as the sum of a polarized and an unpolarized
wave, where the two are independent and either may be zero.
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8.9.2 Interference Colors

Insert a crumpled sheet of cellophane between two Polaroids
illuminated by white light. Alternatively, take an ordinary
plastic bag (polyethylene), which shows nothing special
between crossed Polaroids, and stretch it. That will align its
molecules, making it birefringent. Now crumple it up and
examine it again. The resulting pattern will be a profusion of
multicolored regions, which vary in hue as either Polaroid
rotates. These interference colors arise from the wavelength
dependence of the retardation. The usual variegated nature of
the patterns is due to local variations in thickness, birefrin-
gence, or both.

The appearance of interference colors is commonplace and
can easily be observed in any number of substances. For
example, the effect can be seen with a piece of multilayered
mica, a chip of ice, a stretched plastic bag, or finely crushed
particles of an ordinary white (quartz) pebble. To appreciate
how the phenomenon occurs, examine Fig. 8.46. A narrow
beam of monochromatic linear light is schematically shown
passing through some small region of a birefringent plate 2.
Over that area the birefringence and thickness are both
assumed to be constant. The transmitted light is generally
elliptical. Equivalently, envision the light emerging from 2, as
composed of two orthogonal linear waves (i.e., the x- and y-
components of the total fi)-field), which have a relative phase
difference A¢, determined by Eq. (8.32). Only the compo-
nents of these two disturbances, which are in the direction of
the transmission axis of the analyzer, will pass through it and
on to the observer.

Now these components, which also have a phase difference
of A, are coplanar and can thus interfere. When Ag = 7, 3,

Figure 8.46 The origin of interference colors.
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Sar,..., they are completely out-of-phase and tend to cancel
each other. When Ag = 0, 2, 4r,..., the waves are in-phase
and reinforce each other. Suppose then that the retardance
arising at some point P, on 3 for blue light (A\¢ = 435 nm) is
47r. In that case blue will be strongly transmitted.
It follows from Eq. (8.32) that AqA¢ = 2md(|n, — n,|) is
essentially a constant determined by the thickness and the
birefringence. At the point in question, therefore, AgA¢p =
17407 for all wavelengths. If we now change to incident yel-
low light (Aq = 580 nm), A¢ = 37 and the light from P, is
completely canceled. Under white-light illumination that par-
ticular point on 3, will seem as if it had removed yellow com-
pletely, passing on all the other colors, but none as strongly as
blue. Another way of saying this is that the blue light emerg-
ing from the region about P, is linear (A¢ = 4) and parallel
to the analyzer’s transmission axis. In contrast, the yellow
light is linear (A¢ = 37) and along the extinction axis; the
other colors are elliptical. The region about P, behaves like a
half-wave plate for yellow and full-wave plate for blue. If the
analyzer were rotated 90°, the yellow would be transmitted,
and the blue extinguished.

By definition two colors are said to be complementary
when their combination yields white light. Thus when the ana-
lyzer is rotated through 90° it will alternately transmit or
absorb complementary colors. In much the same way there
might be a point P, somewhere else on 2, where Ap = 477 for
red (Ag = 650 nm). Then, AgA¢p = 26007, whereupon bluish-
green light (Ao = 520 nm) will have a retardance of 57 and be
extinguished. Clearly, if the retardance varies from one region
to the next over the specimen, so too will the color of the light
transmitted by the analyzer.

8.10 Optical Activity

The manner in which light interacts with material substances
can yield a great deal of valuable information about their mol-
ecular structures. The process to be examined next, although
of specific interest in the study of Optics, has had and is con-
tinuing to have far-reaching effects in the sciences of chem-
istry and biology.

In 1811 the French physicist Dominique F. J. Arago first
observed the rather fascinating phenomenon now known as
optical activity. It was then that he discovered that the plane
of vibration of a beam of linear light underwent a continuous
rotation as it propagated along the optic axis of a quartz plate
(Fig. 8.47). At about the same time Jean Baptiste Biot
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Figure 8.47 Optical activity displayed by quartz.

(1774-1862) saw this same effect while using both the
vaporous and liquid forms of various natural substances like
turpentine. Any material that causes the E-field of an incident
linear plane wave to appear to rotate is said to be optically
active. Moreover, as Biot found, one must distinguish between
right- and left-handed rotation. If while looking in the direc-
tion of the source, the plane-of-vibration appears to have
revolved clockwise, the substance is referred to as dextrorota-
tory, or d-rotatog' (from the Latin dextro, meaning right).
Alternatively, if E appears to have been displaced counter-
clockwise, the material is levorotatory, or [-rotatory (from the
Latin levo, meaning left).

In 1822 the English astronomer Sir John F. W. Herschel
(1792-1871) recognized that d-rotatory and /-rotatory behav-
ior in quartz actually corresponded to two different crystallo-
graphic structures. Although the molecules are identical
(8i0,), crystal quartz can be either right- or left-handed,
depending on the arrangement of those molecules. As shown
in Fig. 8.48, the external appearances of these two forms are
the same in all respects, except that one is the mirror image of
the other; they are said to be enantiomorphs of each other. All
transparent enantiomorphic substances are optically active.
Furthermore, molten quartz and fused quartz, neither of which
is crystalline, are not optically active. Evidently, in quartz
optical activity is associated with the structural distribution of
the molecules as a whole. There are many substances, both
organic and inorganic (e.g., benzil and NaBrOs, respectively),
which, like quartz, exhibit optical activity only in crystal form.
In contrast, many naturally occurring organic compounds,



Optic axis

A s
N

(b) Left

Figure 8.48 Right- and left-handed quartz crystals.

such as sugar, tartaric acid, and turpentine, are optically active
in solution or in the liquid state. Here the rotatory power, as it
is often referred to, is evidently an attribute of the individual
molecules. There are also more complicated substances for
which optical activity is associated with both the molecules
themselves and their arrangement within the various crystals.
An example is rubidium tartrate. A d-rotatory solution of that
compound will change to /-rotatory when crystallized.

In 1825 Fresnel, without addressing the actual mechanism
involved, proposed a simple phenomenological description of
optical activity. Since the incident linear wave can be repre-
sented as a superposition of - and F-states, he suggested that
these two forms of circular light propagate at different speeds.
An active material shows circular birefringence; that is, it pos-
sesses two indices of refraction, one for %-states (n5) and one
for #-states (ng). In traversing an optically active specimen,
the two circular waves would get out-of-phase, and the resul-
tant linear wave would appear to have rotated. We can see how
this is possible analytically by returning to Eqs. (8.8) and (8.9),

8.10 Optical Activity 361

which described monochromatic right- and left-circular light
propagating in the z-direction. It was seen in Eq. (8.10) that the
sum of these two waves is indeed linearly polarized. We now
alter these expressions slightly in order to remove the factor of
two in the amplitude of Eq. (8.10), in which case

Eyf = % [ﬁ cos (kpz — wt) + isin (kyz — wn)] (8.352)
and

= E() 2 ‘.

Ey= By [i cos (kyz — wt) — jsin (kyz — wf)] (8.35b)

represent the right- and left-handed constituent waves. Since w
is constant, kg = k_Qn,y, z_l)nd kg»_)= kon 4. The resultant distur-
bance is given by E = E, + E , and after a bit of trigono-
metric manipulation, it becomes

E= Eycos [(kgp + kp)z/2 — wt][ﬁ cos (kp — k.,)z/2
+ ] sin (kyp — ky)z/2] (8.36)

At the position where the wave enters the medium (2 = 0) it is
linearly polarized along the x-axis, as shown in Fig. 8.49;
that is,

E) = E(ﬁ cos wt (8.37)
Notice that at any point along the path, the two components
have the same time dependence and are therefore in-phase.
This just means that anywhere along the z-axis the resultant is
linearly polarized (Fig. 8.50), although its orientation is cer-
tainly a function of z. Moreover, if n , > n 4 or equivalently k ,
>k, E will rotate counterclockwise, whereas if k , > k , the
rotation is clockwise (looking tg)ward the source). Traditional-
ly, the angle B through which E rotates is defined as positive

Figure 8.49 The
superposition of an
#-and an ¥-state
atz=0.

E.?

(c)
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Eg

when it is clockwise. Keeping this sign convention in mind, it
should be clear from Eq. (8.36) that the field at point 2 makes
an angle of B = —(k» — ky)z/2 with respect to its original
orientation. If the medium has a thickness d, the angle through
which the plane-of-vibration rotates is then

Trd
B=—(y—ny (8.38)

Ao

where ny > ny, is d-rotatory and ny, > ny is [-rotatory
(Fig. 8.51).
Fresnel was actually able to separate the constituent R-

E, — (kgd — 1)

Figure 8.51 The superposition of an %#- and an #-state at z = d
(k, >k, A, <Ay andv,<v,.

Figure 8.50 The
superposition of an

© - and an Z-state at
7 =7 (kg > Kg).

and Z-states of a linear beam using the composite prism of
Fig. 8.52. It consists of a number of right- and left-handed
quartz segments cut with their optic axes as shown. The %-
state propagates more rapidly in the first prism than in the sec-
ond and is thus refracted toward the normal to the oblique
boundary. The opposite is true for the #-state, and the two cir-
cular waves increase in angular separation at each interface.

In sodium light the specific rotatory power, which is defined
as B/d, is found to be 21.7°/mm for quartz. It follows that |n
— ny| = 7.1 X 10~ for light propagating along the optic axis.
In that particular direction ordinary double refraction vanishes.
However, with the incident light propagating normal to the
optic axis (as is frequently the case in polarizing prisms, wave
plates, and compensators), quartz behaves like any optically
inactive, positive, uniaxial crystal. There are other birefringent,
optically active crystals, both uniaxial and biaxial, such as
cinnabar, HgS (n, = 2.854, n, = 3.201), which has a rotatory
power of 32.5°/mm. In contrast, the substance NaClOj is opti-
cally active (3.1°/mm) but not birefringent. The rotatory pow-
er of liquids, in comparison, is so relatively small that it is
usually specified in terms of 10-cm path lengths; for example,
in the case of turpentine (C,qHp) it is only —37°/10 cm (10°C
with Aqg = 589.3 nm). The rotatory power of solutions varies
with the concentration. This fact is particularly helpful in deter-
mining, for example, the amount of sugar present in a urine
sample or a commercial sugar syrup.

You can observe optical activity rather easily using color-
less corn syrup, the kind available in any grocery store. You
won't need much of it, since 8/d is roughly +30°/inch. Put
about an inch of syrup in a glass container between crossed
Polaroids and illuminate it with a flashlight. The beautiful col-
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Figure 8.52 The Fresnel composite prism.

ors that appear as the analyzer is rotated arise from the fact that
B is a function of A, an effect known as roratory dispersion.
Using a filter to get roughly monochromatic light, you can
readily determine the rotatory power of the syrup.*

The first great scientific contribution made by Louis Pas-
teur (1822-1895) came in 1848 and was associated with his
doctoral research. He showed that racemic acid, which is an
optically inactive form of tartaric acid, is actually composed of
a mixture containing equal quantities of right- and left-handed
constituents. Substances of this sort, which have the same
molecular formulas but differ somehow in structure, are called
isomers. He was able to crystallize racemic acid and then sep-
arate the two different types of mirror-image crystals (enan-
tiomorphs) that resulted. When dissolved separately in water,
they formed d-rotatory and /-rotatory solutions. This implied
the existence of molecules that, although chemically the same,
were themselves mirror images of each other; such molecules
are now known as optical stereoisomers. These ideas were the
basis for the development of the stereochemistry of organic
and inorganic compounds, where one is concerned with the
three-dimensional spatial distribution of atoms within a given
molecule.

8.10.1 A Useful Model

The phenomenon of optical activity is extremely complicated,
and although it can be treated in terms of classical Electro-
magnetic Theory, it actually requires a quantum-mechanical

*A gelatin filter works well, but a piece of colored cellophane will also
do nicely. Just remember that the cellophane will act as a wave plate
(see Section 8.7.1), so don't put it between the polaroids unless you
align its principal axes appropriately.
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solution.” Despite this, we will consider a simplified model,
which will yield a qualitative, yet plausible, description of the
process. Recall that we represented an optically isotropic
medium by a homogeneous distribution of isotropic electron-
oscillators that vibrated parallel to the E-field of an incident
wave. An optically anisotropic medium was similarly depict-
ed as a distribution of anisotropic oscillators that vibrated at
some angle to the driving E-field. We now imagine that the
electrons in optically active substances are constrained to
move along twisting paths that, for simplicity, are assumed to
be helical. Such a molecule is pictured much as if it were a
conducting helix. The silicon and oxygen atoms in a quartz
crystal are known to be arranged in either right- or left-handed
spirals about the optic axis, as indicated in Fig. 8.53. In the
present representation this crystal would correspond to a par-
allel array of helices. In comparison, an active sugar solution
would be analogous to a distribution of randomly oriented
helices, each having the same handedness.*

In quartz we might anticipate that the incoming wave
would interact differently with the specimen, depending on
whether it “saw” right- or left-handed helices. Thus we could
expect different indices for the %- and #-components of the
wave. The detailed treatment of the process that leads to cir-
cular birefringence in crystals is by no means simple, but at
least the necessary asymmetry is evident. How, then, can a
random array of helices, corresponding to a solution, produce
optical activity? Let us examine one such molecule in this sim-
plified representation, for example, one whose axis happens to
be parallel to the harmonic E-field of the electromagnetic
wave. That field will drive charges up and down along the
length of the molecule, effectively producing a time-varying
electric dipole moment /£ (1), parallel to the axis. In addition,

"The review article “Optical Activity and Molecular Dissymmetry,” by S.
F. Mason, Contemp. Phys. 9, 239 (1968), contains a fairly extensive list
of references for further reading.

*|n addition to these solid and liquid states, there is a third classification
of substances, which is useful because of its remarkable optical proper-
ties. It is known as the mesomorphic or liquid crystal state. Liquid crys-
tals are organic compounds that can flow and yet maintain their charac-
teristic molecular orientations. In particular, cholesteric liquid crystals
have a helical structure and therefore exhibit extremely large rotatory
powers, of the order of 40000°/mm. The pitch of the screw-like molec-
ular arrangement is considerably smaller than that of quartz.
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we now have a current associated with the spiraling motion of
the electrons. This in turn generates an oscillating magnetic
dipole moment »(t), which is also along the helix axis (Fig.
8.54). In contrast, if the molecule was parallel to the B-field of
the wave, there would be a time-varying flux and thus an
induced electron current circulating around the molecule. This
would again yield oscillating axial electric and magnetic
dipole moments. In either case £(t) and m(t) will be parallel
or antiparallel to each other, depending on the sense of the
particular molecular helix. Clearly, energy has been removed
from the field, and both oscillating dipoles will scatter (i.e.,
reradiate) electromagnetic waves. The electric field E)p emitted
in a given direction by an electric dipole is perpendicular to
the electric field E)m emitted by a magnetic dipole. The sum of
these, which is the resultant field E)_‘ scattered by a helix, will
not be parallel to the incident field E, along the direction of
propagation. (The same is of course true for the magnetic
fields.) The plane-of-vibration of the resultant transmitted
light (E)S + E;) will thus be rotated in a direction determined
by the sense of the helix. The amount of the rotation will vary
with the orientation of each molecule, but it will always be in
the same direction for helices of the same sense.

Although this discussion of optically active molecules as
helical conductors is admittedly superficial, the analogy is
well worth keeping in mind. In fact, if we direct a linear 3-cm
microwave beam onto a box filled with a large number of
identical copper helices (e.g., | cm long by 0.5 cm in diameter
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Figure 8.54 The radiation from helical molecules.




and insulated from each other), the transmitted wave will
undergo a rotation of its plane-of-vibration.*

8.10.2 Optically Active Biological
Substances

Among the most fascinating observations associated with
optical activity are those in biology. Whenever organic mole-
cules are synthesized in the laboratory, an equal number of d-
and /-isomers are produced, with the effect that the compound
is optically inactive. One might then expect that if they exist at
all, equal amounts of d- and [-optical stereoisomers will be
found in natural organic substances. This is by no means the case.
Natural sugar (sucrose, C;,H,,0,;), no matter where it is
grown, whether extracted from sugar cane or sugar beets, is
always d-rotatory. Moreover, the simple sugar dextrose or d-
glucose (CgH,,0¢), which as its name implies is d-rotatory, is
the most important carbohydrate in human metabolism. Evi-
dently, living things can somehow distinguish between optical
isomers.

All proteins are fabricated of compounds known as amino
acids. These in turn are combinations of carbon, hydrogen,
oxygen, and nitrogen. There are twenty-odd amino acids, and
all of them (with the exception of the simplest one, glycine,
which is not enantiomorphic) are generally /-rotatory. This
means that if we break up a protein molecule, whether it
comes from an egg or an eggplant, a beetle or a Beatle, the
constituent amino acids will be /-rotatory. One important
exception is the group of antibiotics, such as penicillin, which
do contain some dextro amino acids. In fact, this may well
account for the toxic effect penicillin has on bacteria.

It is intriguing to speculate about the possible origins of life
on this and other planets. For example, did life on Earth origi-
nally consist of both mirror-image forms? Five amino acids
were found in a meteorite that fell in Victoria, Australia, on
September 28, 1969, and analysis has revealed the existence of
roughly equal amounts of the optically right- and left-handed
forms. This is in marked contrast to the overwhelming pre-
dominance of the left-handed form found in terrestrial rocks.
The implications are many and marvelous. "

*|. Tinoco and M. P. Freeman, “The Optical Activity of Oriented Copper
Helices,” J. Phys. Chem. 61, 1196 (1957).

'See Physics Today, Feb. 1971, p. 17, for additional discussion and ref-
erences for further reading.
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8.11 Induced Optical Effects—
Optical Modulators

A number of different physical effects involving polarized
light all share the single common feature of somehow being
externally induced. In these instances, one exerts an external
influence (e.g., a mechanical force, a magnetic or electric
field) on the optical medium, thereby changing the manner in
which it transmits light.

8.11.1 Photoelasticity

In 1816 Sir David Brewster discovered that normally trans-
parent isotropic substances could be made optically anisotrop-
ic by the application of mechanical stress. The phenomenon is
known as mechanical birefringence, photoelasticity, or stress
birefringence. Under compression or tension, the material
takes on the properties of a negative or positive uniaxial crys-
tal, respectively. In either case, the effective optic axis is in the
direction of the stress, and the induced birefringence is pro-
portional to the stress. If the stress is not uniform over the sam-
ple, neither is the birefringence or the retardance imposed on a
transmitted wave [Eq. (8.32)].

Photoelasticity serves as the basis of a technique for study-
ing the stresses in both transparent and opaque mechanical
structures (see photo). Improperly annealed or carelessly
mounted glass, whether serving as an automobile windshield
or a telescope lens, will develop internal stresses that can eas-
ily be detected. Information concerning the surface strain on
opaque objects can be obtained by bonding photoelastic coat-

A clear plastic triangle between polaroids. (Photo by E. H.)
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ings to the parts under study. More commonly, a transparent
scale model of the part is made out of a material optically sen-
sitive to stress, such as epoxy, glyptol, or modified polyester
resins. The model is then subjected to the forces that the actu-
al component would experience in use. Since the birefringence
varies from point to point over the surface of the model, when
it is placed between crossed polarizers, a complicated varie-
gated fringe pattern will reveal the internal stresses. Examine
almost any piece of clear plastic or even a block of unflavored
gelatin between two Polaroids; try stressing it further and
watch the pattern change accordingly (see photos).

The retardance at any point on the sample is proportional to
the principal stress difference; that is, (o — 0,), where the
sigmas are the orthogonal principal stresses. For example, if
the sample were a plate under vertical tension, o, would be the
maximum principal stress in the vertical direction and o,
would be the minimum principal stress, in this case zero, hor-
izontally. In more complicated situations, the principal stress-
es, as well as their differences, will vary from one region to the
next. Under white-light illumination, the loci of all points on
the specimen for which (o, — 0,) is constant are known as
isochromatic regions, and each such region corresponds to a
particular color. Superimposed on these colored fringes will
be a separate system of black bands. At any point where the E-
field of the incident linear light is parallel to either local prin-
cipal stress axis, the wave will pass through the sample
unaffected, regardless of wavelength. With crossed polarizers,

(a)

that light will be absorbed by the analyzer, yielding a black
region known as an isoclinic band (Problem 8.49). In addition
to being beautiful to look at, the fringes also provide both a
qualitative map of the stress pattern and a basis for quantita-
tive calculations.

8.11.2 The Faraday Effect

Michael Faraday in 1845 discovered that the manner in which
light propagated through a material medium could be influ-
enced by the application of an external magnetic field. In par-
ticular, he found that the plane-of-vibration of linear light
incident on a piece of glass rotated when a strong magnetic
field was applied in the propagation direction. The Faraday
Effect was one of the earliest indications of the interrelation-
ship between electromagnetism and light. Although it is remi-
niscent of optical activity, there is an important distinction.

The angle B (measured in minutes of arc) through which
the plane-of-vibration rotates is given by the empirically
determined expression

B = VBd (8.39)

where B is the static magnetic flux density (usually in gauss),
d is the length of medium traversed (in cm), and 7"is a factor
of proportionality known as the Verdet constant. The Verdet
constant for a particular medium varies with both frequency

(b)

(a) A permanently stressed piece of clear plastic between crossed Polaroids. (b) The fringe pat-

tern changes with the application of a force. (Photo by EH.)



(dropping off rapidly as v decreases) and temperature. It is
roughly of the order of 10> min of arc gauss ' cm ™' for gas-
es and 102 min of arc gauss ' cm ™! for solids and liquids
(see Table 8.2). You can get a better feeling for the meaning of
these numbers by imagining, for example, a 1-cm-long sample
of H,0 in the moderately large field of 10* gauss. (The Earth’s
field is about one half gauss.) In that particular case, a rotation
of 2° 11’ would result since 7" = 0.0131.

By convention, a positive Verdet constant corresponds to a
(diamagnetic) material for which the Faraday Effect is l-rota-
tory when the light moves parallel to the applied ﬁ-field and
d-rotatory when it propagates antiparallel to B. No such
reversal of handedness occurs in the case of natural optical
activity. For a convenient mnemonic, imagine the B-field to be
generated by a solenoidal coil wound about the sample. The
plane-of-vibration, when 7" is positive, rotates in the same
direction as the current in the coil, regardless of the beam’s
propagation direction along its axis. Consequently, the effect
can be amplified by reflecting the light back and forth a few
times through the sample.

The theoretical treatment of the Faraday Effect involves the
quantum-mechanical theory of dispersion, including the
effects of B on the atomic or molecular energy levels. It will
suffice here merely to outline the limited classical argument
for nonmagnetic materials.

Suppose the incident light to be circular and monochromat-
ic. An elastically bound electron will take on a steady-state cir-
cular orbit being driven by the rotating E-field of the wave.
(The effect of the wave’s B-field is negligible.) The introduc-
tion of a large constant applied magnetic field perpendicular to

TABLE 8.2 Verdet Constants for Some Selected
Substances

Material Temperature (°C) V' (min of arc
gauss 'cm ')
Light flint glass 18 0.0317
Water 20 0.0131
NaCl 16 0.0359
Quartz 20 0.0166
NH,Fe(SO,),.12H,0 26 ~0.00058
Air* 0 6.27 X 107°
CO,* 0 939 x 107°

*A =578 nm and 760 mm Hg.

More extensive listings are given in the usual handbooks.

8.11 Induced Optical Effects—Optical Modulators 367

the plane of the orbit will result in a radial force Fj; on the
electron. That force can point either toward or away from the
circle’s center, depending on the handedness of the light and
the direction of the constant B-field. The total radial force (Fuy
plus the elastic restoring force) can therefore have two differ-
ent values, and so too can the radius of the orbit. Consequent-
ly, for a given magnetic field there will be two possible values
of the electric dipole moment, the polarization, and the per-
mittivity, as well as two values of the index of refraction, ng
and n . The discussion can then proceed in precisely the same
fashion as that of Fresnel’s treatment of optical activity. As
before, one speaks of two normal modes of propagation of
electromagnetic waves through the medium, the %- and %-
states.

For ferromagnetic substances things are somewhat more
complicated. In the case of a magnetized material 3 is propor-
tional to the component of the magnetization in the direction
of propagation rather than the component of the applied dc
field.

There are a number of practical applications of the Faraday
Effect. It can be used to analyze mixtures of hydrocarbons,
since each constituent has a characteristic magnetic rotation.
When utilized in spectroscopic studies, it yields information
about the properties of energy states above the ground level.
Interestingly, the Faraday Effect has been used to make opti-
cal modulators. An infrared version, constructed by R. C.
LeCraw, utilized the synthetic magnetic crystal yttrium—iron
garnet (YIG), to which has been added a quantity of gallium.
YIG has a structure similar to that of natural gem garnets. The
device is depicted schematically in Fig. 8.55. A linear infrared
laserbeam enters the crystal from the left. A transverse dc
magnetic field saturates the magnetization of the YIG crystal
in that direction. The total magnetization vector (arising from
the constant field and the field of the coil) can vary in direc-
tion, being tilted toward the axis of the crystal by an amount
proportional to the modulating current in the coil. Since the
Faraday rotation depends on the axial component of the mag-
netization, the coil current controls 8. The analyzer then con-
verts this polarization modulation to amplitude modulation by
way of Malus’s Law [Eq. (8.24)]. In short, the signal to be
transmitted is introduced across the coil as a modulating volt-
age, and the emerging laserbeam carries that information in
the form of amplitude variations.

There are actually several other magneto-optic effects. We
shall consider only two of these, and rather succinctly at that.
The Voigt and Cotton—Mouton Effects both arise when a con-
stant magnetic field is applied to a transparent medium per-
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pendicular to the direction of propagation of the incident light
beam. The former occurs in vapors, whereas the latter, which
is considerably stronger, occurs in liquids. In either case the
medium displays birefringence similar to that of a uniaxial
crystal whose optic axis is in the direction of the dc magnetic
field, that is, normal to the light beam [Eq. (8.32)]. The two
indices of refraction now correspond to the situations in which
the plane-of-vibration of the wave is either normal or parallel
to the constant magnetic field. Their difference An (i.e., the
birefringence) is proportional to the square of the applied mag-
netic field. It arises in liquids from an aligning of the optically
and magnetically anisotropic molecules of the medium with
that field. If the incoming light propagates at some angle to the
static field other than 0 or 7r/2, the Faraday and Cotton-Mou-
ton Effects occur concurrently, with the former generally
being much the larger of the two. The Cotton-Mouton is the
magnetic analogue of the Kerr (electro-optic) Effect, to be
considered next.

8.11.3 The Kerr and Pockels Effects

The first electro-optic effect was discovered by the Scottish
physicist John Kerr (1824-1907) in 1875. He found that an
isotropic transparent substance becomes birefringent when
placed in an electric field E. The medium takes on the charac-
teristics of a uniaxial crystal whose optic axis corresponds to
the direction of the applied field. The two indices, n, and n,
are associated with the two orientations of the plane-of-vibra-

Modulatmg R ——

Polarizer

Figure 8.55 A Faraday Effect
modulator.

tion of the wave, namely, parallel and perpendicular to the
applied electric field, respectively. Their difference, An, is the
birefringence, and it is found to be

An = AoKE? (8.40)
where K is the Kerr constant. When K is positive, as it most
often is, An, which can be thought of as n,— n,, is positive, and
the substance behaves like a positive uniaxial crystal. Values
of the Kerr constant (Table 8.3) are often listed in electrostat-
ic units, so that one must remember to enter E in Eq. (8.40) in
statvolts per cm (one statvolt = 300 V). Observe that, as with
the Cotton—-Mouton Effect, the Kerr Effect is proportional to
the square of the field and is often referred to as the quadratic
electro-optic effect. The phenomenon in liquids is attributed to
a partial alignment of anisotropic molecules by the E-field. In
solids the situation is considerably more complicated.

Figure 8.56 depicts an arrangement known as a Kerr shut-
ter or optical modulator. It consists of a glass cell containing
two electrodes, which is filled with a polar liquid. This Kerr
cell, as it is called, is positioned between crossed linear polar-
izers whose transmission axes are at +45° to the applied E-
field. With zero voltage across the plates, no light will be
transmitted; the shutter is closed. The application of a modu-
lating voltage generates a field, causing the cell to function as
a variable wave plate and thus opening the shutter proportion-
ately. The great value of such a device lies in the fact that it
can respond effectively to frequencies roughly as high as 10"
Hz. Kerr cells, usually containing nitrobenzene or carbon



TABLE 8.3 Kerr Constants for Some Selected
Liquids (20°C, Ao = 589.3 nm)

Substance K (in units of
10”7 cm statvolt 2)

Benzene Ce¢He 0.6
Carbon disulfide CS, 32
Chloroform CHCL, -3.5
Water H,O 4.7
Nitrotoluene CsH,NO, 123

Nitrobenzene CcHsNO, 220

disulfide, have been used for a number of years in a variety of
applications. They serve as shutters in high-speed photogra-
phy and as light-beam choppers to replace rotating toothed
wheels. As such, they have been utilized in measurements of
the speed of light. Kerr cells are also used as Q-switches in
pulsed laser systems.

If the plates functioning as the electrodes have an effective
length of ¢ cm and are separated by a distance d, the retarda-
tion is given by

A¢ = 2wK€V?/d*? (8.41)

where V is the applied voltage. Thus a nitrobenzene cell in
which d is one cm and € is several cm will require a rather
large voltage, roughly 3 X 10* V, in order to respond as a half-
wave plate. This is a characteristic quantity known as the half-
wave voltage, V) /». Another drawback is that nitrobenzene is
both poisonous and explosive. Transparent solid substances,
such as the mixed crystal potassium tantalate niobate
(KTag 65Nbg 3503), KTN for short, or barium titanate
(BaTiO3), which show a Kerr Effect, are therefore of interest
as electro-optical modulators.

There is another very important electro-optical effect
known as the Pockels Effect, after the German physicist
Friedrich Carl Alwin Pockels (1865-1913), who studied it
extensively in 1893. It is a linear electro-optical effect, inas-
much as the induced birefringence is proportional to the first
power of the applied E-field and therefore the applied voltage.
The Pockels Effect exists only in certain crystals that lack a
center of symmetry—in other words, crystals having no cen-
tral point through which every atom can be reflected into an
identical atom. There are 32 crystal symmetry classes, 20 of
which may show the Pockels Effect. Incidentally, these same
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20 classes are also piezoelectric. Thus, many crystals and all
liquids are excluded from displaying a linear electro-optic
effect.

The first practical Pockels cell, which could perform as a
shutter or modulator, was not made until the 1940s, when suit-
able crystals were finally developed. The operating principle
for such a device is one we’ve already discussed. In brief, the
birefringence is varied electronically by means of a controlled
applied electric field. The retardance can be altered as desired,
thereby changing the state of polarization of the incident linear
wave. In this way, the system functions as a polarization mod-
ulator. Early devices were made of ammonium dihydrogen
phosphate (NH4H,PO,), or ADP, and potassium dihydrogen
phosphate (KH,PO,), known as KDP; both are still in use. A
great improvement was provided by the introduction of single
crystals of potassium dideuterium phosphate (KD,PO,), or
KD#*P, which yields the same retardation with voltages less
than half of those needed for KDP. This process of infusing
crystals with deuterium is accomplished by growing them in a
solution of heavy water. Cells made with KD*P or CD*A
(cesium dideuterium arsenate) have been produced commer-
cially for some time.

A Pockels cell is simply an appropriate noncentrosymmet-
ric, oriented, single crystal immersed in a controllable electric
field. Such devices can usually be operated at fairly low volt-
ages (roughly 5 to 10 times less than that of an equivalent Kerr
cell); they are linear, and of course there is no problem with
toxic liquids. The response time of KDP is quite short, typi-
cally less than 10 ns, and it can modulate a light beam at up to
about 25 GHz (i.e., 25 X 10° Hz).

Plate electrodes

Polarizer

Modulating

Polarizer voltage

Figure 8.56 A Kerr cell.
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There are two common cell configurations, referred to as
transverse and longitudinal, depending on whether the applied
E-field is perpendicular or parallel to the direction of propaga-
tion, respectively. The longitudinal type is illustrated, in its
most basic form, in Fig. 8.57. Since the beam traverses the
electrodes, these are usually made of transparent metal-oxide
coatings (e.g., SnO, InO, or CdO), thin metal films, grids, or
rings. The crystal itself is generally uniaxial in the absence of
an applied field, and it is aligned such that its optic axis is
along the beam’s propagation direction. For such an arrange-
ment the retardance is given by

A = 2mniresV/ A (8.42)

where rg3 is the electro-optic constant in m/V, n, is the ordi-
nary index of refraction, V is the potential difference in volts,
and Ag is the vacuum wavelength in meters.* Since the crystals
are anisotropic, their properties vary in different directions,
and they must be described by a group of terms referred to col-
lectively as the second-rank electro-optic tensor r;;. Fortunate-
ly, we need only concern ourselves here with one of its
components, namely, rg3, values of which are given in Table
8.4. The half-wave voltage corresponds to a value of Agp = 7,
in which case

(8.43)

Transparent
electrode

Modulating
voltage

Polarizer

Figure 8.57 A Pockels cell.

*This expression, along with the appropriate one for the transverse
mode, is derived rather nicely in A. Yariv, Quantum Electronics. Even so,
the treatment is sophisticated and not recommended for casual reading.

TABLE 8.4 Electro-optic Constants (Room
Temperature, Ao = 546.1 nm)

Ts3 n, Va2

Material (units of 1012 m/V) (approx.) (in kV)
ADP (NH,H,PO,) 85 1.52 9.2
KDP (KH,PO,) 10.6 1.51 7.6
KDA (KH,AsO,) ~13.0 1.57 ~6.2
KD*P (KD,PO,) ~233 1.52 ~34

and from Eq. (8.42)
Ag
Vip=—"5— 8.44
x/2 res (8.44)

As an example, for KDP, rez = 10.6 X 107> m/V, n, =
1.51, and we obtain V, ,, = 7.6 X 10’ V at Ay = 546.1 nm.

Pockels cells have been used as ultra-fast shutters, Q-
switches for lasers, and dc to 30-GHz light modulators.*

8.12 Liquid Crystals

In 1888 the Austrian botanist Friedrich Reintzer observed that
cholesteryl benzoate seemed to have two distinct transition
points, one at which the crystal changed into a cloudy liquid
and another where it became transparent. Known today as lig-
uid crystal, he had discovered a new phase of matter that pos-
sessed physical properties between those of ordinary liquids
and solids. Liquid crystals (LCs) have long cigar-shaped mol-
ecules that can move about, and consequently, like ordinary
liquids, they lack positional order. Nonetheless, like crystals,
their molecules strongly interact to sustain a large-scale orien-
tational order. There are three types of liquid crystal distin-
guished by the ways in which their molecules align. We’ll
focus on the nematic variety where the molecules tend to be
more or less parallel, even though their positions are fairly ran-
dom (Fig. 8.58).

To prepare a parallel nematic cell, we first coat one face of
each of two pieces of flat glass with a transparent electrically
conducting metallic film, such as indium tin oxide (which has
maximum transmission from 450 to 1800 nm). These two win-

*The reader interested in light modulation in general should consult D.
F. Nelson, “The Modulation of Laser Light,” Scientific American (June
1968). Also see Chapter 14, Vol. Il of Handbook of Optics (1995).



Figure 8.58 The long cigar-shaped
molecules of a nematic liquid crystal
align themselves in a random but
parallel formation.

dows will also serve as the electrodes, between which we’ll
place the liquid crystal and across which we’ll apply a con-
trolling voltage. We want the LC molecules in contact with the
windows to be oriented in a direction that is both parallel to
the glass and to each other. To accomplish that, it’s necessary
to create a template of parallel ridges along which the LC mol-
ecules can align. There are several ways to do that, the sim-
plest being to just carefully rub the indium tin oxide surface
(or a thin dielectric layer covering it), thereby producing par-
allel microgrooves.

When the thin space (from just a few microns up to about
10 wm) between two such prepared glass windows is filled
with nematic LC, the molecules in contact with the micro-
grooves anchor themselves parallel to the ridges. The LC mol-
ecules then essentially drag each other into alignment, and
soon the entire liquid is similarly oriented (Fig. 8.59a). The
direction in which the molecules of a liquid crystal are aligned
is known as the director.

Because of their elongated shape and ordered orientation,
the liquid crystal molecules behave en masse as an anisotrop-
ic dielectric, one that’s positive uniaxial birefringent. The long
axis of the molecules defines the direction of the extraordinary
index or slow axis. A ray of light linearly polarized parallel to
the LC director will be an extraordinary ray and will experi-
ence an ongoing phase change as it traverses the cell. By con-
trast, a ray linearly polarized at 45° to the director will suffer a
retardance Ag just as if it had passed through a birefringent
crystal.

The Liquid Crystal Variable Retarder

Now suppose we apply a voltage (V) across the cell (Fig.
8.59b), thereby creating an electric field perpendicular to the
glass windows. Electric dipoles are either present or induced,
and the LC molecules experience torques that cause them to
try to rotate into alignment with the field. As the voltage
increases the molecules (except for those anchored to the inner
surfaces of the windows), more and more turn toward the
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direction of the field, decreasing the birefringence, An = (n,
—n,), and the retardance A¢ as well. Since the birefringence
(usually from 0.1 to 0.3) is a function of the voltage, tempera-
ture (decreasing about 0.4% per °C increase), and wavelength
(decreasing as A, increases)

2
Ap(V.T.A) = T dAn(V.T.A,)
0

Maximum retardance (typically =A\,/2) obtains when the
applied voltage is zero. The retardance when V is large (say,
20 V) is a minimum of around 30 nm (or zero, when a com-
pensator is used to cancel the residual retardance of the
anchored layers).

When the incident light is polarized parallel to the slow
axis, the device can be used as a voltage-controlled phase
modulator. It can change the phase delay the light will experi-
ence in traversing the cell. Alternatively, when the light has
components parallel and perpendicular to the slow axis, the
LC cell functions as a continuously variable retarder over a
broad range of frequencies. By placing the cell between
crossed polarizers (at £45°), it becomes a voltage-controlled
irradiance modulator.

The Liquid Crystal Display

Imagine that one of the windows of the parallel LC cell in
Fig. 8.59a is now rotated 90° in its own plane. This drags
around the nematic liquid so that its molecular layers spiral a
quarter of a turn about the twist axis normal to the windows

Figure 8.59 (a) A nematic liquid crystal between two transparent
electrodes. The long molecules align parallel to a set of microgrooves
on the inside faces of the two electrodes. (b) When a voltage is applied,
the molecules rotate into alignment with the field.
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(a)

Figure 8.60 (a) A twisted nematic cell. The LC molecules are

aligned horizontally on the left window and vertically on the right window,
and they gradually twist (plane upon plane) from one to the other.

(b) When a voltage is applied across the cell, the molecules align

with the electric field.

(much like putting a deck of cards between your two hands
and fanning it around). The result is a so-called twisted
nematic cell (Fig. 8.60a). The molecules are aligned vertical-
ly on one window, and gradually they’re rotated, layer upon
layer, until they are horizontal on the other window. The cell
will rotate the plane of polarization as if it were an optically
active medium.* For example, a beam of linear light traveling
normal to the entrance window and polarized parallel to the
anchored molecules in Fig. 8.60a, that is horizontally, will be
rotated through 90° and emerge vertically polarized.

Upon putting a voltage across the cell, an electric field par-
allel to the twist axis is set up throughout the liquid crystal.
Consequently, the LC molecules (except for those anchored to
the windows) turn into alignment with the field (Fig. 8.60b).
The twisted structure of the cell vanishes, and it loses its abil-
ity to rotate the plane of polarization of incident light. When
the E-field is removed, the cell reverts back to its twisted con-
figuration and can again rotate light. If the cell is now placed
between crossed linear polarizers (Fig. 8.61), it becomes a
voltage-controlled switch that can transmit or absorb an inci-
dent beam of light.

The simplest liquid crystal display (LCD), the kind found
in digital watches, clocks, cameras, calculators, and so forth, is

*For a proof of this, see B. E. A. Saleh and M. C. Teich, Fundamentals
of Photonics, p. 228.

illuminated by ambient light. Therein lies its principlal virtue:
it consumes very little electrical power because it isn’t self-
luminous.

To make an LCD, we just put a flat mirror beyond the last
polarizer on the right in Fig. 8.61. Ambient light enters from
the left and is immediately linearly polarized, in this case hor-
izontally. With no voltage on the electrodes the light emerges
from the twisted LC cell oscillating vertically. It passes
through the second polarizer—unaffected by it—strikes the
mirror, and reflects off to the left still oscillating vertically. It
then retraces its path back through the LC cell, from which it
exits traveling to the left, horizontally polarized. Looking into
the first polarizer, we see a relatively bright field of emerging
light.

When a voltage is applied across the cell, the liquid crystal
reorients itself and loses its ability to rotate the plane of polar-
ization. Horizontal light enters and leaves the cell, only to be
completely absorbed by the second polarizer; the entrance
window is now black, and no light emerges.

By properly configuring the front transparent electrode, the
black nonreflecting region can be confined to the shape of a
number or letter, or anything you like. Usually the numbers on
your calculator are produced using seven small bar electrodes
(Fig. 8.62) that are activated independently (by the decoder-
driver in an integrated circuit) to create all the digits from O to
9. These bars are formed as isolated regions on the front indi-
um tin oxide film. When a voltage is put across a given bar and
the large continuous back electrode, the E-field just behind the
bar destroys the LC twist in that small region and that segment
turns black.

ABCDEFG

Figure 8.62 A seven-bar electrode array used to display numerals.
For example, to form the number 9, a voltage is applied between all
of the following segments and the large back electrode, D, E, F, G, A,
and B.
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Figure 8.61

(a) A twisted nematic cell between crossed linear polarizers. Light polarized

vertically emerges from the device. (b) When a voltage is applied across the cell it no longer
rotates the plane of polarization; light polarized horizontally enters and leaves the LC cell.
That light is subsequently absorbed by the second polarizer and no light emerges from the device.

(@)

(b)

By rotating a linear polarizer in front of a liquid crystal display we can see the numbers

appear and disappear. Try it with your calculator. (Photo by E.H.)

8.13 A Mathematical Description of
Polarization

Until now we’ve considered polarized light in terms of the
electric field component of the wave. The most general repre-
sentation was, of course, that of elliptical light. The endpoint
of the vector E was envisioned continuously sweeping along
the path of an ellipse having a particular shape—the circle and
line being special cases. The period over which the ellipse was

traversed equaled that of the lightwave (i.e., roughly 10~ '%s)
and was far too short to be detected. In contrast, measurements
made in practice are generally averages over comparatively
long time intervals.

Clearly, it would be advantageous to formulate an alterna-
tive description of polarization in terms of convenient observ-
ables, namely, irradiances. Our motives are far more than the
ever-present combination of aesthetics and pedagogy. The
formalism to be considered has far-reaching significance in
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other areas of study, for example, particle physics (the photon
is, after all an elementary particle) and Quantum Mechanics.
It serves in some respects to link the classical and quan-
tum-mechanical pictures. But even more demanding of our
present attention are the considerable practical advantages to
be gleaned from this alternative description.

We shall evolve an elegant procedure for predicting the
effects of complex systems of polarizing elements on the ulti-
mate state of an emergent wave. The mathematics, written in
the compressed form of matrices, will require only the sim-
plest manipulation of those matrices. The complicated logic
associated with phase retardations, relative orientations, and
so forth, for a tandem series of wave plates and polarizers is
almost all built in. One need only select appropriate matrices
from a chart and drop them into the mathematical mill.

8.13.1 The Stokes Parameters

The modern representation of polarized light actually had its
origins in 1852 in the work of G. G. Stokes. He introduced
four quantities that are functions only of observables of the
electromagnetic wave and are now known as the Stokes para-
meters.* The polarization state of a beam of light (either nat-
ural or totally or partially polarized) can be described in terms
of these quantities. We will first define the parameters opera-
tionally and then relate them to electromagnetic theory.
Imagine that we have a set of four filters, each of which,
under natural illumination, will transmit half the incident
light, the other half being discarded. The choice is not a unique
one, and a number of equivalent possibilities exist. Suppose
then that the first filter is simply isotropic, passing all states
equally, whereas the second and third are linear polarizers
whose transmission axes are horizontal and at +45° (diagonal
along the first and third quadrants), respectively. The last filter
is a circular polarizer opaque to #-states. Each of these four
filters is positioned alone in the path of the beam under inves-

*Much of the material in this section is treated more extensively in
Shurcliff's Polarized Light: Production and Use, which is something of a
classic on the subject. You might also look at M. J. Walker, “Matrix
Calculus and the Stokes Parameters of Polarized Radiation,” Am. J.
Phys. 22, 170 (1954), and W. Bickel and W. Bailey, “Stokes Vectors,
Mueller Matrices, and Polarized Scattered Light,” Am. J. Phys. 53, 468
(1985).

tigation, and the transmitted irradiances Iy, I, I, I3 are mea-
sured with a type of meter that is insensitive to polarization
(not all of them are). The operational definition of the Stokes
parameters is then given by the relations

So = 2I, (8.45a)
s =21 — 2l (8.45b)
8, =20, — 21, (8.45¢)
§y =21, — 21, (8.45d)

Notice that & is simply the incident irradiance, and &y, &,
and &3 specify the state of polarization. Thus & reflects a ten-
dency for the polarization to resemble either a horizontal #-
state (whereupon &; > 0) or a vertical one (in which case &; <
0). When the beam displays no preferential orientation with
respect to these axes ($; = 0), it may be elliptical at +45°, cir-
cular, or unpolarized. Similarly, &, implies a tendency for the
light to resemble a P-state oriented in the direction of +45°
(when &, > 0) or in the direction of —45° (when &, < 0) or
neither (5, = 0). In the same way &; reveals a tendency of the
beam toward right-handedness (83 > 0), left-handedness (83
< 0), or neither (85 = 0).

Now recall the expressions for quasimonochromatic light,

E (1) = iEou(1) cos [(kz — @1) + e.(1)]  [8.34a]
and
E, (1) = Eoy(1) cos [(kz — @1) + &,(1)]  [8.34b]

where E(t) = E‘)X(t) + E)y(t). Using these in a fairly straight-
forward way, we can recast the Stokes parameters* as

S0 = (E¢ar + (Edy)r (8.462)
S = <E%x>T - <E%y>T (8.46b)
Sy = (2EoEy, cos &)1 (8.46¢)
83 = (2E.Eo, sin &)1 (8.46d)

Here ¢ = ¢, — ¢, and we’ve dropped the constant €q4c/2, so

*For the details, see E. Hecht, “Note on an Operational Definition of the
Stokes Parameters,” Am. J. Phys. 38, 1156 (1970).



that the parameters are now proportional to irradiances. For
the hypothetical case of perfectly monochromatic light, Eq, (1),
Eq, (1), and g(t) are time-independent, and one need only drop
the ( ) brackets in Eq. (8.46) to get the applicable Stokes
parameters. Interestingly enough, these same results can be
obtained by time averaging Eq. (8.14), which is the general
equation for elliptical light.”

If the beam is unpolarized, (E3,)r = (E3,)t; neither aver-
ages to zero because the amplitude squared is always positive.
In that case S¢ = (E5 )t + (Eg,)1, but 3, = 8, = 53 = 0. The
latter two parameters go to zero, since both cos € and sin €
average to zero independently of the amplitudes. It is often
convenient to normalize the Stokes parameters by dividing
each one by the value of Sy. This has the effect of using an
incident beam of unit irradiance. The set of parameters (8, Sy,
8,, &3) for natural light in the normalized representation is
then (1, 0, 0, 0). If the light is horizontally polarized, it has no
vertical component, and the normalized parameters are
(1, 1, 0, 0). Similarly, for vertically polarized light we have
(1, —1, 0, 0). Representations of a few other polarization states
are listed in Table 8.5. (The parameters are displayed vertical-
ly for reasons to be discussed later.) Notice that for complete-
ly polarized light it follows from Eq. (8.46) that

So= 8+ 83+ 53 (8.47)
Moreover, for partially polarized light it can be shown that the
degree of polarization [Eq. (8.29)] is given by

V= (57 + 83+ 59)12/5, (8.48)

Imagine now that we have two quasimonochromatic waves
described by (8g, 81, &3, 83) and (8¢, &7, &5, 83), which are
superimposed in some region of space. As long as the waves
are incoherent, any one of the Stokes parameters of the resul-
tant will be the sum of the corresponding parameters of the
constituents (all of which are proportional to irradiance). In
other words, the set of parameters describing the resultant is
(86 + 8g, &1 + 81, 85 + 85, 85 + 573). For example, if a unit-
flux density vertical P-state (1, —1, 0, 0) is added to an inco-
herent L-state (see Table 8.5) of flux density2, (2, 0, 0, —2),

the composite wave has parameters (3, —1, 0, —2). It is an

'E. Collett, “The Description of Polarization in Classical Physics,” Am. J.
Phys. 36, 713 (1968).
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TABLE 8.5 Stokes and Jones Vectors for Some
Polarization States

State of polarization Stokes vectors Jones vectors

Horizontal %-state

SO —= =
S

Vertical P-state

Sl-

1
0
P-state at +45° 1
0

P-state at —45°

—
oLl o -
[
Si-
I'_I.,_l
[

1

0 1 Fl
R-state 0 72— »

1 L

1

0 o
SF-state 0 W I ;

ellipse of flux density 3, more nearly vertical than horizontal
(81 < 0), left-handed (853 < 0), and having a degree of polar-
ization of \V/5/3.

The set of Stokes parameters for a given wave can be envis-
aged as a vector; we have already seen how two such (inco-
herent) vectors add.* Indeed, it will not be the usual kind of
three-dimensional vector, but this sort of representation is
widely used in physics to great advantage. More specifically,
the parameters (8q, 8y, &, §3) are arranged in the form of what

*The detailed requirements for a collection of objects to form a vector
space and themselves be vectors in such a space are discussed in, for
example, Davis, Introduction to Vector Analysis.
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is called a column vector,

S=1. (8.49)

8.13.2 The Jones Vectors

Another representation of polarized light, which complements
that of the Stokes parameters, was invented in 1941 by the
American physicist R. Clark Jones. The technique he evolved
has the advantages of being applicable to coherent beams and
at the same time being extremely concise. Yet unlike the pre-
vious formalism, it is only applicable to polarized waves. In
that case it would seem that the most natural way to represent
the beam would be in terms of the electric vector itself. Writ-
ten in column form, this Jones vector is

o [Exm]
E, (1)

where E.(t) and E,(t) are the mstantaneous scalar components
of E. Obviously, knowmg E we know everything about the
polarization state. And if we preserve the phase information,
we will be able to handle coherent waves. With this in mind,
rewrite Eq. (8.50) in complex form;

~ Eo_rei""
E= ,.
Eoye i

where ¢, and ¢, are the appropriate phases. Horizontal and
vertical P-states are thus given by

. Eg. e - 0
Eh=[ o ] and EZ,=[EO‘_€,¢‘] (8.52)

respectively. The sum of two coherent beams, as with the
Stokes vectors, is formed by a sum of the corresponding com-
ponents. Since E = E,, + E,,, when, for example Ey, = Ey, and
N (p_‘,E is given by

B E()Xei(pr
E = ;

Eovelq)‘

~ i 1

E = one P 1

which is a P-state at +45°. This is the case since the ampli-
tudes are equal and the phase difference is zero.

(8.50)

(8.51)

(8.53)
or, after factoring, by

(8.54)

In many applications it is not necessary to know the exact
amplitudes and phases. In such instances we can normalize the
irradiance to unity, thereby forfeiting some information but
gaining much simpler expressions. This is done by dividing
both elements in the vector by the same scalar (real or com-
plex) quantity, such that the sum of the squares of the compo-
nents is one. For example, dividing both terms of Eq. (8.53) by
V2 Ey.e® leads to

- 1 |1
E;s=—+ 8.55
45 \/z |:le ( )
Similarly, in normalized form
E, - m and B, - m (8.56)

Right-circular light has Eq, = Ej,, and the y-component leads
the x-component by 90°. Since we are using the form (kz —
wr), we will have to add —/2 to ¢,, thus

E B EOX ei [N
R~ EOx e[( O —/2)

Dividing both components by E,e'%r yields

D

Hence the normalized complex Jones vector is*

~ 1 1 ~ 1 |1
Ey=—+ d similarly Ego=—+ 8.57
P 5 [—i] and similarly Eg 3 [z] ( )

The sum E% +I:3y is

1 I+11 2 |1
V2 |—iti] V2o
This is a horizontal %-state having an amplitude twice that
of either component, a result in agreement with our earlier cal-

culation of Eq. (8.10). The Jones vector for elliptical light can
be obtained by the same procedure used to arrive atEg and

*Had we used (wt — kz) for the phase, the terms in Eg would have
been interchanged. The present notation, although possibly a bit more
difficult to keep straight (e.g., —/2 for a phase lead), is more often
used in modern works. Be wary when consulting references (e.g.,
Shurcliff).



E &, where now E, may not be equal to Ey,, and the phase dif-
ference need not be 90°. In essence, for vertical and horizontal
&-states all we need to do is stretch out the circular form into
an ellipse by multiplying either component by a scalar. Thus

A

describes one possible form of horizontal, right-handed,
elliptical light.

Two vectors A and B are said to be orthogonal when
AB = 0; similarly, two complex vectors are orthogonal
when A-B*= 0. One refers to two polarization states as being
orthogonal when their Jones vectors are orthogonal. For
example,

(8.58)

Ex-EZ=(DH* + (=D)*] =0

or E,-E% = [(1)(0)* + (0)(1)*] =0

where taking the complex conjugates of real numbers obvi-
ously leaves them unaltered. Any polarization state will have
a corresponding orthogonal state. Notice that

Es-E;=Ey-Ef=1
and Evﬁ'ﬁ;’: E(y’Eazo

Such vectors form an orthogonal set, as do E, and EZ,. As we
have seen, any polarization state can be described by a linear
combination of the vectors in either one of the orthonormal
sets. These same ideas are of considerable importance in
Quantum Mechanics, where one deals with orthonormal
wavefunctions.

8.13.3 The Jones and Mueller Matrices

Suppose that we have a polarized incident beam represented
by its Jones vector E;, which passes through an optical ele-
ment, emerging as a new vector E, corresponding to the trans-
mitted wave. The optical element has transformed E; into E,,
a process that can be described mathematically using a 2 X 2
matrix. Recall that a matrix is just an array of numbers that has
prescribed addition and multiplication operations. Let & rep-
resent the transformation matrix of the optical element in
question. Then

E = oK, (8.59)
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a, a
o= | G a2

az ax
and the column vectors are to be treated like any other matri-
ces. As a reminder, write Eq. (8.59) as

Efx | an an Ei\
Ery a; axn En-

and, upon expanding,

where (8.60)

(8.61)

E,.=a) Eyt anE;,

E, = ay E; + ankE;

Table 8.6 contains a brief listing of Jones matrices for various
optical elements. To appreciate how these are used let’s exam-
ine a few applications. Suppose that E, represents a P-state at
+45°, which passes through a quarter-wave plate whose fast
axis is vertical (i.e., in the y-direction). The polarization state
of the emergent wave is found as follows, where we drop the
constant-amplitude factors for convenience:

b L[]

The beam, as you well know, is right-circular. If the wave
passes through a series of optical elements represented by the
matrices &, &>,..., &, then

and thus

E, :dn.'.dZdlEI

The matrices do not commute; they must be applied in the
proper order. The wave leaving the first optical element in the
series is & E;; after passing through the second element, it
becomes >, I:Zi, and so on. To illustrate the process, return
to the wave considered above (i.e., a P-state at +45°), but
now have it pass through two quarter-wave plates, both with
their fast axes vertical. Thus, again discarding the amplitude
factors, we have

whereupon
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- and finall
TABLE 8.6 Jones and Mueller matrices. Y N |
Linear optical element  Jones matrix Mueller matrix E = -1
| 1100 The transmitted beam is a P-state at —45°, having essentially
Horizontal linear [ I 0] ~frroo been flipped through 90° by a half-wave plate. When the same
polarizer PN 00 2 g 3 g g series of optical elements is used to examine various states, it
i becomes desirable to replace the product &, --- &, by the
. single 2 X 2 system matrix obtained by carrying out the multi-
r 7 1 -1 00 plication. (The order in which it is calculated should be &>%;,
- 0 0 Il-t 1 o o0
Vertical linear = then o, etc.)
. 0 1 210 o 0 O .
polarizer 7 L i 0 0 0 0 In 1943 Hans Mueller, then a professor of physics at the
. Massachusetts Institute of Technology, devised a matrix
101 0] method for dealing with the Stokes vectors. Recall that the
) . 1y 4] 1lo 0 0 o Stokes vectors have the attribute of being applicable to both
Linear pglarlzer Sl 1 211 01 0 polarized and partially polarized light. The Mueller method
at +45 z L . 00 0 0 shares this quality and thus serves to complement the Jones
- method. The latter, however, can easily deal with coherent
~ 10 - ol waves, whereas the former cannot. The Mueller, 4 X 4, matri-
) ) 1l 10 0 o © ces are applied in much the same way as are the Jones matri-
Linear polarizer -1 1 S21-1 0 1 0 ces. There is therefore little need to discuss the method at
at —45° N B .
0 0 o O length; a few simple examples, augmented by Table 8.6,
- ~ should suffice. Imagine that we pass a unit-irradiance unpolar-
_ 1 0 0 0 ized wave through a linear horizontal polarizer. The Stokes
Quarter-wave plate, gm0 01 .0 0 vector of the emerging wave 5, is
fast axis vertical 0 - 0 0 0 -t i
- 00 1 0 1 1 0 oll i
) _ 5, = 111 1 0 0}0 B 0
1 0 0 O 210 0 0 0}(0|= 0
1 0 o1 0 O 0O 0 0 O0Oflo
Quarter-wave plate, & .
e 0 i 00 0 1
fast axis horizontal 0 0 -1 0
L i The transmitted wave has an irradiance of 5 (i.e., §, = 1) andis
- linearly polarized horizontally (5, > 0). As another example,
- . 1001 suppose we have a partially polarized elliptical wave whose
. L1 110 0 0 0 .
Homogeneous circular -1 — Stokes parameters have been determined to be, say, (4, 2, 0,
O 2 -1 >0 0 0 0 e . .
polarizer right O | ] 1 0 0 1 3). Its irradiance is 4; it is more nearly horizontal than vertical
. (3) > 0), it is right-handed (53 > 0), and it has a degree of
i 0 0 ]- polarization of 90%. Since none of the parameters can be larg-
1|1 —i— ilo o 0 o er than &g, a value of &3 = 3 is fairly large, indicating that the
omogeneous circular Sl 210 0 0 o ellipse resembles a circle. If the wave is now made to traverse
H 1 11 bl le. If th d
polarizer left & - - 40 0 a quarter-wave plate with a vertical fast axis, then
1 0 00( 4
< |0 1 00} 2
1o 0 o1 0
0 0 10]L3



and thus 4

The emergent wave has the same irradiance and degree of
polarization but is now partially linearly polarized.
We have only touched on a few of the more important

PROBLEMS

Problems 379

aspects of the matrix methods. The full extent of the subject
goes far beyond these introductory remarks.*

*One can weave a more elaborate and mathematically satisfying devel-
opment in terms of something called the coherence matrix. For further,
but more advanced, reading, see O'Neill, Introduction to Statistical
Optics.

Complete solutions to all problems—except those with an asterisk—
can be found in the back of the book.

8.1 Describe completely the state of polarization of each of the fol-
lowing waves:

(a) E-= iEO cos (kz — wt) — iEO cos (kz — wr)

®) E = iEy sin 2m(z/A — ) — JEq sin 2m(z/A — vr)
©) E= iEO sin (wt — kz) + iEO sin (wt — kz — w/4)
@ E = iEO cos (wt — kz) + iEO cos (wt — kz + 7/2).

8.2 Consider the disturbance given by the expression E(Z, t) =
[i cos wr + ] cos (wr — m/2)]Ey sin kz. What kind of wave is it?
Draw a rough sketch showing its main features.

8.3 Analytically, show that the superposition of an %- and an -
state having different amplitudes will yield an &-state, as shown in
Fig. 8.8. What must € be to duplicate that figure?

8.4 Write an expression for a P-state lightwave of angular frequen-
cy w and amplitude E, propagating along the x-axis with its plane of
vibration at an angle of 25° to the xy-plane. The disturbance is zero at
t=0andx = 0.

8.5* Write an expression for a P-state lightwave of angular fre-
quency w and amplitude E, propagating along a line in the xy-plane
at 45° to the x-axis and having its plane of vibration corresponding to
the xy-plane. Att = 0,y = 0, and x = 0 the field is zero.

8.6 Write an expression for an %-state lightwave of frequency w

propagating in the positive x-direction such thatatt = 0and x = 0
-

the E-field points in the negative z-direction.

8.7* A beam of linearly polarized light with its electric field vertical
impinges perpendicularly on an ideal linear polarizer with a vertical

transmission axis. If the incoming beam has an irradiance of 200-
W /m?, what is the irradiance of the transmitted beam?

8.8* Given that 300 W/m? of light from an ordinary tungsten bulb
arrives at an ideal linear polarizer. What is its radiant flux density on
emerging?

8.9* A beam of vertically polarized linear light is perpendicularly
incident on an ideal linear polarizer. Show that if its transmission axis
makes an angle of 60° with the vertical only 25% of the irradiance
will be transmitted by the polarizer.

8.10 If light that is initially natural and of flux density /; passes
through two sheets of HN-32 whose transmission axes are parallel,
what will be the flux density of the emerging beam?

8.11* What will be the irradiance of the emerging beam if the ana-
lyzer of the previous problem is rotated 30°?

8.12* The irradiance of a beam of natural light is 400 W/m”. It
impinges on the first of two consecutive ideal linear polarizers whose
transmission axes are 40.0° apart. How much light emerges from the
two?

8.13* As we saw in Section 8.10, substances such as sugar and
insulin are optically active; they rotate the plane of polarization in
proportion to both the path length and the concentration of the solu-
tion. A glass vessel is placed between a pair of crossed HN-50 linear
polarizers, and 50% of the natural light incident on the first polarizer
is transmitted through the second polarizer. By how much did the
sugar solution in the cell rotate the light passed by the first polarizer?

8.14* The light from an ordinary flashlight is passed through a lin-
ear polarizer with its transmission axis vertical. The resulting beam,
having an irradiance of 200 W/m?, is incident normally on a vertical
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HN-50 linear polarizer whose transmission axis is tilted at 30° above
the horizontal. How much light is transmitted?

8.15* Linearly polarized light (with an irradiance of 200 W/m?)
aligned with its electric-field vector at +55° from the vertical
impinges perpendicularly on an ideal sheet polarizer whose transmis-
sion axis is at +10° from the vertical. What fraction of the incoming
light emerges?

8.16* Two ideal linear sheet polarizers are arranged with respect to
the vertical with their transmission axis at 10° and 60°, respectively.
If a linearly polarized beam of light with its electric field at 40° enters
the first polarizer, what fraction of its irradiance will emerge?

8.17* Imagine a pair of crossed polarizers with transmission axes
vertical and horizontal. The beam emerging from the first polarizer
has flux density /,, and of course no light passes through the analyz-
er (i.e., I, = 0). Now insert a perfect linear polarizer (HN-50) with its
transmission axis at 45° to the vertical between the two elements—
compute /5. Think about the motion of the electrons that are radiating
in each polarizer.

8.18* Imagine that you have two identical perfect linear polarizers
and a source of natural light. Place them one behind the other and
position their transmission axes at 0° and 50°, respectively. Now
insert between them a third linear polarizer with its transmission axes
at 25°. If 1000 W /m? of light is incident, how much will emerge with
and without the middle polarizer in place?

8.19* Given that 200 W/m? of randomly polarized light is incident
normally on a stack of ideal linear polarizers that are positioned one
behind the other with the transmission axis of the first vertical, the
second at 30°, the third at 60°, and the fourth at 90°. How much light
emerges?

8.20* Two HN-50 linear polarizers are positioned one behind the
other. What angle should their transmission axes make if an incident
unpolarized 100-W/m> beam is to be reduced to 30.0 W/m? on
emerging from the pair?

8.21 An ideal polarizer is rotated at a rate w between a similar pair
of stationary crossed polarizers. Show that the emergent flux density
will be modulated at four times the rotational frequency. In other
words, show that

= !8_1(1 — ¢cos 4wt)

where [, is the flux density emerging from the first polarizer and / is
the final flux density.

8.22 Figure P.8.22 shows a ray traversing a calcite crystal at nearly

normal incidence, bouncing off a mirror, and then going through the
crystal again. Will the observer see a double image of the spot on %?

Figure P.8.22

8.23* A pencil mark on a sheet of paper is covered by a calcite crys-
tal. With illumination from above, isn’t the light impinging on the
paper already polarized, having passed through the crystal? Why then
do we see two images? Test your solution by polarizing the light from
a flashlight and then reflecting it off a sheet of paper. Try specular
reflection off glass; is the reflected light polarized?

8.24 Discuss in detail what you see in Fig. P.8.24. The crystal in the
photograph is calcite, and it has a blunt corner at the upper left. The
two Polaroids have their transmission axes parallel to their short
edges.

Figure P.8.24

8.25 The calcite crystal in Fig. P.8.25 is shown in three different ori-
entations. Its blunt corner is on the left in (a), the lower left in (b), and
the bottom in (¢). The Polaroid’s transmission axis is horizontal.
Explain each photograph, particularly (b).

8.26 In discussing calcite, we pointed out that its large birefringence
arises from the fact that the carbonate groups lie in parallel planes



Figure P.8.25a

Figure P.8.25b

Figure P.8.25¢

(normal to the optic axis). Show in a sketch and explain why the
polarization of the group will be less when Eis perpendicular to the
COj3 plane than when Eis parallel to it. What does this mean with
respect to v and v, that is, the wave’s speeds when Eis linearly
polarized perpendicular or parallel to the optic axis?

8.27* Imagine that we have a transmitter of microwaves that radi-
ates a linearly polarized wave whose E-field is known to be parallel
to the dipole direction. We wish to reflect as much energy as possible
off the surface of a pond (having an index of refraction of 9.0). Find
the necessary incident angle and comment on the orientation of the
beam.

8.28* At what angle will the reflection of the sky coming off the sur-
face of a pond (n = 1.33) completely vanish when seen through a
Polaroid filter?

Problems 381

8.29* What is Brewster’s angle for reflection of light from the sur-
face of a piece of glass (n, = 1.65) immersed in water (n,, = 1.33)?

8.30* A beam of light is reflected off the surface of some unknown
liquid, and the light is examined with a linear sheet polarizer. It is
found that when the central axis of the polarizer (that is, the perpen-
dicular to the plane of the sheet) is tilted down from the vertical at an
angle of 54.30°, the reflected light is completely passed, provided the
transmission axis is parallel to the plane of the interface. From this
information, compute the index of refraction of the liquid.

8.31* Light reflected from a glass (n, = 1.65) plate immersed in
ethyl alcohol (n, = 1.36) is found to be completely linearly polarized.
At what angle will the partially polarized beam be transmitted into
the plate?

8.32* A beam of natural light is incident on an air—glass interface
(n,; = 1.5) at 40°. Compute the degree of polarization of the reflect-
ed light.

8.33* A beam of natural light incident in air on a glass (n = 1.5)
interface at 70° is partially reflected. Compute the overall reflec-
tance. How would this compare with the case of incidence at, say,
56.3°? Explain.

8.34 A ray of yellow light is incident on a calcite plate at 50°. The
plate is cut so that the optic axis is parallel to the front face and per-
pendicular to the plane-of-incidence. Find the angular separation
between the two emerging rays.

8.35* A beam of light is incident normally on a quartz plate whose
optic axis is perpendicular to the beam. If Ao = 589.3 nm, compute
the wavelengths of both the ordinary and extraordinary waves. What
are their frequencies?

8.36 A beam of light enters a calcite prism from the left, as shown in
Fig. P.8.36. There are three possible orientations of the optic axis of
particular interest, and these correspond to the x-, y-, and z-directions.
Imagine that we have three such prisms. In each case sketch the
entering and emerging beams, showing the state of polarization. How
can any one of these be used to determine n,, and n,?

Figure P.8.36
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8.37 The electric-field vector of an incident %-state makes an angle
of +30° with the horizontal fast axis of a quarter-wave plate.
Describe, in detail, the state of polarization of the emergent wave.

8.38 Compute the critical angle for the ordinary ray, that is, the
angle for total internal reflection at the calcite-balsam layer of a
Nicol prism.

8.39* Draw a quartz Wollaston prism, showing all pertinent rays
and their polarization states.

8.40 The prism shown in Fig. P.8.40 is known as a Rochon polariz-
er. Sketch all the pertinent rays, assuming

(a) that it is made of calcite.

(b) that it is made of quartz.

(c) Why might such a device be more useful than a dichroic polariz-
er when functioning with high—flux density laser light?

(d) What valuable feature of the Rochon is lacking in the Wollaston
polarizer?

Figure P.8.40

8.41* Take two ideal Polaroids (the first with its axis vertical and
the second, horizontal) and insert between them a stack of 10 half-
wave plates, the first with its fast axis rotated /40 rad from the ver-
tical, and each subsequent one rotated 7/40 rad from the previous
one. Determine the ratio of the emerging to incident irradiance, show-
ing your logic clearly.

8.42* Suppose you were given a linear polarizer and a quarter-wave
plate. How could you determine which was which, assuming you also
had a source of natural light?

8.43* An Z-state traverses an eighth-wave plate having a horizontal
fast axis. What is its polarization state on emerging?

8.44* Figure P.8.44 shows two Polaroid linear polarizers and

between them a microscope slide to which is attached a piece of cel-
lophane tape. Explain what you see.

Figure P.8.44

8.45 A Babinet compensator is positioned at 45° between crossed
linear polarizers and is being illuminated with sodium light. When a
thin sheet of mica (indices 1.599 and 1.594) is placed on the com-
pensator, the black bands all shift by 1 of the space separating them.
Compute the retardance of the sheet and its thickness.

8.46 Imagine that we have randomly polarized room light incident
almost normally on the glass surface of a radar screen. A portion of it
would be specularly reflected back toward the viewer and would thus
tend to obscure the display. Suppose now that we cover the screen
with a right-circular polarizer, as shown in Fig. P.8.46. Trace the inci-
dent and reflected beams, indicating their polarization states. What
happens to the reflected beam?

Figure P.8.46

Glass screen

Right circular polarizer

Quarter-wave plate

Polarizer

8.47 Is it possible for a beam to consist of two orthogonal incoher-
ent P-states and not be natural light? Explain. How might you
arrange to have such a beam?



8.48* The specific rotatory power for sucrose dissolved in water at
20°C (A9 = 589.3 nm) is +66.45° per 10 cm of path traversed
through a solution containing 1 g of active substance (sugar) per cm’
of solution. A vertical P-state (sodium light) enters at one end of a 1-
m tube containing 1000 cm’ of solution, of which 10 g is sucrose. At
what orientation will the 2-state emerge?

8.49 On examining a piece of stressed photoelastic material between
crossed linear polarizers, we would see a set of colored bands
(isochromatics) and, superimposed on these, a set of dark bands (iso-
clinics). How might we remove the isoclinics, leaving only the
isochromatics? Explain your solution. Incidentally, the proper
arrangement is independent of the orientation of the photoelastic
sample.

8.50* Consider a Kerr cell whose plates are separated by a distance
d. Let ¢ be the effective length of those plates (slightly different from

the actual length because of fringing of the field). Show that
Ag = 27K€V?/d? [8.41]

8.51 Compute the half-wave voltage for a longitudinal Pockels cell
made of ADA (ammonium dihydrogen arsenate) at A, = 550 nm,
where rg3 = 5.5 X 1072 and n, = 1.58.

8.52* The Jones vector for an arbitrary linearly polarized state at an
angle 6 with respect to the horizontal is

cos 6
sin 0

Prove that this matrix is in agreement with the one in Table 8.5 for
a.P-state at +45°.

8.53 Find a Jones vector E, representing a polarization state orthog-

L

8.54* Two incoherent light beams represented by (1, 1, 0, 0) and (3,
0,0, 3) are superimposed.

onal to

Sketch both of these.

(a) Describe in detail the polarization states of each of these.

(b) Determine the resulting Stokes parameters of the combined beam
and describe its polarization state.

(c) What is its degree of polarization?

(d) What is the resulting light produced by overlapping the incoher-
entbeams (1, 1, 0, 0) and (1, —1, 0, 0)? Explain.

Problems 383

8.55* Show by direct calculation, using Mueller matrices, that a
unit-irradiance beam of natural light passing through a vertical linear
polarizer is converted into a vertical P-state. Determine its relative
irradiance and degree of polarization.

8.56* Show by direct calculation, using Mueller matrices, that a
unit-irradiance beam of natural light passing through a linear polariz-
er with its transmission axis at +45° is converted into a P-state at
+45°. Determine its relative irradiance and degree of polarization.

8.57* Show by direct calculation, using Mueller matrices, that a
beam of horizontal ?-state light passing through a \A-plate with its
fast axis horizontal emerges unchanged.

8.58* Confirm that the matrix

0

0
0
0
1

c o -
S - o O

0
0
will serve as a Mueller matrix for a quarter-wave plate with its fast
axis at +45°. Shine linear light polarized at 45° through it. What hap-

pens? What emerges when a horizontal #-state enters the device?

8.59* The Mueller matrix

1 0 0 0

0 C*+5%cosAp CS(1—cos Ap) —Ssin Agp
0 CS(1—cos Ap) S*+C*cos Ap  Csin Ap
0 S sin Ag —Csin Ag cos Agp

in which C = cos 2a and S = sin 2q, represents an arbitrary wave-
plate having a retardance Ag and a fast axis at an angle a measured
with respect to the horizontal. Use it to derive the matrix given in the
previous problem.

8.60* Beginning with the Mueller matrix for an arbitrary retarder
provided in the previous problem, show that it agrees with the matrix
in Table 8.6 for a quarter-wave plate with a vertical fast axis.

8.61 Derive the Mueller matrix for a quarter-wave plate with its fast
axis at —45°. Check that this matrix effectively cancels the one in
Problem 8.58, so that a beam passing through the two wave plates
successively remains unaltered.

8.62* Pass a beam of horizontally polarized linear light through
each one of the {A-plates in the two previous questions and describe
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the states of the emerging light. Explain which field component is
leading which and how Fig. 8.7 compares with these results.

8.63 Use Table 8.6 to derive a Mueller matrix for a half-wave plate
having a vertical fast axis. Utilize your result to convert an %-state
into an ¥-state. Verify that the same wave plate will convert an ¥- to
an %-state. Advancing or retarding the relative phase by /2 should
have the same effect. Check this by deriving the matrix for a half-
wave plate with a horizontal fast axis.

8.64 Construct one possible Mueller matrix for a right-circular
polarizer made out of a linear polarizer and a quarter-wave plate.
Such a device is obviously an inhomogeneous two-element train and
will differ from the homogeneous circular polarizer of Table 8.6. Test
your matrix to determine that it will convert natural light to an %-
state. Show that it will pass %-states, as will the homogeneous
matrix. Your matrix should convert Z-states incident on the input
side to J-states, whereas the homogeneous polarizer will totally
absorb them. Verify this.

8.65* If the Pockels cell modulator shown in Fig. 8.57 is illuminat-
ed by light of irradiance [;, it will transmit a beam of irradiance /, such
that

I, = I, sin*(Ag/2)

Make a plot of I,/I; versus applied voltage. What is the significance
of the voltage that corresponds to maximum transmission? What is
the lowest voltage above zero that will cause /, to be zero for ADP (A¢
= 546.1 nm)? How can things be rearranged to yield a maximum val-
ue of 1,/1; for zero voltage? In this new configuration what irradiance
results when V =V, ,»?

8.66 Construct a Jones matrix for an isotropic plate of absorbing
material having an amplitude transmission coefficient of ¢. It might
sometimes be desirable to keep track of the phase, since evenif r = 1,
such a plate is still an isotropic phase retarder. What is the Jones
matrix for a region of vacuum? What is it for a perfect absorber?

8.67 Construct a Mueller matrix for an isotropic plate of absorbing
material having an amplitude transmission coefficient of t. What
Mueller matrix will completely depolarize any wave without affect-
ing its irradiance? (It has no physical counterpart.)

8.68 Keeping Eq. (8.29) in mind, write an expression for the ran-
domly polarized flux density component (/,,) of a partially polarized
beam in terms of the Stokes parameters. To check your result, add a
randomly polarized Stokes vector of flux density 4 to an %-state of
flux density 1. Then see if you get I, = 4 for the resultant wave.

8.69* An optical filter can be described by a Jones matrix

cosa sina

—sina cos a
Obtain the form of the emerging light for each of the following inci-
dent beams:

(a) A plane polarized beam polarized at angle 6 to the horizontal (see
Problem 8.52).

(b) A left-circularly polarized beam.

(c) A right-circularly polarized beam.

(d) From the above, identify the filter and explain how it could be
constructed.

8.70 An optical filter can be described by a Jones matrix

cos® a
cos a sin «
(a) Obtain the form of the emerging beam when the incident light is
plane poloarized at angle 6 to the horizontal (see Problem 8.52).

cos « sin a
-2
sin” «

(b) Deduce from the result of part (a) the nature of the filter.

(c) Confirm your deduction above with at least one other test.

8.71* Two linear optical filters have Jones matrices

_l_—iw/4 L
Vv2¢ il

_ b i L=
and .,le—\/ze 41|

Identify these filters.

d1=

8.72* Aliquid cell containing an optically active sugar solution has
a Jones matix given by

11V -1V
N2 [1-V3 1+V3

(a) Determine the polarization of the emerging light if the incident
beam is a horizontal P-state.

(b) Determine the polarization of the emerging light if the incident
beam is a vertical P-state.

(c) Determine the angle of rotation produced by the optically active
material.



The intricate color patterns shimmering across an oil slick on
a wet asphalt pavement (see photo) result from one of the
more common manifestations of the phenomenon of interfer-
ence.* On a macroscopic scale we might consider the related
problem of the interaction of surface ripples on a pool of
water. Our everyday experience with this kind of situation
allows us to envision a complex distribution of disturbances
(as shown, e.g., in Fig. 9.1). There might be regions where two
(or more) waves have overlapped, partially or even complete-
ly canceling each other. Still other regions might exist in the
pattern, where the resultant troughs and crests are even more
pronounced than those of any of the constituent waves. After
being superimposed, the individual waves separate and con-
tinue on, completely unaffected by their previous encounter.

Although the subject could be treated from the perspective
of QED (p. 139), we’ll take a much simpler approach. The
wave theory of the electromagnetic nature of light provides a
natural basis from which to proceed. Recall that the expression
describing the optical disturbance is a second-order, homoge-
neous, linear, partial, differential equation [Eq. (3.22)]. As we
have seen, it therefore obeys the important Superposition
Principle. Accordingly, the resultant electric-field intensity E,
at a point in space where two or more lightwaves overlap, is
equal to the vector sum of the individual constituent distur-
bances. Briefly then, optical interference corresponds to the
interaction of two or more lightwaves yielding a resultant
irradiance that deviates from the sum of the component
irradiances.

“The layer of water on the asphalt allows the oil film to assume the
shape of a smooth planar surface. The black asphalt absorbs the
transmitted light, preventing back reflection, which would tend to
obscure the fringes.

These roughly circular interference fringes are due to an oil film on wet
pavement. They are fringes of equal thickness (see p. 404) and so don't
change when viewed at different angles. Of course, they appear in a
rainbow of colors.

Out of the multitude of optical systems that produce inter-
ference, we will choose a few of the more important to exam-
ine. Interferometric devices will be divided, for the sake of
discussion, into two groups: wavefront splitting and amplitude
splitting. In the first instance, portions of the primary wave-
front are used either directly as sources to emit secondary
waves or in conjunction with optical devices to produce virtu-
al sources of secondary waves. These secondary waves are
then brought together, thereupon to interfere. In the case of
amplitude splitting, the primary wave itself is divided into two
segments, which travel different paths before recombining and
interfering.



