Physics 100 Midterm II (practice)

 $[\text{speed} = \frac{\text{distance}}{\text{time}}; \quad \text{time} = \frac{\text{distance}}{\text{speed}}; \quad \text{distance} = \text{speed} \times \text{time}]$ $[\text{Work} = F \cdot d_{\parallel}; \quad K.E. = \frac{1}{2}mv^2; \quad \text{grav}. \quad P.E. = mgh; \quad \text{momentum} = m\vec{v}]$ $[F_{\text{grav}} = G\frac{m_1m_2}{d^2}, \quad G = 6.7 \times 10^{-11}\frac{Nm^2}{kg^2}; \quad g = G\frac{M_{\text{Earth}}}{R_{\text{Earth}}^2} = 10\frac{m}{s^2} \quad]$ $[F_{\text{elec}} = k\frac{g_1q_2}{d^2}, \quad k = 9 \times 10^9\frac{Nm^2}{coul^2}; \quad F_{\text{mag}} = \kappa\frac{I_1I_2\ell}{d}, \quad \kappa = 2 \times 10^{-7}\frac{N}{A^2}]$ $[\text{current} = \frac{\text{coulombs}}{\text{elapsed time}} = \frac{\text{voltage}}{\text{resistance}}; \quad \text{power} = \text{current} \times \text{voltage}]$ $[\text{wave speed} = \text{frequency} \times \text{wavelength}; \quad \text{wavelength} = \frac{\text{wave speed}}{\text{frequency}}]$ $[c = \text{speed of light in vacuum} = 3 \times 10^8 m/s; \quad E = mc^2; \quad \gamma = \frac{1}{\sqrt{1-v^2/c^2}}]$

Answer all 20 Questions.

- 1. Maxwell's theory indicated that light is a wave:
 - a) of mutually perpendicular \vec{E} and \vec{B} -fields.
 - b) that is totally unrelated to radio waves.
 - c) that is sometimes only \vec{E} -fields and other times only \vec{B} -fields.
 - d) all of the above.
- 2. Which of the following statements is true?
 - a) \vec{E} -fields are produced by electric currents.
 - b) Changing \vec{E} -fields produce \vec{B} -fields.
 - c) Changing \vec{B} -fields do not produce \vec{E} -fields.
 - d) \vec{E} -field lines never end.
 - e) \vec{B} -field lines start on + charges and end on charges.
- 3. Which of the following statements is not true?
 - a) Electrical forces can be attractive and repulsive.
 - b) The electrical force between two charges separated by a distance d is proportional to $1/d^2$.
 - c) In atoms, the electrical force keeps electrons in orbit around the positively charged nucleus.
 - d) The electrical forces between the electrons and the nucleus of an atom are much bigger than the gravitational force.
 - e) The gravitational forces between the electrons and the nucleus of an atom are much bigger than the electrical force.
- 4. The microwaves in an ordinary microwave oven have a wavelength in empty space $\lambda=0.02$ m. What is their frequency?
 - a) 6×10^{-10} Hz.
 - b) 6.7×10^{-11} Hz.
 - c) 1.5×10^{10} Hz.
 - d) $6 \times 10^{10} \text{ Hz}.$
 - e) 1.5×10^6 Hz.

5. Light from lasers shines through narrow slits and produce the intensity patterns as shown in the figures. What are the slit arrangements for the two cases?

a) upper: single slit; lower: double slit

b) upper: single slit; lower: single slit

c) upper: double slit; lower: single slit

d) upper: double slit; lower: single slit

- 6. The speed of light is related to which of the following?
 - a) The ratio of the strengths of the electric and gravitational forces.
 - b) The ratio of the strengths of the magnetic and gravitational forces.
 - c) The ratio of the strengths of the electric and magnetic forces.
 - d) None of the above.
- 7. Two 1-m long parallel wires are separated by a distance of 0.02m and each carry a current of 20A in *opposite* directions. The force between the wires is

a)
$$4 \times 10^{-9}$$
 N.

b)
$$8 \times 10^{-7}$$
 N.

c)
$$2 \times 10^{-5}$$
 N.

d)
$$4 \times 10^{-3}$$
 N.

e)
$$2 \times 10^{-1}$$
 N.

- 8. The forces on the two wires in the previous question
 - a) pushes the wires apart.
 - b) pulls the wires together.
 - c) pulls the left wire out of the page.
 - d) pushes the left wire into the page.

- 9. Two positive 20 Coulomb electric charges are separated by a distance of 0.02m. The force between the charges is
 - a) 9×10^9 N.
 - b) 9×10^{11} N.
 - c) 4.5×10^{15} N.
 - d) 9×10^{15} N.
 - e) 1.8×10^{16} N.
- 10. A wire carrying an electric current is placed near a magnet as shown. The force that the magnet exerts on the wire is
 - a) upward.
 - b) downward.
 - c) to the right.
 - d) to the left.
- 11. Two charges (indicated by A and B) produce an \vec{E} -field as shown. Which one of the following statements about the signs of A and B is true?
 - a) A is positive, B is negative.
 - b) A is negative, B is positive.
 - c) Both A and B are positive.
 - d) Both A and B are negative.
- 12. For charges A and B in the previous question: Which of the following statements about the magnitudes of the charges A and B is true?
 - a) A is bigger than B.
 - b) A is smaller than B.
 - c) A and B are the same.
 - d) Not enough information to tell.

- 13. Lenz' law states that the magnetic field created by an induced electric current
 - a) is always zero.
 - b) is directed so as to increase the influence that produced it.
 - c) is always the same no matter how it is produced.
 - d) is directed so as to oppose the influence that produced it.
- 14. Suppose that an astronaut travels to the star α -centauri, which is 4.3 cyr (light years) from the Earth, on a rocket ship at a speed of v=0.9c (i.e. 90% of the speed of light. Her twin brother remains at home, studying physics at the UH, (For v=0.9c, $\gamma=2.3$) According to her clock on her rocket ship, how long does it take her to get to α -centauri?
 - a) 4.3 yrs.
 - b) 3.9 yrs.
 - c) 4.8 yrs.
 - d) 1.7 yrs.
 - e) 2.1 yrs.
- 15. In reference to the woman-twin's trip in the previous problem: If, when measured when it is at rest, the rocket ship is 100 m long, how does it appear to the two twins during the trip?
 - a) she: 100 m; he: 43.5 m.
 - b) she: 43.5 m; he: 100 m.
 - c) she: 43.5 m; he: 43.5 m.
 - d) she: 100 m; he: 100 m.
 - e) she: 100 m; he: 230 m.
- 16. Still in reference to the woman-twin's trip of question 14: After she reaches α -centauri, the space-travelling twin immediately turns around and returns to Earth at the same speed. When she returns she finds that
 - a) she and her twin brother have aged by the same amount.
 - b) she has aged less than her brother.
 - c) she has aged more than her brother.
 - d) she is younger than when she started on her trip.

- 17. According to Einstein, the speed of light in empty space is $3 \times 10^8 \,\mathrm{m/s}$:
 - a) only in the restframe of the luminiferous Aether.
 - b) to all observers regardless of their state of motion.
 - c) only to observers that are at rest relative to the light source.
 - d) at only one time of the year; other times it is different.
- 18. The Sun's total power output is 4×10^{26} Watts (Joules/sec). How much of the Sun's mass is converted to energy each second?
 - a) 3.6×10^{42} kg.
 - b) 4.4×10^9 kg.
 - c) 1.3×10^{18} kg.
 - d) 1.4×10^{12} kg.
- 19. When Isaac Newton wrote down his laws of motion, he implicitly assumed that they worked equally well in every direction. What conservation law does this imply?
 - a) Conservation of momentum.
 - b) Conservation of angular momentum.
 - c) Conservation of energy.
 - d) Conservation of electric charge.
- 20. The temperature absolute zero (-273°C or -460°F) is the lowest temperature possible. What happens at absolute zero that makes this the lowest possible temperature?
 - a) The speed of light becomes very slow.
 - b) The energy of the random thermal atomic motions disappears.
 - c) Water starts to freeze.
 - d) Electrons stop orbiting atoms.