$\begin{array}{ll} \textbf{Physics 100} & \textbf{Midterm I (10/12/01)} \\ \text{speed} = \frac{\text{distance}}{\text{time}}; & \text{time} = \frac{\text{distance}}{\text{speed}}; & \text{distance} = \text{speed} \times \text{time} \\ h = \frac{1}{2}gt^2 & t = \sqrt{2h/g} & g = 10\frac{m}{s^2} & 1 \text{ lb} = 4.5 \text{ Newtons} \\ \text{Work} = F \cdot d_{\parallel}; & K.E. = \frac{1}{2}mv^2; & \text{grav. } P.E. = mgh \text{ weight} = mg \text{ Power} = \frac{\text{energy}}{\text{time}} \\ F_{\text{grav}} = G\frac{m_1m_2}{d^2}, & G = 6.7 \times 10^{-11} \frac{Nm^2}{kg^2}, & g_{Earth} = G\frac{M_{Earth}}{R_{Earth}^2} \\ F_{\text{elec}} = k\frac{q_1q_2}{d^2}, & k = 9 \times 10^9 \frac{Nm^2}{coul^2} \end{array}$

momentum = $m\vec{v}$; ang. momentum = $rmv = I\omega$ moment of inertia = $I = mr^2$ frequency = $\frac{1}{\text{period}}$ wave speed = frequency × wavelength

Answer all Questions.

- 1. Konishiki, the famous Sumo wrestler from Hawaii weighs 615 pounds. What is his mass?
 - **a**) 615 kg
 - **b**) 61.5 kg
 - **c)** 2767 N
 - **d**) 277 kg
- 2. Suppose you are on a space ship, far from the Earth and the influence of Earth's (or any other object's) gravity. What statement about your weight and mass is correct?
 - a) Both your mass and your weight stay the same.
 - b) Both your mass and your weight decrease.
 - c) Your mass stays the same and your weight decreases.
 - d) Your weight stays the same and your mass decreases.
- 3. A 70 kg astronaut is orbiting the Earth in a space shuttle. The shuttle circles the Earth with a constant speed. What statement is correct?
 - a) Her acceleration has value g and is pointed straight upwards.
 - b) Since her speed is constant, she is not accelerating.
 - c) Her acceleration has value q and is pointed straight ahead.
 - d) Her acceleration has value q and is pointed straight downwards.
- 4. A ball is thrown straight up with an initial upward speed of 20 m/s. What is its acceleration at the highest point in its trajectory?
 - a) 20 m/s^2 , upward.
 - **b)** 20 m/s^2 , downward.
 - c) 10 m/s^2 , upward.
 - d) 10 m/s^2 , downward.
 - **e**) 0.0

- 5. If the same ball was thrown upward with twice the initial speed, i.e. 40 m/s, how does its maximum height change?
 - a) $2 \times \text{ higher}$
 - **b)** $3 \times \text{ higher}$
 - c) $4 \times \text{higher}$
 - d) 8× higher
 - e) None of the above.
- 6. A 90 kg student climbs 30 flights of stairs to the roof of a bulding. Each flight of stairs has a vertical rise of 3 m. How much work does he do?
 - a) 0 joules
 - **b)** 81×10^2 joules
 - c) $81 \times 10^3 \ joules$
 - d) 81×10^4 joules.
- 7. Another 90 kg student runs for 4000 meters over level ground. How much work does he do?
 - a) 360 joules
 - **b)** 36×10^2 joules
 - c) 0 joules
 - d) 36×10^3 joules
 - e) 36×10^4 joules.
- 8. Why is it easier to maintain your balance on a bicycle that is moving that one that is standing still?
 - a) no difference, it only seems that way.
 - **b)** conservation of momentum.
 - c) conservation of angular momentum.
 - **d)** conservation of energy.
- 9. Why does a trapeze artist goes into a tuck when he wants to make a number of flips?
 - a) This helps him avoid dizziness.
 - b) This conserves momentum.
 - c) This reduces his moment of inertia and increases his angular velocity.
 - d) Only for appearances and nothing to do with physics.

- 10. Newton's second law states $\vec{F} = m\vec{a}$: i.e. the acceleration of an object is proportional to the applied force; the direction of the acceleration is the same as the direction of the force. This law applies equally well for any direction of the applied force. What symmetry is this?
 - a) rotational symmetry
 - b) time-translation symmetry
 - c) space-translation symmetry
 - d) force-acceleration symmetry
- 11. What conservation law does *space-translation* symmetry imply?
 - a) conservation of angular momentum
 - **b)** conservation of energy
 - c) conservation of momentum
 - d) none of the above
- 12. Newtons third law says that every force has an equal and opposite "reaction" force. Right now, the Earth's gravity is pulling you downward with a force equal to your weight. What is the reaction force to this?
 - a) The upward force your chair exerts on you.
 - **b)** A force between the floor and your chair.
 - c) A force you exert on the Earth, pulling it upwards.
 - d) All of the above.
 - e) None of the above.
- 13. The graph at the right illustrates the output of two sources of sound. Where does the sound of the two sources interfere destructively?
 - a) t_2
 - **b)** t_1 and t_2
 - c) t_2 and t_3
 - d) t_1 and t_3
 - **e)** $t_1, t_2 \text{ and } t_3$

- 14. Suppose a physics 100 teacher makes a deal with the University President such that he gets paid \$1 for his 1^{st} class, \$2 for his 2^{nd} , \$4 for his 3^{rd} , \$8 for his 4^{th} , etc. How much should he be paid for his 41^{st} class?
 - **a**) \$80.
 - **b)** (about) \$ 1 thousand.
 - c) (about) \$ 1 million.
 - d) (about) \$ 1 billion.
 - e) (about) \$ 1 trillion.
- 15. A 90 kg UH warrior quarterback dives toward the goal line with a speed of 4 m/s. A 120 kg BYU linebacker tries to stop him by diving directly at him with a speed of 2.5 m/s. They collide in mid-air right over the goal line and the BYU player hangs on to the UH guy. Which of the following happens immediately after the collision?
 - a) The players travel at a speed of $0.28 \ m/s$ in the same direction as the BYU player was initially moving.
 - b) The players travel at a speed of 2.5 m/s in the same direction as the BYU player was initially moving.
 - c) The players travel at a speed of $4.0 \ m/s$ in the same direction as the UH player was initially moving.
 - d) The players travel at a speed of $0.28 \ m/s$ in the same direction as the UH player was initially moving.

- 16. What of the following features are common for gravitational and electrical forces?
 - a) They are both always repulsive.
 - b) They are both always attractive.
 - c) They both have an inverse-square-law distance behaviour.
 - d) They are the same strength.

- 17. The planet Mars has a mass of 6.6×10^{23} kg and a radius of 3.4×10^6 m. What is the acceleration due to gravity on the surface of Mars?
 - **a)** 0.0 m/s^2 .
 - **b)** 1.3 m/s^2 .
 - c) 1.7 m/s^2 .
 - **d)** 3.8 m/s^2 .
 - **e)** 10 m/s^2 .
- 18. The speed of light is $v=3\times 10^8~m/s$, and the Sun is $d=1.5\times 10^{11}~m$ from the Earth. How long does it take light to travel from the Sun to the Earth?
 - a) 4.5×10^8 seconds
 - **b)** 5000 seconds
 - c) 500 seconds
 - d) 50 seconds
 - e) 5×10^{-3} seconds.
- 19. Suppose I roll a disk, a hoop, and a solid ball, all with the same mass and radius down an inclined plane. Which one gets to the bottom fastest?
 - a) The hoop.
 - b) The disk.
 - c) The ball.
 - d) They all get there at the same time.
- 20. Suppose you are standing next to a road and a loud speeding car passes by. What statement best describes the frequency of the sound you hear?
 - ${f a}$) The frequency stays constant.
 - b) The frequency is higher when the car is approaching and abruptly gets lower when it is going away from you.
 - c) The frequency is lower when the car is approaching and abruptly gets higher when it is going away from you.
 - **d)** The frequency is lower when the car is approaching and slowly gets higher as it passes by.