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Cosmic antinuclei
Measurement of cosmic-ray antinuclei (antiproton, antideuteron, 
antihelium) is an exciting way to search for new physical 
phenomena:

Talk outline:

● Cosmic rays as messengers
● Potential primary sources of antinuclei
● Uncertainties of production and propagation in our Galaxy
● Experimental cosmic-ray search updates
● Path forward
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Cosmic rays as messengers
modulation 

by solar wind

scattering in 
magnetic fields,
interaction with
interstellar medium

deflection in 
magnetic field
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Snapshot of cosmic-ray status

AMS-02: status 2018

● AMS-02 started new precision era 
of direct cosmic-ray 
measurements

● Lots of interesting new findings for 
cosmic-ray physics concerning 
sources, acceleration, transport, 
interstellar medium

● Also available: helium isotopes, 
Neon, Magnesium, Silicon, Sulfur  
Iron, Deuterium

● Focus of this talk: antinuclei
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Existence of dark matter
Bullet cluster
red: hot X-ray emitting gas
blue: distribution of dark matter

• dark matter exists, but nature remains unknown!

• luminous matter cannot describe the structure of the Universe

• evidence for dark matter comes from many different type of 
observations on different distance scales

Abell 1689:
gravitational
lensing

PLANCK 
CMB

rotation curves
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Why do we need something new?

• dark matter is so far only gravitationally visible and 
must be a new non-baryonic type of particle 

– neutral
– with relatively high mass to explain the structure 

formation of the universe
– with only very weak interactions with standard particles (if at all)

• discovering the nature of dark matter is one of the most striking problems in physics
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How is dark matter interacting?

• natural assumption: dark matter was in 
thermal equilibrium in the early universe 
expansion led to dark matter freeze-out

• WIMP miracle (?): weak-scale particles 
are ideal candidates (~100-1000GeV) to 
reproduce observed relic dark matter 
density

→ dark matter must be able to interact 
with standard model particles?

• Situation is complicated and dark matter 
particle searches have not been 
conclusive so far
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Diffuse Galactic g-ray excess?

• gamma-ray excess at the galactic center → ~30GeV dark matter 
particle?

• unresolved millisecond pulsars?
• pion production in molecular clouds
• tension with dwarf galaxies

Daylan et al. (2014)
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Low-energy antiproton excess

● A small p excess in AMS-02 data above secondary background predictions at R~10 GV was reported in 
various studies → significance level unclear

● This excess is in agreement with explaining the g-ray excess at the Galactic Center with a signal from dark 
matter annihilation
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Unexplained features in cosmic antiparticles? M. Boudaud et al., Phys. Rev. 
Research 2, 023022 (2020)

antiproton
P. von Doetinchem et 
al., JCAP08 035 (2020)

• combined fit with antiproton and diffuse gamma-rays from the Galactic Center 
→ 70-80GeV DM particle? (ongoing debate)

• unexplained feature in positrons:
– astrophysical origin → pulsars
– SNR acceleration
– dark matter annihilation

• understanding astrophysics background is a challenge → better constraints on cosmic-ray propagation and production needed

1                       10                     100                    1000
R[GV]
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Antideuteron discovery

p
_

n
_

● deuterons are the nuclei of heavy water and antideuterons 
are the corresponding antimatter (Z=-1,m=1876MeV, s=1)

● antideuterons were discovered in 1965 at Brookhaven 
(p+Be) and CERN and were the first bound antimatter ever 
discovered

● antideuterons have not been detected in cosmic rays
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Antideuterons as a probe of dark matter

• Low-energy antideuterons from dark matter 
annihilation or decay can be orders of 
magnitude above the astrophysical 
background.

• Antideuterons are an important dark matter 
search technique that needs to be explored 
much more!

Korsmeier et al. 2017
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Antideuteron model sensitivity
● Low-energy antideuterons are essentially free 

of astrophysics background 

● Wide range of dark matter models, e.g.:
● Generic 70GeV WIMP annihilation

model that explains antiproton excess and g-
rays from Galactic center

● Dark matter gravitino decay
● Extra dimensions
● Heavy DM models with Sommerfeld 

enhancement
● Dark photons (inaccessible to other 

techniques)
● Selection of publications:

Braeuninger et al.  Physics Letters B 678, 20–31 (2009)
Cui et al, JHEP 1011, 017 (2010)
Hryczuk et al., JCAP 1407, 031 (2014).
Korsmeier et al., Physical Review D 97, 103011 (2018)
Randall & Xu, JHEP (2020)

T. Aramaki et al., Astropart. Phys. 74, 6 (2016)

astrophysics background at ~10-7–10-8(s m2 sr GeV/n)-1
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Cosmic-ray antihelium
● AMS-02 reported that several 

He candidate events have 
been observed
→ interpretations are actively 
ongoing

● Possible antihelium candidate 
explanations include:

● Secondary astrophysical 

background

● Dark matter annihilation or 

decay

● Nearby antistar: at distance of 

~1pc

● No explanation of antiproton 
nor antihelium should 
overproduce antideuterons 
relative to existing limits

Review based on 2nd Cosmic-ray Antideuteron Workshop:
JCAP08(2020)035, arXiv:2002.04163
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Uncertainties
● Cosmic-ray propagation:

● Fits of cosmic-ray nuclei data are very important to constrain cosmic-ray propagation models (e.g., B/C, d/α, Li/C, 
Li/O, Be/C, Be/O, B/O) and models depend on production cross sections of primary cosmic rays with the interstellar 
medium

● Inelastic interactions of antinuclei in the Galaxy 
→ ALICE conducted cross section measurements

● Antinuclei formation process breaks the degeneracy between 
heavier antinuclei and antiprotons:

● Antiproton production cross section not very well known

● Coalescence: d can be formed by an p-n pair if relative momentum is 
small compared to coalescence momentum p0

● Thermal model: Antinuclei directly formed at hadronization stage

● Wigner-function based, semi-classical model has been developed

→ Measurements of relevant primary cosmic ray and interstellar medium cross sections are important
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(Anti)nuclei coalescence

• (Anti)nuclei yield:

• use an event-by-event coalescence approach with hadronic generators

dark matter conventional production 
(e.g., p+ISM) & dark matter
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Coalescence modeling D. Gomez-Coral et al., Phys Rev D 98, 023012 (2018)

● Event-by-event approach with hadronic generators

● find p0 for each data set where antiproton and antideuteron results exist

● p0 show strong energy depedence in the range most important for 
cosmic rays

● more high-statistics p-p data needed to constrain antinuclei 
formation models
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Antihelium coalescence

● expanded modified MC coalescence model 
to merging multiple antinucleons from p-p 
interactions 
→ requires quite a bit of computing power 
(~5,000 years)

● use the p0 behavior from antideuterons
● Very good agreement with ALICE antihelium-

3 data (p-p at √s=7TeV)

A. Shukla et al. Phys Rev D 102, 063004 (2020)
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Issues of the coalescence model
● phase space for ion production depends on the available energy in the 

formation interaction
● highly sensitive to two-particle correlations between the participating 

(anti)nucleons 
● (anti)neutron spectra are challenging to access experimentally, potential 

asymmetries should be evaluated
● hadronic generators failing to describe (anti)proton and (anti)neutron spectra 

automatically result in a shift of p0
● spin is not considered
● not a QM model
● generators not really tuned for antiparticle production

→ use dedicated antiproton, deuteron, and antideuteron data
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From production to flux at Earth Šerkšnytė et al., Phys. Rev. D 105, 083021 (2022)

Propagation equation:

● Dxx, V, and Dpp are the spatial diffusion coefficient, 
the convection velocity, and the diffusive re-
acceleration coefficient, respectively. 

● ψ/τ accounts for particles lost via decay, 
fragmentation and inelastic interactions in the 
Galaxy

Antideuteron flux at the top
of the atmosphere

(Coalescence)
        (Wigner)
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Propagation uncertainties
● An important constraint for antinuclei 

flux from dark matter annihilations is 
the Galactic halo size,  which directly 
scales the observable flux

● Amount of particle production in the 
Galaxy depends on the integrated 
traversed matter density 
→ ratio of secondary-to-primary 
cosmic rays, e.g., Lithium/Carbon, 
Boron/Carbon or Deuteron/Helium

● Need to know fragmentation cross 
sections from laboratory 
measurements 
→ limitation: cross sections are 
currently only known on the 10-20% 
level

Génolini et al., 
arXiv:2307.06798

Proposed number of 
interactions
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Future measurements
● NA61/SHINE at CERN SPS:

● Fixed target experiment
● High statistics p studies
● C-p fragmentation cross section measurements
● Deuteron production cross section, d/p ratio
● Antiparticle correlation studies

● LHCb at LHC:
● Antideuteron production in heavy hadron decays 

and in fixed-target collisions
● Antihelium-3 from antilambda-b decays

● ALICE at LHC
● Antinuclei production
● Antinuclei inelastic cross sections

● AMBER at CERN SPS (upgraded COMPASS):
● Fixed target experiment
● High-statistics antiproton production cross section 

measurements
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Last bit of the way for cosmic rays

NASA/JPL-Caltech/SwRI

● Charged low-energy particles can 
be strongly deflected by the 
magnetosphere

● reverse computation of cosmic-ray 
trajectories to investigate which 
particles can make it through to 
the detector

PEBS
● Interactions of cosmic rays with the 

atmosphere alter the detectable 
flux

● grammage of matter in front of 
37km: ~6g/cm2 (typical balloon 
altitude, cosmic ray traverse about 
6-10g/cm2 in the Galaxy)

● Solar energetic particles interact 
with Galactic cosmic rays and 
modify the cosmic flux
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Identification challenge

Required rejections for antideuteron 
detection:

– protons: > 108 - 1010

– He-4: > 107 - 109

– electrons: > 106 - 108

– positrons: > 105 - 107

– antiprotons: > 104 - 106

Antideuteron measurement with balloon 
and space experiments require:

– strong background 
suppression

– long flight time and large 
acceptance
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AMS-02 on the International Space Station

• AMS is a multi-purpose particle physics detector installed on the International Space Station

• large international collaboration (~600 people from 60 countries involved)

• AMS collected more than100 billion of events since May 2011
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AMS-02 antinuclei analyses

• antinuclei identification:

– momentum measured in the form of rigidity 

– charge from TOF, TRD, tracker

– lower velocities: Time Of Flight scintillator system

– higher velocities: Ring Image Cherenkov detector
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Antihelium candidates by AMS-02

● antihelium-3 and antihelium-4 
candidates have been identified 
→ would be a very 
transformative finding

● massive background simulations 
are carried out to evaluate 
significance

● more data are needed
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AMS-02 status and outlook
● A few antideuteron and antihelium nuclei 

candidates have been observed by 
AMS-02

● AMS-02 will continue to take data for the 
ISS lifetime

● AMS-02 tracker upgrade:
● Increase detector acceptance by 300%
● Ready to deliver to NASA in 2025

new tracker 
layer on top
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The GAPS experiment

mass: ~2,500kg
power: 1.3kW

• The General AntiParticle Spectrometer is the 
first experiment dedicated and optimized for low-
energy cosmic-ray antinuclei search 

• Requirements: long flight time, large acceptance, 
large identification power, flight at low-
geomagnetic cutoff location

● GAPS will deliver: 
● a precision antiproton measurement in an 

unexplored energy range <0.25 GeV/n
● antideuteron sensitivity 2 orders of magnitude 

below the current best limits, probing a variety 
of DM models across a wide mass range

● leading sensitivity to low-energy cosmic 
antihelium nuclei

• GAPS is under construction, preparing for 
first Antarctic Long Duration Balloon flight in 
December 2024

3.6m



P. von Doetinchem        Cosmic-ray Antinuclei        Jul 2023 - p.30

GAPS principle

Color scale corresponds 
to deposited energy

● antiparticle slows down and stops 
in material

● near-unity chance for creation of an 
excited exotic atom (E

kin
~E

I
)

● deexcitation:
● fast ionization of bound electrons 

(Auger) 
→ complete depletion of bound 
electrons

● Hydrogen-like exotic atom 
(nucleus+antideuteron) 
deexcites via characteristic X-ray 
transitions depending on 
antiparticle mass

● Nuclear annihilation with 
characteristic number of 
annihilation products

incoming
antideuteron

before annihilation, 
an excited exotic 
atom is formed that 
emits X-rays when 
deexciting
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Time-of-Flight
• Tasks: 

– Main trigger system, special antinuclei trigger 
achieves a manageable rate of ~500 Hz 
(down from 200 kHz individual TOF paddle 
rate)

– Tracking of incoming (anti)particles and 
outgoing secondary particles

– Particle velocity measurement

• Plastic scintillator (Eljen EJ-200: 160-180cm long, 
0.6 cm thick) with 6 SiPMs per end (Hamamatsu 
S13360-6050VE)

• fast sampling with custom-made readout board, 
based on the DRS-4 ASIC: <400ps timing 
resolution achieved in test paddles (end-to-end 
time difference) and in GAPS functional prototype 
(GFP).
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Tracker
• Tracker acts as target and tracking device

• GAPS can accommodate 1,440 4” Si(Li) detectors, 
2.5mm thickness (1109 detectors calibrated for first flight)

• Operation at temperature of –35C to –45C, cooling 
system will use novel OHP approach

• Readout via custom ASIC: integrated low-noise 
preamplifier with large dynamic range: 10keV to 100MeV

• Publications:
– Perez et al., NIM A 905, 12 (2018)
– Kozai et al., NIM A 947, 162695 (2019)
– Rogers et al., JINST 14, P10009 (2019)
– Saffold et al., NIM A 997, 165015 (2021)
– Manghisoni et al., IEEE 68 (11), 2661 (2021)
– Kozai et al., NIM A 1034, 166820 (2022)
– Xiao et al., in preparation (2023)
– Roach et al., in preparation (2023)
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GAPS Vacuum Testing
GAPS during thermal vacuum testing

part o
f T

OF umbrella
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Future beyond AMS-02 and GAPS

● AMS-100 a space-based platform (10-year oepration at Sun-Earth 
Lagrange Point 2) using a thin, large-volume, high-temperature 
superconducting solenoid magnet

● large geometrical acceptance of 100 m2sr will measure the 
antideuteron spectrum, test heavier cosmic antimatter (Z≤−2). 

● NIM A 944 162561 (2019)

● ALADino: large accpetance, superconducting magnet

● Operation at Langrange Point 2

Nuclear antimatter up to 1000 GV, dark matter at the multi 
TeV/c2, composition of CR in the multi 10 TV
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Conclusion & Outlook
● Cosmic-ray antinuclei are important means to the study new physics

● All antinuclei species need to be explained together

● Uncertainties need to be reduced:
● Antideuteron and antihelium formation are not well understood
● Cross section measurements need to be conducted on for the 

interpretation

● AMS-02 continues collecting data

● GAPS will have first flight in two years
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Next step: coalescence improvements
● Following the ALICE approach, studiyng two-nucleon correlations in p-p 

data allows for extracting the size of the formation region R(pT):

● Data-driven quantum-mechanical description of coalescence:

S: emission source function, ψ 2-(anti)nucleon wave function, 
φ internal (anti)deuteron wave function
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GAPS identification technique

GAPS identification technique uses:

● Energy loss in the detector of the 
antinucleus (depends on Z and b)

● Deexcitation X-rays from exotic 
atom

● Multiplicity of charged annihilation 
products
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p+p annihilation at rest

● test of annihilation physics in 
Geant4 is ongoing

● use antiproton data for 
validation

● work with Geant4 developers
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Event reconstruction R. Munini et al., Astropart. Phys. 133, 102640 (2021)

● For the event reconstruction 
it is critical to identify a well 
defined primary track 
→ b measurement, energy 
deposition, column density

● The primary track is used as 
a seed for the determination 
of the stopping vertex with 
the corresponding secondary 
tracks
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