Cosmic-Ray Antinuclei from Dark Matter and the GAPS Experiment

UCLA Dark Matter March 2023

Philip von Doetinchem

philipvd@hawaii.edu Department of Physics & Astronomy University of Hawai'i at Manoa http://www.phys.hawaii.edu/~philipvd

Unexplained features in cosmic rays

- combined fit with antiproton and diffuse gamma-rays from the Galactic Center \rightarrow 80GeV DM particle (ongoing debate)
- unexplained feature in positrons:
 - astrophysical origin \rightarrow pulsars
 - SNR acceleration
 - dark matter annihilation
- understanding astrophysics background is a challenge → better constraints on cosmic-ray propagation and astrophysical production are needed
 P. von Doetinchem
 Antinuclei and GAPS
 Mar 2023 - p.2

Status Cosmic-ray Antinuclei Searches

- Potential p excess in AMS-02 data above secondary ٠ background predictions at R~10 GV was found in various studies
 - \rightarrow significance level unclear
- AMS-02 reported at conferences the observation of antihelium candidates (~1/year)
 - \rightarrow interpretations are actively ongoing
- Possible physics models that explain antihelium candidates include:
 - Secondary astrophysical background
 - Dark matter annihilation or decay ٠
 - Nearby antistar: at distance of ~1pc
- No explanation of antiproton nor antihelium should ٠ overproduce antideuterons relative to existing limits
- Search for antinuclei with independent technique is critical ٠
- Review based on 2nd Cosmic-ray Antideuteron Workshop: "Cosmic-ray Antinuclei as Messengers of New Physics: Status and Outlook for the New Decade" [JCAP08(2020)035, arXiv:2002.04163]

Antinuclei and GAPS P. von Doetinchem

Antideuteron model sensitivity

T. Aramaki et al., Astropart. Phys. 74, 6 (2016)

- Wide range of dark matter models, e.g.:
 - Generic 70GeV WIMP annihilation model that explains antiproton excess and γrays from Galactic center
 - Dark matter gravitino decay
 - Extra dimensions
 - Heavy DM models with Sommerfeld enhancement
 - Dark photons (inaccessible to other techniques)
 - Selection of publications: Braeuninger et al. Physics Letters B 678, 20–31 (2009) Cui et al, JHEP 1011, 017 (2010) Hryczuk et al., JCAP 1407, 031 (2014). Korsmeier et al., Physical Review D 97, 103011 (2018) Randall & Xu, JHEP (2020)

P. von Doetinchem Antinuclei and GAPS Mar 2023 - p.4

Antideuteron Workshops at UCLA

2014

2019

Mar 2023 - p.5

organized with Rene Ong

P. von Doetinchem Antinuclei and GAPS

The GAPS experiment

- The General AntiParticle Spectrometer is the first experiment dedicated and optimized for low-energy cosmic-ray antinuclei search
- Requirements: long flight time, large acceptance, large identification power

• GAPS will deliver:

Antinuclei and GAPS

- a precision antiproton measurement in an unexplored energy range <0.25 GeV/n
- antideuteron sensitivity 2 orders of magnitude below the current best limits, probing a variety of DM models across a wide mass range
- leading sensitivity to low-energy cosmic antihelium nuclei
- GAPS is under construction, preparing for first Antarctic Long Duration Balloon flight in December 2023

GAPS brinciple

- antiparticle slows down and stops in material
- near-unity chance for creation of an excited exotic atom $(E_{kin} \sim E_{l})$
 - deexcitation: fast ionization of bound electrons (Auger)
 - \rightarrow complete depletion of bound electrons
 - Hydrogen-like exotic atom (nucleus+antideuteron) deexcites via characteristic X-ray transitions depending on antiparticle mass

Mar 2023 - p.7

Nuclear annihilation with characteristic number of annihilation products

Antiproton sensitivity

F. Rogers et al., Astropart. Phys. 145, 102791 (2022)

- Precision antiproton spectrum in unexplored low-energy range (<0.25 GeV/n): ~500 antiprotons for each longduration balloon flight
- Validation of technique:
 - First cosmic rays detected with the exotic atom method
 - Reconstruction of annihilation signature
 - X-rays from exotic atom deexcitation
 - Test models for atmospheric effects
 - → Reduces the systematic uncertainties for antideuteron search
- Probe light dark matter models and primordial black hole evaporation

Antihelium-3 sensitivity

N. Saffold et al., Astropart. Phys. 130, 102580 (2021)

Time-of-Flight

- Tasks:
 - main trigger system, special antinuclei trigger achieves a manageable rate of ~500 Hz (down from 200 kHz individual TOF paddle rate)
 - Tracking of incoming (anti)particles and velocity measurement
- Plastic scintillator (Eljen EJ-200: 160-180cm long, 0.6 cm thick) with 6 SiPMs per end (Hamamatsu S13360-6050VE)
- fast sampling with custom-made readout board, based on the DRS-4 ASIC: <400ps timing resolution achieved in test paddles (end-to-end time difference) and in GAPS functional prototype (GFP).

P. von Doetinchem

Tracker

- Tracker acts as target and tracking device
- GAPS can accommodate 1,440 4" Si(Li) detectors,
 2.5mm thickness (1109 detectors calibrated for first flight)
- Operation at temperature of –35C to –45C, cooling system will use novel OHP approach
- Readout via custom ASIC: integrated low-noise preamplifier with large dynamic range: 10keV to 100MeV
- Publications:
 - Perez et al., NIM A 905, 12 (2018)
 - Kozai et al., NIM A 947, 162695 (2019)
 - Rogers et al., JINST 14, P10009 (2019)
 - Saffold et al., NIM A 997, 165015 (2021)
 - Manghisoni et al., IEEE 68 (11), 2661 (2021)

P. von Doetinchem

- Kozai et al., NIM A 1034, 166820 (2022)
- Xiao et al., in preparation (2023)
- Roach et al., in preparation (2023)

Antinuclei and GAPS

Oscillating heat pipe cooling system

Okazaki et al., J. Astr.. Instr. 3 (2014) Fuke et al., J. Astron. Instrum. (2017) Okazaki et al., Appl. Therm. Eng. (2018) Fuke et al., NIM A 1049, 168102 (2023)

2012 prototype

- passive cooling approach developed at JAXA/ISAS:
- small capillary metal tubes filled with a phase-changing refrigeration liquid
- small vapor bubbles form in the fluid
 - \rightarrow expand in warm sections/contract in cool sections
- rapid expansion and contraction of these bubbles create thermo-contraction hydrodynamic waves that transport heat
- no active pump system is required
- First prototype was flown in 2012 and another prototype was flown from Ft. Sumner in 2019
 P. von Doetinchem Antinuclei and GAPS Mar 2023 p.12

Integration status 3/23

P. von Doetinchem

Antinuclei and GAPS

Timeline

- Integration and systems testing in spring 2023
- Thermal vacuum and compatibility testing summer 2023
- First flight in Dec. 2023 from McMurdo, Antarctica

P. von Doetinchem Antinuclei and GAPS Mar 2023 - p.14

GAPS path forward

UNIVERSITY of HAWAI'I'

GAPS will deliver:

- a precision antiproton measurement in an unexplored energy range <0.25 GeV/n
- antideuteron sensitivity 2 orders of magnitude below the current best limits, probing a variety of DM models across a wide mass range
- the only complementary probe of the AMS-02 antinuclei signal
- GAPS instrument integration is ongoing \rightarrow first flight in austral summer 2023

P. von Doetinchem Antinuclei and GAPS

GAPSimulator AR app

Get it on the PlayStore and App store \rightarrow search for "GAPSimulator" Developed by UH undergrads: Layne Fujioka, Ben Weiss, Zac Bailey