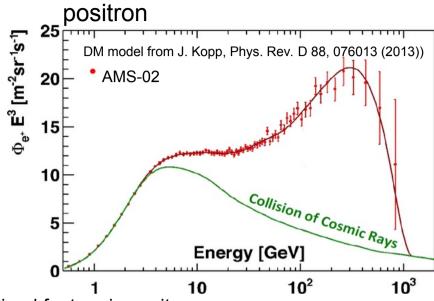
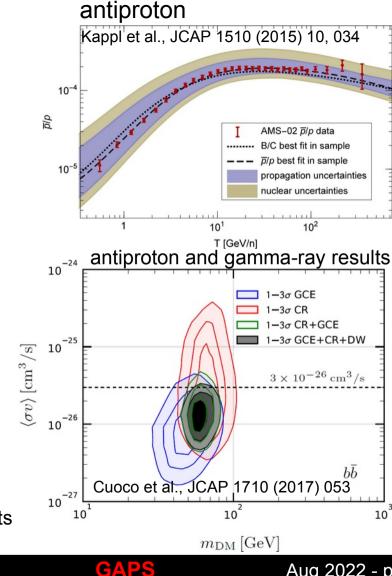
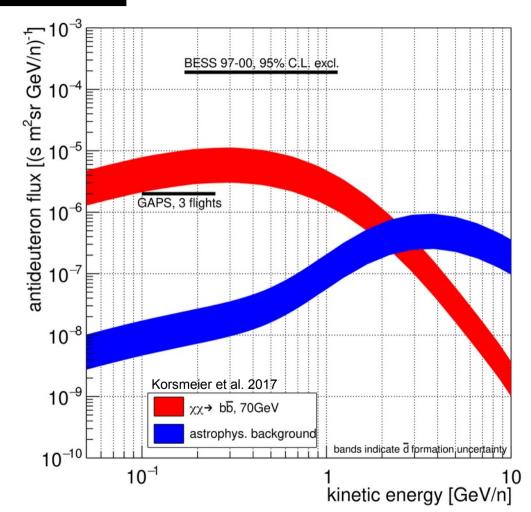
The General AntiParticle Spectrometer Search for Dark Matter using Cosmic-ray Antinuclei


TeVPA August 2022

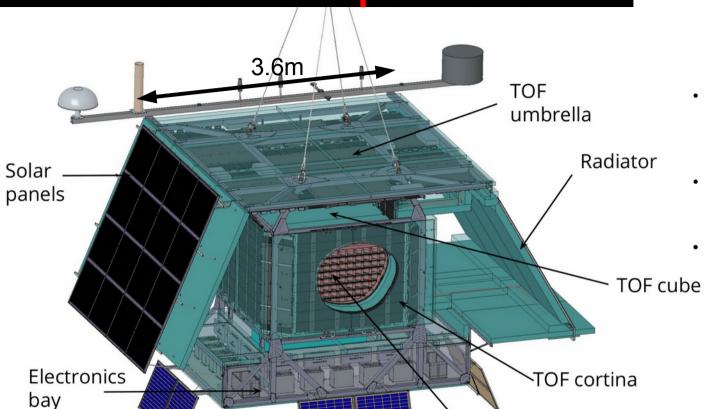
Philip von Doetinchem on behalf of the GAPS collaboration


philipvd@hawaii.edu
Department of Physics & Astronomy
University of Hawai'i at Manoa
http://www.phys.hawaii.edu/~philipvd

Unexplained features in cosmic rays



- unexplained feature in positrons:
 - astrophysical origin → pulsars
 - SNR acceleration
 - dark matter annihilation
- combined fit with antiproton and diffuse gamma-rays from the Galactic Center → 80GeV DM particle?
- understanding astrophysics background is a challenge better constraints on cosmic-ray propagation and astrophysical production are needed



Status Cosmic-ray Antinuclei Searches

- Potential p excess in AMS-02 data above secondary background predictions at R~10 GV was found in various studies
 → significance level unclear
- AMS-02 reported at conferences the observation of antihelium candidates (~1/year)
 - → interpretations are actively ongoing
- No explanation of antiproton nor antihelium should overproduce antideuterons
- Possible physics models that explain antihelium candidates include:
 - Secondary astrophysical background
 - Dark matter annihilation or decay
 - Nearby antistar: at distance of ~1pc
- Search for antinuclei with independent technique is critical
- Review based on 2nd Cosmic-ray Antideuteron Workshop "Cosmic-ray Antinuclei as Messengers of New Physics: Status and Outlook for the New Decade" [JCAP08(2020)035, arXiv:2002.04163]

The GAPS experiment

- The General AntiParticle Spectrometer is the first experiment dedicated and optimized for low-energy cosmic-ray antinuclei search
- Requirements: long flight time, large acceptance, large identification power

GAPS will deliver:

- a precision antiproton measurement in an unexplored energy range <0.25 GeV/n
- antideuteron sensitivity 2 orders of magnitude below the current best limits, probing a variety of DM models across a wide mass range
- leading sensitivity to low-energy cosmic antihelium nuclei
- GAPS is under construction, preparing for first Antarctic Long Duration Balloon flight

mass: ~2,500kg power: 1.3kW

P. von Doetinchem

Tracker

GAPS

Aug 2022 - p.4

GAPS principle

- antiparticle slows down and stops in material
 - large chance for creation of an excited exotic atom (E_{kin}~E_I)
 - deexcitation:
 fast ionization of bound electrons
 (Auger)
 - → complete depletion of bound electrons
 Hydrogen-like exotic atom
 - (nucleus+antideuteron)
 deexcites via characteristic X-ray
 transitions depending on
 antiparticle mass
- Nuclear annihilation with characteristic number of annihilation products

GAPS antideuteron model sensitivity

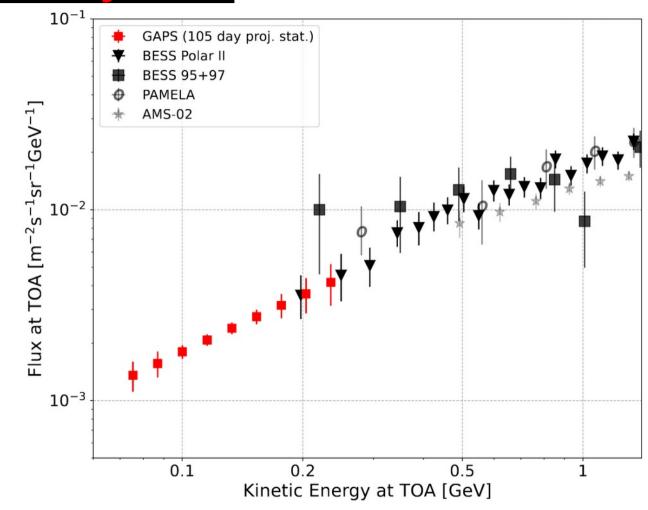
T. Aramaki et al., Astropart. Phys. 74, 6 (2016)

- Low-energy antideuterons are essentially free of astrophysics background
- GAPS is sensitive to a wide range of dark matter models, e.g.:
 - Generic 70GeV WIMP annihilation model that explains antiproton excess and γ rays from Galactic center
 - Dark matter gravitino decay

Randall & Xu, JHEP (2020)

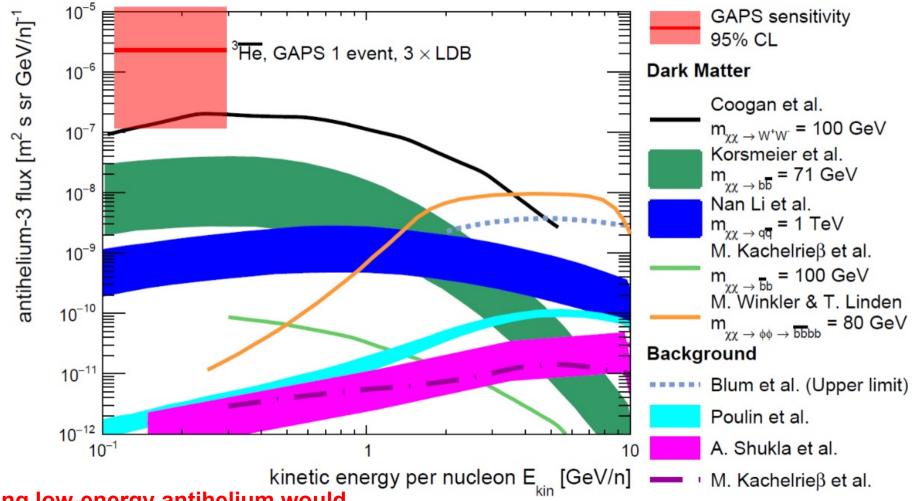
- Extra dimensions
- Heavy DM models with Sommerfeld enhancement Dark photons (inaccessible to other techniques)
- Selection of publications: Braeuninger et al. Physics Letters B 678, 20–31 (2009) Cui et al, JHEP 1011, 017 (2010) Hryczuk et al., JCAP 1407, 031 (2014). Korsmeier et al., Physical Review D 97, 103011 (2018)

 10^{-5} GeV/n) d GAPS 3σ sensitivity S 105 days (3 flights) 70 GeV bb (MED)] 10⁻⁶ 5 TeV (MAX) hidden photon: 10 TeV (MAX) $m_{\rm y} = 50 \, {\rm GeV}, \, m_{\rm A} = 30 \, {\rm GeV} \, ({\rm MED})$ 500 GeV Wino (MAX) — — m_y = 50 GeV, m_A = 50 GeV (MED) 0.10 1.00 kinetic energy [GeV/n] ▼astrophysics background at ~10⁻⁷-10⁻⁸(s m² sr GeV/n)⁻¹


P. von Doetinchem

GAPS Aug 2022 - p.6

Antiproton sensitivity


F. Rogers et al., arXiv:2206.12991

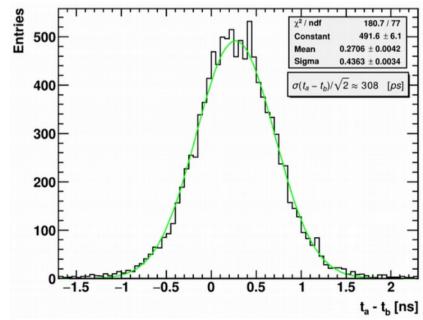
- Precision antiproton spectrum in unexplored low-energyrange (<0.25 GeV/n): ~500 antiprotons for each long-duration balloon flight
- Validation of technique:
 - Reconstruction of annihilation signature
 - X-rays from exotic atom deexcitation
 - Test models for atmospheric effects
 - → Reduces the systematic uncertainties for antideuteron search
- Probe light dark matter models and primordial black hole evaporation

Antihelium-3 sensitivity

N. Saffold et al., Astropart. Phys. 130, 102580 (2021)

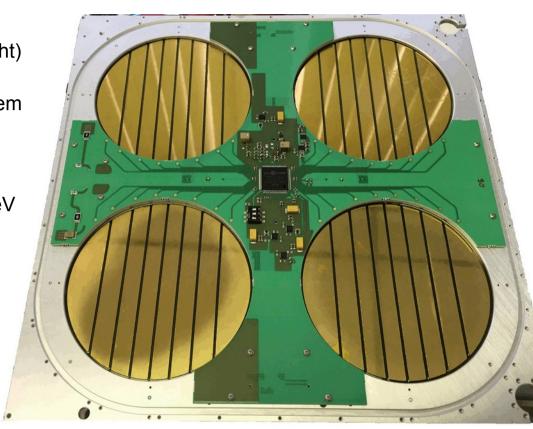
Finding low-energy antihelium would be truly revolutionary new physics

P. von Doetinchem

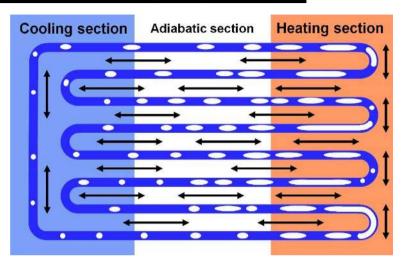

GAPS

Aug 2022 - p.8

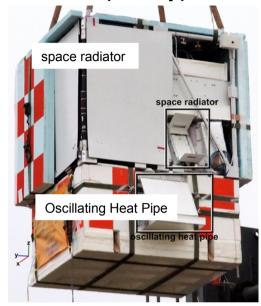
Time-of-Flight



- Tasks:
 - main trigger system, special antinuclei trigger achieves a manageable rate of ~500 Hz (down from 200 kHz individual TOF paddle rate)
 - velocity measurement
- Plastic scintillator (Eljen EJ-200: 160-180cm long, 0.6 cm thick) with SiPMs (Hamamatsu S13360-6050VE)
- fast sampling with DRS4 ASIC: <400ps timing resolution achieved in test paddles (end-to-end time difference) and in GAPS functional prototype (GFP).


Tracker

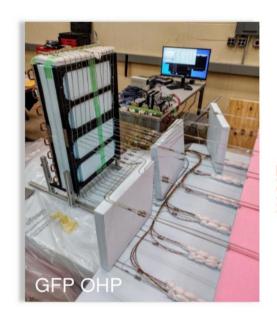
- Tracker acts as target and tracking device
- GAPS can accommodate 1,440 4" Si(Li) detectors,
 2.5mm thickness (1109 detectors calibrated for first flight)
- Operation at temperature of -35C to -45C, cooling system will use novel OHP approach
- Readout via custom ASIC: integrated low-noise preamplifier with large dynamic range: 10keV to 100MeV
- Publications:
 - Perez et al., NIM A 905, 12 (2018)
 - Kozai et al., NIM A 947, 162695 (2019)
 - Rogers et al., JINST 14, P10009 (2019)
 - Saffold et al., NIM A 997, 165015 (2021)
 - Xiao et al., in preparation (2022)

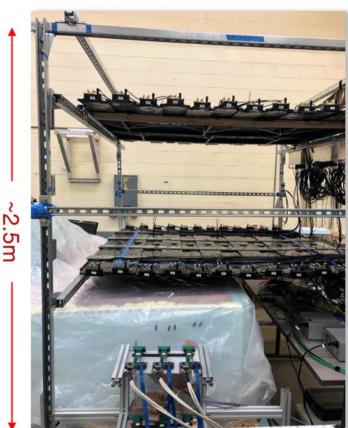


Oscillating heat pipe cooling system

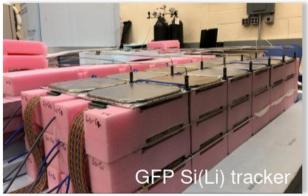
2012 prototype

- passive cooling approach developed at JAXA/ISAS:
- small capillary metal tubes filled with a phase-changing refrigeration liquid
- small vapor bubbles form in the fluid
 - → expand in warm sections/contract in cool sections
- rapid expansion and contraction of these bubbles create thermo-contraction hydrodynamic waves that transport heat
- · no active pump system is required
- First prototype was flown in 2012 and another prototype was flown from Ft. Sumner in 2019


Okazaki et al., J. Astr.. Instr. 3 (2014) Fuke et al., J. Astron. Instrum. (2017) Okazaki et al., Appl. Therm. Eng. (2018)


P. von Doetinchem

GAPS


Aug 2022 - p.11

GAPS Functional Prototype (GFP)

- Protoype: 3 layers of Si(Li) tracker (36 modules): readout with flight ASIC, 2 layers of TOF above
- Goals: test and operate all components together, test readout chain, collect X-ray data, collect muon data

Integration of the flight instrument

Si(Li) modules

Gondola

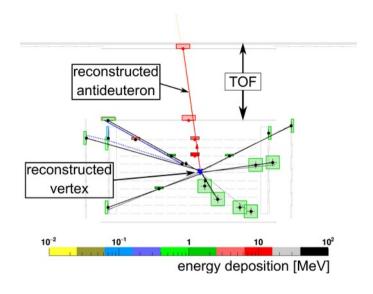
GAPS balloon payload (under integration)

OHP

Timeline

- Integration in fall 2022
- Ground testing in spring 2023
- Thermal vacuum test summer 2023
- First flight in 2023/24 from McMurdo, Antarctica

GAPS path forward



- **GAPS** will deliver:
 - a precision antiproton measurement in an unexplored energy range <0.25 GeV/n
 - antideuteron sensitivity 2 orders of magnitude below the current best limits, probing a variety of DM models across a wide mass range
 - the only complementary probe of the AMS-02 antinuclei signal
- GAPS instrument integration is ongoing → first flight in austral summer 2023