Experimental Search for Cosmic-ray Antinuclei with GAPS

MIAPP – Antinuclei in the Universe? February 2022

Philip von Doetinchem on behalf of the GAPS collaboration

philipvd@hawaii.edu Department of Physics & Astronomy University of Hawai'i at Manoa http://www.phys.hawaii.edu/~philipvd

Antideuteron identification challenge

Required rejections for antideuteron detection:

- protons: > 10⁸ 10¹⁰
- He-4: > 10⁷ 10⁹
- electrons: > 10⁶ 10⁸
- positrons: > 10⁵ 10⁷
- antiprotons: > 10⁴ 10⁶

Antideuteron measurement with balloon and space experiments require:

- strong background suppression
- long flight time and large acceptance

The GAPS experiment

- The General AntiParticle Spectrometer is the first experiment dedicated and optimized for low-energy cosmic-ray antinuclei search
- Requirements: long flight time, large acceptance, large identification power

GAPS will deliver:

GAPS

- a precision antiproton measurement in an unexplored energy range <0.25 GeV/n
- antideuteron sensitivity 2 orders of magnitude below the current best limits, probing a variety of DM models across a wide mass range
- provide leading sensitivity to low-energy cosmic antihelium nuclei
- GAPS is under construction, preparing for first Antarctic Long Duration Balloon flight

GAPS principle

- antiparticle slows down and stops in material
- large chance for creation of an excited exotic atom (E_{kin}~E_I)
 - deexcitation: fast ionization of bound electrons (Auger)
 - \rightarrow complete depletion of bound electrons
 - Hydrogen-like exotic atom (nucleus+antideuteron) deexcites via characteristic X-ray transitions depending on antiparticle mass
- Nuclear annihilation with characteristic number of annihilation products

GAPS

GAPS model sensitivity

- GAPS is sensitive to a wide range of dark matter models, e.g.:
 - Generic 70GeV WIMP annihilation model that explains antiproton excess and γ-rays from Galactic center
 - Dark matter gravitino decay
 - Extra dimensions
 - Dark photons
 - Heavy DM models with Sommerfeld enhancement
- Primordial black holes (antiprotons)

GAPS

Feb 2022 - p.5

• Finding low-energy antihelium would be truly revolutionary new physics

P. von Doetinchem

von Doetinchem et al., Astropart. Phys. 54, 93 (2014)

Prototype GAPS [2012]

P. von Doetinchem

GAPS

Time-of-Flight

P. von Doetinchem

- Tasks:
 - main trigger system, critical to reduce data rate to manageable level (~500Hz)
 - velocity measurement
- Plastic scintillator: Eljen EJ-200: 160-180cm long, 0.6 cm thick
- SiPM: Hamamatsu S13360-6050VE
- fast sampling with DRS4 ASIC: ~300ps timing resolution end-to-end/√2 timing has been demonstrated in the lab

GAPS

Trigger design

- main background: protons, alpha, carbon
- High-speed trigger and veto:
 - stopping events deposit more energy (lower beta)
 - annihilation events produce more TOF hits
 - paddle combinations can be used to constrain to zenith angle
- smart combination reduces trigger rate to be low 500Hz

TOF electronics

- Waveforms for every trigger
- Fast timing/complete event: useful for distinguishing multiple hits in a counter
- DRS4 for digitization
 - low power, fast: 2 GS/s (up to 1024 Samples)
 - All chips synchronized to global clock

Tracker

- Tracker acts as target and tracking device
- GAPS can accommodate 1,440 4" Si(Li) detectors, 2.5mm thickness
- Operation at relatively high temp of -35C to -45C, cooling system will use novel OHP approach
- Fabrication scheme developed at Columbia U and MIT, produced by private company Shimadzu, Japan
- Publications:
 - Perez et al., NIM A 905, 12 (2018)
 - Kozai et al., NIM A 947, 162695 (2019)
 - Rogers et al., JINST 14, P10009 (2019)
 - Saffold et al., NIM A 997, 165015 (2021)

Si(Li) detector development

- Lithium is applied to the front surface of B-doped p-type Si and diffused through short depth
- Li atoms donate electrons, resulting in an n-type Si lattice layer and leftover free positive Li ions
- under reverse bias, positive Li ions move away from the n-type region
 → compensate acceptor atoms in the p-type bulk
 - \rightarrow compensate impurities in the Si
- drifting procedure creates a thick compensated region (4.6days at 600V and 100C)
- ultrasonic machining on the n+(Li) contact → guard ring structure, reduces leakage current, much better energy resolution

P. von Doetinchem

- electrodes are thermal-evaporated ohmic/blocking contacts
- Passivation is applied

Tracker qualification

- Single detector test shows the required resolution of the detectors
- Detector module calibration facilities are set up at MIT and UHM
- Status (Feb 2022):
 - 1119 detectors produced
 - 805 calibrated (~95% flight quality)

Tracker electronics

P. von Doetinchem

- readout via custom ASIC: integrated low-noise preamplifier
- large dynamic range: 10keV to 100MeV
- 32 analog readout channels
- 11 bits ADC

Manghisoni et al., IEEE Transactions on Nuclear Science 68 (11) 2661 (2021)

Feb 2022 - p.13

GAPS

Oscillating heat pipe cooling system

S. Okazaki et al., J. Astr., Instr. 3 (2014)

- passive cooling approach developed at JAXA/ISAS:
- small capillary metal tubes filled with a phase-changing refrigeration liquid
- small vapor bubbles form in the fluid
 - \rightarrow expand in warm sections/contract in cool sections
- rapid expansion and contraction of these bubbles create thermo-contraction hydrodynamic waves that transport heat
- no active pump system is required
- First prototype was flown in 2012 and another prototype was flown from Ft. Sumner in 2019 Feb 2022 - p.14

P. von Doetinchem

Oscillating heat pipe cooling system

• Most of the Si(Li) detectors are cooled down to lower than -40C. Thermal design will be further optimized to satisfy all detector temperature requirements

Oscillating heat pipe cooling system

• Ground cooling equipment just arrived in the U.S. in January

GAPS Functional Prototype (GFP)

- prototype was built in fall 2021
- 3 layers of Si(Li) tracker (36 modules): readout with flight ASIC
- 2 layers of TOF above
- Goals:
 - test and operate all components together
 - test readout chain
 - collect X-ray data
 - collect muon data \rightarrow tracking

TOF

tracker

TOF

GFP tracker

- approx 1h of muon data
- all tracker detectors which we expected to be operating did report data

- TOF data look good so far
- Charge and voltage peak distributions look very clean and as expected
- Position resolution about 3cm (using σ_t =400ps)

GAPS identification technique

GAPS identification technique uses:

- Energy loss in the detector of the antinucleus (depends on Z and β)
- Deexcitation X-rays from exotic atom
- Multiplicity of charged annihilation products

p+p annihilation at rest

Geant4.10.5 simulations

- test of annihilation physics in Geant4 is ongoing
- use antiproton data for validation
- work with Geant4 developers

P. von Doetinchem

GAPS

Event reconstruction

- For the event reconstruction it is critical to identify a well defined primary track
 → β measurement, energy deposition, column density
- The primary track is used as a seed for the determination of the stopping vertex with the corresponding secondary tracks

Event reconstruction

Vertex reconstruction efficiency

• The vertex is the position in space which minimize the distances from all the reconstructed tracks

P. von Doetinchem

Vertex resolution

• The vertex is the position in space which minimize the distances from all the reconstructed tracks

P. von Doetinchem

GAPS

Deexcitation X-rays

- antiparticle slows down and stops in material
- large chance for creation of an excited exotic atom (E_{kin}~E_l)
- deexcitation:
 - fast ionization of bound electrons (Auger)
 → complete depletion of bound electrons
 - Hydrogen-like exotic atom (nucleus+antideuteron) deexcites via characteristic X-ray transitions depending on antiparticle mass

von Doetinchem

- exotic atomic X-ray model for antinuclei was implemented in Geant4 for Si, C, Al
- other X-rays: decay of daughter nuclei (e.g., Al, Mg, Na) → good understanding required

Antiproton sensitivity

- Demonstrate GAPS sensitivity for cosmic antiprotons using the full GAPS simulation and event reconstruction
- · Atmospheric interaction have to be taken into account:
 - Propagation top-of-atmosphere (TOA) fluxes through atmosphere to top-of-instrument (TOI) with PLANETOCOSMICS
 - Rejection of positive nucleus backgrounds (primarily p and α) required at the level of ~10⁶ for a clean antiproton sample
 - Atmospherically-produced antiprotons are an intrinsic background for the cosmic measurement, forming the bulk of the TOI antiproton flux for $\cos(\theta) < 0.5$
 - Attenuation effects of cosmic antiprotons need to be corrected for

P. von Doetinchem

Antiproton identification

- Select events without obvious interactions in the TOF
- Ensure proper velocity reconstruction to reduce background from high-velocity particles
- Use of different identification variables for the final selection of antiprotons:
 - Number of tracks from vertex
 - Average velocity of tracks from vertex (slow for particles, fast for antiparticles)
 - Number of hits in tracker
 - Average energy deposition per hit
 - Energy depositions in outer and inner TOF
 - Total energy depositions on the primary track

Feb 2022 - p.28

- Isotropy of annihilation signature
- Updated antiproton sensitivity will be published soon

GAPS

Antihelium-3 sensitivity

Other analysis development

- Proton, alpha, deuteron: "first light" physics (~100 million events per flight):
 - Calibrate instrument, understand trigger, atmospheric effects
 - Use in antiparticle analysis: clean way to study energy deposition behavior of deuterons and protons without annihilation products
 - d/He ratio can provide constraints on cosmic-ray galactic propagation
 - alpha break-up in the atmosphere into deuterons will help understand the atmospheric model
- Machine learning techniques for more particle identification power: velocity reconstruction, energy deposition corrections, vertex reconstruction

GAPS augmented reality app

- Undergrad L. Fujioka developed AR app for Android with UROP funding: https://www.phys.hawaii.edu/~philipvd/pvd_research_gapsapp.html
- Updates and iOS version are on the way

P. von Doetinchem

GAPS

Integration started

P. von Doetinchem

GAPS path forward

• GAPS is the first experiment optimized specifically for low-energy antiprotons, antideuterons, and antihelium

GAPS will deliver:

- a precision antiproton measurement in an unexplored energy range <0.25 GeV/n
- antideuteron sensitivity 2 orders of magnitude below the current best limits, probing a variety of DM models across a wide mass range
- the only complementary probe of the AMS-02 antinuclei signal
- GAPS instrument integration beginning now

P. von Doetinchem