Simulationen der Wechselwirkungen von kosmischer Strahlung mit der Erdatmosphäre

DPG Heidelberg 2007 9. März 2007

Philip von Doetinchem

philip.doetinchem@rwth-aachen.de

I. Physikalisches Institut B, RWTH Aachen

Status of galactic cosmic ray measurements

★ good agreement between cosmic ray propagation/production model and data in background fluxes (p, e^-, α , other heavy nuclei) → general model works!

Ph. von Doetinchem DPG Heidelberg 2007 – Wechselwirkung kosmischer Strahlung mit der Erdatmosphäre 5/3/2007 – p.2/14

Status of galactic cosmic ray measurements

- ★ good agreement between cosmic ray propagation/production model and data in background fluxes (p, e^-, α , other heavy nuclei) → general model works!
- ★ e^+ , \bar{p} , γ are sensitive to possible dark matter signals (annihilation) and fluxes/fractions show some unexplained features

 \rightarrow need precise measurement of fluxes up to high energies!

measurements are old: HEAT (balloon: 94/95), AMS (space: 98)

Ph. von Doetinchem DPG Heidelberg 2007 – Wechselwirkung kosmischer Strahlung mit der Erdatmosphäre 5/3/2007 – p.2/14

PEBS detector

PEBS detector proposal:

- cosmic ray mearsurements
 @ North- or Southpole
- use of a balloon to measure in Earth's atmosphere @ 40 km altitude

Detector properties:

flight time:	20 days
acceptance:	2500 cm ² sr
weight:	< 2 t
magnetic field:	1 T
momentum resolution:	$\sigma_p = rac{0.14\%}{ m GeV} p \oplus 2\%$
proton-positron rejection:	$\mathcal{O}(10^6)$
electron-antiproton rejection:	$\mathcal{O}(10^5)$

 \rightarrow Details: presentation H. Gast

Ph. von Doetinchem DPG Heidelberg 2007 – Wechselwirkung kosmischer Strahlung mit der Erdatmosphäre 5/3/2007 – p.3/14

Air shower in Earth's atmosphere

⇒ careful study of secondary fluxes caused by atmosphere needed!

Ph. von Doetinchem DPG Heidelberg 2007 – Wechselwirkung kosmischer Strahlung mit der Erdatmosphäre 5/3/2007 – p.4/14

PLANETOCOSMICS

Simulation of the Earth's atmosphere and magnetic field with PLANETOCOSMICS (GEANT4)

(developed by L. Desorgher, Uni. Bern http://cosray.unibe.ch/ laurent/planetocosmics)

general properties:

- atmospheric model: NRLMSISE00
- magnetic field: IGRF 2005
- solar modulation: mean field approximation

properties of this simulation:

- input spectra fluxes: conventional Galprop model (tuned in the lower energy region) (galdef 500180 → astro-ph/0406254)
- particle gun in 500 km altitude produces isotropic distribution in altitudes

Ph. von Doetinchem DPG Heidelberg 2007 – Wechselwirkung kosmischer Strahlung mit der Erdatmosphäre 5/3/2007 – p.5/14

Scheme of simulations and analysis

Ph. von Doetinchem DPG Heidelberg 2007 – Wechselwirkung kosmischer Strahlung mit der Erdatmosphäre 5/3/2007 – p.6/14

Verification of atmospheric physics model

Comparison of simulations with BESS data in Ft. Sumner, TX (09/2001).

Simulation seems to work within the errors!

Ph. von Doetinchem DPG Heidelberg 2007 – Wechselwirkung kosmischer Strahlung mit der Erdatmosphäre 5/3/2007 – p.7/14

Mean radiation length in Dec. 2005 at the South Pole

- calculated with the atmospheric model and the trajectory of the cosmic rays
- mean number of radiation lengths before
 40 km is 39 % for isotropic distribution

Mean radiation length in Dec. 2005 at the South Pole

Corrections & detector properties

$$N_{e^+}^{\mathsf{PEBS}} = N_{e^+}^{\mathsf{prim}} \cdot \epsilon_{e^+}^{\mathsf{PEBS}} \cdot \epsilon_{e^+}^{\mathsf{atmo}} + N_{e^+}^{\mathsf{sec}} \cdot \epsilon_{e^+}^{\mathsf{PEBS}} + \frac{N_p^{\mathsf{tot}}}{R_p} + N_{e^-}^{\mathsf{tot}} \cdot \epsilon_{e^- \to e^+}^{\mathsf{PEBS}}$$

meaning of quantities:

• number of particles (GalProp, PLANETOCOSMICS):

$$N_{e^+}^{\text{PEBS}}, N_{e^+}^{\text{prim}}, N_{e^+}^{\text{sec}}, N_p^{\text{tot}}, N_{e^-}^{\text{tot}}$$

• **detection efficiency** (detector simulation):

 $\epsilon_{e^+}^{\text{PEBS}} = 50\%$

• proton-positron Rejection (detector simulation):

 $R_p = 10^6$ for all energies

• electron-antiproton Rejection (detector simulation):

 $R_{e^-} = 10^5$ for all energies

with very high rejection for $E_{kin} < 1 \text{ GeV}$ (TOF \rightarrow time resolution)

• loss of particles in atmosphere (PLANETOCOSMICS):

 $\epsilon_{a+}^{\text{atmo}}$ energy dependent

• tracker misidentification (detector simulation):

$$e_{e^- \to e^+}^{\text{PEBS}}$$
 from $\sigma_p = \frac{0.14\%}{\text{GeV}} p \oplus 2\%$

error estimates:

- statistical errors: $\sqrt{N_{\dots}}$
- systematic errors for atmospheric physics: 10%
- systematic errors for detector properties: 3 %

Ph. von Doetinchem DPG Heidelberg 2007 – Wechselwirkung kosmischer Strahlung mit der Erdatmosphäre 5/3/2007 – p.9/14

Positrons

Ph. von Doetinchem DPG Heidelberg 2007 – Wechselwirkung kosmischer Strahlung mit der Erdatmosphäre 5/3/2007 – p.10/14

Antiprotons

flux composition of simulated antiproton flux in 40 km composition of simulated antiproton flux in 40 km

> altitude 40 km = $0.25 \, m^2 sr$ acceptance =time 20 days

=

solar Modulation Φ 750 MV =

Ph. von Doetinchem DPG Heidelberg 2007 – Wechselwirkung kosmischer Strahlung mit der Erdatmosphäre 5/3/2007 – p.11/14

Fractions (lower sys. errors!) : $e^+/(e^+ + e^-)$ & \bar{p}/p

Ph. von Doetinchem DPG Heidelberg 2007 – Wechselwirkung kosmischer Strahlung mit der Erdatmosphäre 5/3/2007 – p.12/14

Photon fluxes in 40 km

 \star diffuse γ 's, averaged over all directions in the galaxy

★ too many secondaries, flux measurement not possible!

Ph. von Doetinchem DPG Heidelberg 2007 – Wechselwirkung kosmischer Strahlung mit der Erdatmosphäre 5/3/2007 – p.13/14

Summary & Outlook

What have been done:

- simulation of cosmic ray measurement on the South Pole in 40 km altitude with PEBS
- ★ error estimation including the correction of the main uncertainties
- ★ good measurement of positron fraction possible (ca. 10²× statistics of HEAT)
 - good measurement of antiproton ratio possible

Summary & Outlook

What have been done:

- simulation of cosmic ray measurement on the South Pole in 40 km altitude with PEBS
- ★ error estimation including the correction of the main uncertainties
- ★ good measurement of positron fraction possible (ca. 10²× statistics of HEAT)
- ★ good measurement of antiproton ratio possible

What should be done:

- ★ study the detecability of heavy ions to measure e.g. B/C ratio
- ★ develope a simulation for a better estimation of solar modulation
- study a better implementation of high energetic alphas in GEANT4?