Dark matter identification with cosmic-ray antideuterons

FAU Erlangen-Nürnberg October 2017

Philip von Doetinchem

philipvd@hawaii.edu Department of Physics & Astronomy University of Hawai'i at Manoa http://www.phys.hawaii.edu/~philipvd

Existence of dark matter

Bullet cluster red: hot X-ray emitting gas blue: distribution of dark matter

dark matter exists, but nature remains unknown!

- luminous matter cannot describe the structure of the Universe
- evidence for dark matter comes from many different type of observations on different distance scales

P. von Doetinchem

Oct 17 – p.2

PLANCK

CMB

rotation curves

Abell 1689: gravitational

lensing

Why do we need something new?

- dark matter is so far only gravitationally visible and must be a new non-baryonic type of particle
 - neutral
 - with relatively high mass to explain the structure formation of the universe
 - with only very weak interactions with standard particles (if at all)
- discovering the nature of dark matter is one of the most striking problems in physics

P. von Doetinchem	Antideuterons	Oct 17 – p.3
-------------------	---------------	--------------

How is dark matter interacting?

- **natural assumption:** dark matter was in thermal equilibrium in the early universe expansion led to dark matter freeze-out
- WIMP miracle (?): weak-scale particles are ideal candidates (~100-1000GeV) to reproduce observed relic dark matter density

→ dark matter must(?) be able to interact with standard model particles

Direct dark matter searches (scattering)

- direct dark matter search: measure cross-section via nuclear recoil
- typically large, heavy and very pure target materials in deep mines (~10 operating experiments)
- experiments start probing theoretically preferred parameter space
- very challenging experiments

 some experiments claim discovery, some set exclusion limits

Cosmic rays as messengers

modulation

by solar wind

deflection in magnetic field

scattering in magnetic fields, interaction with interstellar medium proton > 10MeV red electron > 10MeV green positron > 10MeV blue neutron > 10MeV turquoise muon > 10MeV magenta photon > 10keV yellow

20GeV proton interactions with atmosphere

P. von Doetinchem

Antideuterons

zoom

Dark matter signal in positrons?

- dark matter models are severely constrained:
 - large cross sections
 - leptophilic?
- explained by nearby pulsars producing electrons and positrons?
 anisotropy should be smaller than AMS-02
 - anisotropy should be smaller than AMS-02 limit, but still measurable with ACTs
- different acceleration mechanisms
- important to see how the positron fraction continues

Antideuterons

Diffuse Galactic γ-ray excess?

Uncovering a gamma-ray excess at the galactic center

Antiprotons

- latest AMS-02 antiproton results are also very actively interpreted
- discussion is inconclusive if an additional component is needed or not
- better constraints on cosmic-ray propagation and astrophysical production are needed

(GeV/n)⁻¹]

ັ່ມ 10⁻⁴

Elux [m⁻² 10-5 10-5 10-5

Antideuteron 10-8

°,

Physics Reports

Volume 618, 7 March 2016, Pages 1-37

+ models with heavy dark matter

Oct 17 – p.11

Antideuterons are the most important unexplored indirect detection technique!

P. von Doetinchem

Antideuterons

Antideuterons are exciting

- They have never been discovered in cosmic rays (artificially produced since the 60s)
- The anti-side for cosmic rays is very unknown (only positron and antiproton known)
- Our situation is comparable to the mid 70s before the first detection of a handful of antiprotons in 1979
- Antideuteron detection could be a very strong hint for new physics (astrophysical background very low)

Uncertainties

modulation

by solar wind

DM annihilation or decay

deflection in magnetic field

dark matter annihilation or decay

- dark matter clumping
- antideuteron production
- Galactic propagation
- solar modulation
- geomagnetic deflection
- atmospheric interactions
- interactions in detector

proton > 10MeV red electron > 10MeV green positron > 10MeV blue neutron > 10MeV turquoise muon > 10MeV magenta photon > 10keV yellow

zoom 20GeV proton interactions with atmosphere

P. von Doetinchem

Antideuterons

(Anti)deuteron formation

• d (\overline{d}) can be formed by an p-n (\overline{p} - \overline{n}) pair if coalescence momentum p_0 is small

$$\gamma_d \frac{\mathrm{d}^3 N_d}{\mathrm{d} p_d^3} = \frac{4\pi p_0^3}{3} \left(\gamma_p \frac{\mathrm{d}^3 N_p}{\mathrm{d} p_p^3} \right) \left(\gamma_n \frac{\mathrm{d}^3 N_n}{\mathrm{d} p_n^3} \right)$$

use an event-by-event coalescence approach with hadronic generators

Schwarzschild &Zupancic, Physical Review 129, 854 (1963) Ibarra & Wild, Physical Review D88 020314 (2013) Aramaki et al., Physics Reports 618, 1 (2016)

p.14

P. von Doetinchem	Antideuterons	Oct 17 -
-------------------	---------------	----------

Issues of the coalescence model

- phase space for ion production depends on the available energy in the formation interaction
- coalescence is highly sensitive to two-particle correlations between the participating (anti)nucleons
 → no a-priori reason to expect two-particle correlations from one generator to be more reliable than from another
- spatial separation

 \rightarrow antinucleons originating from weakly decaying particles with macroscopic decay lengths are produced too far from the primary interaction vertex

- generators not really tuned for antiparticle production
 - \rightarrow tune with antiproton, deuteron, and antideuteron data
 - \rightarrow test antiproton spectra first, antineutron data are hard to come by
- hadronic generators do not include coalescence formation

Modified antideuteron coalescence Together with Gom

Together with Gomez, Menchaca (UNAM)

p+p at 158 GeV/c with EPOS-LHC, |y| < 0.5

- coalescence afterburner added to EPOS-LHC, Geant4
- more data needed to constrain (anti)deuteron coalescence model

- multi-purpose, fixed-target experiment at the CERN SPS (NA61/SHINE facility paper: JINST 9 (2014) P06005)
 - precise measurements of properties of produced particles: q, m, p
- cosmic-ray antideuteron production happens between 40 and 400GeV
 - SPS energies from 9 to 400GeV are ideal
- data under discussion from the NA61/SHINE strong interactions program:
 - p+LH data taken at 13, 20, 31, 40, 80,158GeV/c + 400GeV/c (2016)

- high momentum resolution: $\sigma(p)/p^2 \approx 10^{-4} (GeV/c)^{-1}$ (at full B=9Tm)
- ToF walls resolution:
 - ToF-L/R: σ(t)≈60ps
 - ToF-F: σ(t)≈120 ps
- Good particle identification:
 - σ(dE/dx)/<dE/dx>≈0.04
 - σ(minv)≈5 MeV
- high detector efficiency: > 95%

Oct 17 – p.17

event rate: 70Hz ٠

P. von Doetinchem

Antideuterons

d/p ratio

Geomagnetic cutoff – 5/19/11

 reverse computation of antiproton trajectories starting at the same location with different rigidities

Geomagnetic cutoff – 3/7/12

- reverse computation of antiproton trajectories starting at the same location with different rigidities
- change in magnetic environment changes the trajectories drastically
 → changes geomagnetic cutoff values

Geomagnetic cutoff map – 5/19/11

 geomagnetic cutoff for antiprotons averaged over an isotropic incoming particle distribution

 average geomagnetic cutoff efficiency depends on flight location (LDB = antarctic trajectory, ULDB = COSI flight from Wanaka, New Zealand)

P. von Doetinchem

Antideuterons

Identification challenge

Required rejections for antideuteron detection:

- protons: > 10⁸ 10¹⁰
- He-4: > 10⁷ 10⁹
- electrons: > 10⁶ 10⁸
- **positrons**: > 10⁵ 10⁷
- antiprotons: > 10⁴ 10⁶

Antideuteron measurement with balloon and space experiments require:

- strong background suppression
- long flight time and large acceptance

AMS-02 on the International Space Station

AMS is a multi-purpose particle physics detector installed on the International Space Station large international collaboration (~600 people from 60 countries involved) AMS collected 10th of billions of events since May 2011

Antideuterons

Oct 17 – p.24

P. von Doetinchem

AMS-02 antideuteron analysis

	e⁻	р	He,Li,Be,Fe	γ	e⁺	p, d	He, C
TRD γ=E/m		۲	Υ		V V V V	Y	γ
TOF dE/dx, velocity	۲	Ţ	ጉ ጉ	T	Ŧ	÷	ř
Tracker dE/dx, momentum		$\overline{}$		人		\mathcal{I}	ノ
RICH precise velocity	\bigcirc	\bigcirc	$\bigcirc \rightarrow ($	\circ	\bigcirc	\bigcirc	
ECAL shower shape, energy det		*****	Ŧ			****	¥ ¥

- momentum measured in the form of rigidity
- charge from TOF, TRD, tracker
- lower velocities: Time Of Flight scintillator system η
- higher velocities: Ring Image Cherenkov detector
- self-calibrated analysis:
 - calibrate antideuteron analysis with deuterons and antiprotons (simulations and data)
 - analysis is ongoing

$$m = R \cdot Z \sqrt{rac{1}{eta^2} - 1}$$

tracker

TRD

TOF

RICH tracker

Oct 17 – p.25

P. von Doetinchem

Antideuterons

- the General AntiParticle Spectrometer is specifically designed for low-energy antideuterons and antiprotons
- Long Duration Balloon flights from Antarctica
- identification by stopping and creation of exotic atoms tested in KEK testbeam measurements: Astropart. Phys. 49, 52 (2013)
- GAPS has been approved by NASA & JAXA \rightarrow first flight 2020

P. von Doetinchem

Antideuterons

GAPS sensitivity

Background rejection:

- stopping protons don't have enough energy to produce pions and cannot form exotic atoms (pos. charge)
- deexcitation X-rays have characteristic energies
- number of annihilation pions and protons
- stopping depth in detector

Prototype GAPS

Goals:

- demonstrate stable operation of the detector components during flight
- study Si(Li) cooling approach for thermal model
- measure background levels

altitude 32.4km mean TRK T -18.4C

P. von Doetinchem

Antideuterons

Detector production

- GAPS will use ~1350 4" Si(Li) detectors, 2.5mm thick
- fabrication scheme developed at Columbia U, produced by private company Shimadzu, Japan
- confirmed performance with cosmic rays (MIPs) and Am-241 source (X-rays)
- TOF testing and development ongoing \rightarrow decision between PMTs and SiPms

P von Doetinchem Anti

Next up: antihelium?

Coogan, Profumo, arXiv:1705.09664

Oct 17 – p.31

- AMS-02 announced antihelium candidates
- needs more data over the next years to make a statistically sound statement

P. von Doetinchem

Antideuterons

- has important implications for antiprotons and antideuterons
 - \rightarrow all three channels have to be explained at the same time
 - \rightarrow nuclear formation is a key issue

Conclusion & Outlook

- antideuteron searches are experimentally challenging
 → multiple experiments for cross-checks are important
- AMS-02 and GAPS have very different event signatures AND very different backgrounds
 - → very good for independent confirmation
- measurements with NA61/SHINE will improve understanding of antideuteron production and modeling
- measurement of antideuterons is a promising way for indirect dark matter search

GAPS from Antarctica

Oct 17 – p.32

P. von Doetinchem

Antideuterons

GAPS low-energy antiproton

Predicted primary antiproton fluxes from:

- Neutralinos
- LZP
- Gravitinos
- primordial black holesPBHs, along with neutralino signals

as seen by 1 GAPS LDB flight