Cosmic-ray antideuteron searches

IDM Sheffield July 2016

Philip von Doetinchem

philipvd@hawaii.edu Department of Physics & Astronomy Universitv of Hawai'i at Manoa

http://www.phys.hawaii.edu/~philipvd www.antideuteron.com

Dark matter signal in cosmic rays?

P. von Doetinchem

Antideuteron

Jul 16 – p.2

AMS

(GeV/n)⁻¹]

ັ່ມ 10-4

-10-5 Elux [m-2 10-5 10-5

Antideuteron 10-8

0.1

ς'

BESS limit

95% C.L.

AMS

GAPS

factor 100

Physics Reports

Volume 618, 7 March 2016, Pages 1-37

Review of the theoretical and experimental status of dark matter

Jul 16 – p.3

Review of the theoretical and experimental status of dark GAPS and AMS sensitivities are based on simulations matter identification with cosmic-ray antideuterons neutralino (SUSY) T. Aramaki^{a, b}, S. Boggs^c, S. Bufalino^d, L. Dal^o, P. von Doetinchem^{f,} 📥 🐸, F. Donato^{d, g}, N. Fornengo^{d, g} Grefe¹ C. Hailev^a, B. Hamilton¹, A. Ibarra^k, J. Mitchell¹, I. Mognet^m, R.A. Ong^m, R. P. m_x= 30 GeV arXiv:1505.07785 LZP (UED) Examples for beyond-standard-model m_{LZP}= 40 GeV Physics (compatible with p): gravitino (decay) Neutralino: SUSY lightest supersymmetric m = 50 GeV astrophys particle, decay into bb, compatible

late decays of unstable gravitinos

astrophysical background: collisions of protons and antiprotons with interstellar medium

+ models with heavy dark matter

Antideuterons are the most important unexplored indirect detection technique!

100

ckground

P. von Doetinchem

10

Kinetic Energy per Nucleon [GeV/n]

Antideuteron

Uncertainties

modulation by solar wind

deflection in magnetic field

dark matter annihilation or decay

- dark matter clumping
- antideuteron production
- Galactic propagation
- solar modulation
- geomagnetic deflection
- atmospheric interactions
- interactions in detector

proton > 10MeV red electron > 10MeV green positron > 10MeV blue neutron > 10MeV turquoise muon > 10MeV magenta photon > 10keV yellow

zoom 20GeV proton interactions with atmosphere

P. von Doetinchem

Antideuteron

Jul 16 – p.4

Antideuteron formation

Fitting p_0 to data on \bar{d} production

Propagation uncertainty

- propagation is a large uncertainty source for low-energy antideuterons: halo size for diffusion calculation is poorly constrained
- antiproton and positron results tend to exclude MIN halo models and favor larger halo sizes

Geomagnetic cutoff

Proton backtracing in geomagnetic field: 0.5GV

1.0GV 2.0GV 4.0GV

Geomagnetic cutoff for AMS-02 and GAPS

Geomagnetic cutoff for AMS-02 and GAPS

- geomagnetic environment is influenced by solar activity
- AMS-02 is installed on the ISS
 (latitude ±52°)
 → understanding of geomagnetic environment crucial for

low energies

- GAPS is planned to fly from Antarctica (~-80°)
 - → geomagnetic corrections are minimal

Identification challenge

Required rejections for antideuteron detection:

- protons: > 10⁸ 10¹⁰
- He-4: > 10⁷ 10⁹
- electrons: > 10⁶ 10⁸
- **positrons**: > 10⁵ 10⁷
- antiprotons: > 10⁴ 10⁶

Antideuteron measurement with balloon and space experiments require:

- strong background suppression
- long flight time and large acceptance

AMS-02 antideuteron analysis

	e⁻	р	He,Li,Be,Fe	γ	e⁺	p, d	He, C
TRD γ=E/m		*	Υ		~~~~~	¥	Υ
TOF dE/dx, velocity	۲	;	ř	•	•	÷	Ϋ́Υ
Tracker dE/dx, momentum	\mathcal{I}	$\overline{}$		Х		\mathcal{I}	ノ
RICH precise velocity	\bigcirc	\bigcirc	$\bigcirc \rightarrow \bigcirc \bigcirc$	00	\bigcirc	\bigcirc	\bigcirc
ECAL shower shape, energy det		******	Ŧ			*****	¥¥

- Operating on the ISS since 2011
- antideuteron identification:

-lower velocities: Time Of Flight scintillator system
-higher velocities: Ring Image Cherenkov detector

self-calibrated analysis:

-calibrate antideuteron analysis with deuterons and antiprotons (simulations and data)

-geomagnetic cut-off and solar effects: study much more abundant low-energy protons, antiprotons, and deuterons for calibration

Analysis ongoing!

 $m = R \cdot Z \sqrt{\frac{1}{\beta^2}}$ -

The GAPS experiment

Columbia U, UC Berkeley UCLA, U Hawaii, Haverford, MIT, INFN

- the General AntiParticle Spectrometer is specifically designed for low-energy antideuterons and antiprotons
- planned for Long Duration Balloon flights from Antarctica
- GAPS is ready to go to the next step \rightarrow all prototyping done
- Publications:
 - d, p Sensitivity: Astropart. Phys. 74 (2016) 6, Astropart. Phys. 59 (2014) 12
 - identification by stopping and creation of exotic atoms in KEK testbeam measurements: Astropart. Phys. 49, 52 (2013)
 - successful prototype flight: Nucl. Instrum. Meth. A735 (2014) 24, Astropart. Phys. 54 (2014) 93
 - Si(Li) detector fabrication: NSS/MIC 2013 IEEE 1-3, (2013)

Path forward

- antideuteron searches are experimentally challenging
 → multiple experiments for cross-checks are important
- AMS-02 and GAPS have very different event signatures AND very different backgrounds
 - → very good for independent confirmation
- two independent flight trajectories
 - AMS-02 has a factor of 10 geomagnetic cutoff correction
 - GAPS analysis has nearly no geomagnetic correction
- low-energy antiproton flux measurement will be the most important cross-check between AMS-02 and GAPS

GAPS from Antarctica

Jul 16 – p.13

P. von Doetinchem

Antideuteron

Path forward

- measurement of antideuterons is a promising way for indirect dark matter search
- more exchange between theory and experiments
 - \rightarrow we started a bigger community effort in 2014

on ISS

Prototype GAPS

Met all goals:

- demonstrated stable operation of the detector components during flight
- validated Si(Li) cooling approach for thermal model
- measured background levels

P. von Doetinchem

Antideuteron

Jul 16 – p.15