# Dark matter identification with cosmic-ray antideuterons

**TAUP Turin, September 2015** 

Philip von Doetinchem - philipvd@hawaii.edu Department of Physics & Astronomy, University of Hawai'i at Manoa ABAZAJIAN, Kevork - ARAMAKI, Tsuguo - BINDI, Veronica - BOEZIO, Mirko BOUDAUD, Mathieu – BUFALINO, Stefania - CARLSON, Eric - CLINE, David - DAL, Lars VON DOETINCHEM, Philip - DONATO, Fiorenza - PEREIRA, Rui - FORNENGO, Nicolao GREFE, Michael - HAMILTON, Brian - HOFFMAN, Julia - KAPLINGHAT, Manoj MERTSCH, Philipp - MOGNET, Isaac - ONG, Rene - OSTAPCHENKO, Sergey PEREZ, Kerstin - PUTZE, Antje - SALATI, Pierre - SASAKI, Makoto - TARLÉ, Gregory WILD, Sebastian - WRIGHT, Dennis - ZWEERINK, Jeffrey

Review of the theoretical and experimental status of dark matter identification with cosmic-ray antideuterons

under review at Physics Reports: arXiv:1505.07785

T. Aramaki<sup>a,b</sup>, S. Boggs<sup>c</sup>, S. Bufalino<sup>d</sup>, L. Dal<sup>e</sup>, P. von Doetinchem<sup>f,\*</sup>,
F. Donato<sup>d,g</sup>, N. Fornengo<sup>d,g</sup>, H. Fuke<sup>h</sup>, M. Grefe<sup>i</sup>, C. Hailey<sup>a</sup>, B. Hamilton<sup>j</sup>,
A. Ibarra<sup>k</sup>, J. Mitchell<sup>l</sup>, I. Mognet<sup>m</sup>, R.A. Ong<sup>m</sup>, R. Pereira<sup>f</sup>, K. Perez<sup>n</sup>,
A. Putze<sup>o,p</sup>, A. Raklev<sup>e</sup>, P. Salati<sup>o</sup>, M. Sasaki<sup>l</sup>, G. Tarle<sup>q</sup>, A. Urbano<sup>r</sup>,
A. Vittino<sup>d,g</sup>, S. Wild<sup>k</sup>, W. Xue<sup>s</sup>, K. Yoshimura<sup>t</sup>

# Dark matter signal in cosmic rays?



#### Status of cosmic ray antideuterons



#### Antideuterons are the most important unexplored indirect detection technique!

P. von Doetinchem

Antideuteron

#### **Uncertainties**

modulation by solar wind

deflection in magnetic field

scattering in magnetic fields, interaction with interstellar medium

- Dark matter annihilation or decay
- Dark matter clumping
- Antideuteron production
- Galactic propagation
- Solar modulation
- Geomagnetic deflection
- Atmospheric interactions
- Interactions in detector

proton > 10MeV red electron > 10MeV green positron > 10MeV blue neutron > 10MeV turquoise muon > 10MeV magenta photon > 10keV yellow

zoom 20GeV proton interactions with atmosphere

P. von Doetinchem

#### Antideuteron

Sep 15 – p.5

#### **Antideuteron formation**



• antideuterons can be formed by an antiproton-antineutron pair if relative momentum is small (coalescence momentum  $p_0$ )

$$\frac{\mathrm{d}N_{\bar{d}}}{\mathrm{d}T_{\bar{d}}} = \frac{p_0^3}{6} \frac{m_{\bar{d}}}{m_{\bar{n}}m_{\bar{p}}} \frac{1}{\sqrt{T_{\bar{d}}^2 + 2m_{\bar{d}}T_{\bar{d}}}} \frac{\mathrm{d}N_{\bar{n}}}{\mathrm{d}T_{\bar{n}}} \frac{\mathrm{d}N_{\bar{p}}}{\mathrm{d}T_{\bar{p}}}$$

important differences for different experiments and MC generators exist  $\rightarrow$  more data would help

## **Coalescence uncertainty**



- improvement during the last years using tools like Pythia and Herwig for hadronization:
  - produce antiprotons and antineutrons
  - respect jet structure
  - antiproton and antineutron have to be close in space and momentum space

# **Antideuterons and NA61/SHINE**



- Fixed target experiment: main motivation is QCD phase transition, but NA61 also has "customers" from the UHECR and neutrino community
- Cosmic-ray production happens between 40 and 400 GeV
   → SPS energies from 9 to 400 GeV are ideal
- proton-proton interactions with incident momentum between 13 and 158 GeV/c were already recorded in 2011
- 350GeV *p*-*p* run this fall  $\rightarrow$  now

#### **Propagation uncertainty**



- Propagation is a large uncertainty source for low-energy antideuterons: halo size for diffusion calculation is poorly constrained
- More data on different cosmic nuclei are needed (and hope that they do not need more complicated modeling for interpretation!)

| P. von Doetinchem | Antideuteron | Sep 15 – p.9 |
|-------------------|--------------|--------------|
|                   |              |              |

# Geomagnetic cutoff



 Simulations with IGRF geomagnetic field and Tsyganenko 2001 magnetosphere

## Identification challenge

Required rejections for antideuteron detection:

- protons: > 10<sup>8</sup> 10<sup>10</sup>
- He-4: > 10<sup>7</sup> 10<sup>9</sup>
- electrons: > 10<sup>6</sup> 10<sup>8</sup>
- positrons: > 10<sup>5</sup> 10<sup>7</sup>
- antiprotons: > 10<sup>4</sup> 10<sup>6</sup>

Antideuteron measurement with balloon and space experiments require:

- strong background suppression
- long flight time and large acceptance



## AMS-02 antideuteron analysis

|                                        | e⁻            | р             | He,Li,Be,Fe               | γ  | e⁺               | p, d                 | He, C  |
|----------------------------------------|---------------|---------------|---------------------------|----|------------------|----------------------|--------|
| TRD<br>γ=E/m                           |               | *             | Υ                         |    | V<br>V<br>V<br>V | Ŧ                    | γ      |
| TOF<br>dE/dx,<br>velocity              | ۲             | *             | ጉ<br>ጉ                    | T  | Ŧ                | Ť                    | Υ<br>Υ |
| Tracker<br>dE/dx,<br>momentum          | $\mathcal{I}$ | $\overline{}$ |                           | Х  |                  | $\mathcal{I}$        | ノ      |
| RICH<br>precise<br>velocity            | $\bigcirc$    | $\bigcirc$    | $\bigcirc \rightarrow ()$ | 00 | $\bigcirc$       | $\bigcirc$           |        |
| ECAL<br>shower<br>shape,<br>energy det |               | ****          | Ŧ                         |    |                  | TTTTTT<br>TTTTT<br>T | ¥      |



- Operating on the ISS since 2011
- antideuteron identification:

-lower velocities: Time Of Flight scintillator system-higher velocities: Ring Image Cherenkov detector

self-calibrated analysis:

-calibrate antideuteron analysis with deuterons and antiprotons (simulations and data)

-geomagnetic cut-off and solar effects: study much more abundant low-energy protons, antiprotons, and deuterons for calibration

#### **Analysis ongoing!**

P. von Doetinchem

 $m = R \cdot Z \sqrt{\frac{1}{\beta^2}}$  -



LDB flights from Antarctica proposed

P. von Doetinchem

Antideuteron

#### Complementarity

- antideuteron search is experimentally challenging

   → multiple experiments for cross-checks are very important
- AMS-02 and GAPS have very different event signatures AND very different backgrounds



#### $\rightarrow$ very good for independent confirmation

(see also direct dark matter searches with different approaches)

- two independent flight trajectories  $\rightarrow$  different geomagnetic cut-off locations
  - ISS is at a maximum of ±52deg
  - GAPS would fly at ~-80deg
- Iow-energy antiproton flux measurement will be the most important cross-check between AMS-02 and GAPS

#### Conclusion

- measurement of antideuterons is a promising way for indirect dark matter search
- AMS on the ISS is currently the best instrument for the study of antideuterons
- future GAPS is specifically designed for low-energetic antideuterons
- more exchange between theory and experiments:
   We started a bigger community effort last year!



GAPS from Antarctica



Sep 15 – p.15

P. von Doetinchem

Antideuteron