# Overview and status of cosmic ray antideuteron searches

TeVPA / IDM Amsterdam, June 2014

Philip von Doetinchem - philipvd@hawaii.edu Department of Physics & Astronomy, University of Hawai'i at Manoa

# **EXAMPLE 1** Ist cosmic ray antideuteron workshop

June 5 and 6 at UCLA

ABAZAJIAN, Kevork - ARAMAKI, Tsuguo - BINDI, Veronica - BOEZIO, Mirko BOUDAUD, Mathieu – BUFALINO, Stefania - CARLSON, Eric - CLINE, David - DAL, Lars VON DOETINCHEM, Philip - DONATO, Fiorenza - PEREIRA, Rui - FORNENGO, Nicolao GREFE, Michael - HAMILTON, Brian - HOFFMAN, Julia - KAPLINGHAT, Manoj MERTSCH, Philipp - MOGNET, Isaac - ONG, Rene - OSTAPCHENKO, Sergey PEREZ, Kerstin - PUTZE, Antje - SALATI, Pierre - SASAKI, Makoto - TARLÉ, Gregory WILD, Sebastian - WRIGHT, Dennis - ZWEERINK, Jeffrey

### Dark matter signal in cosmic rays?



### Antiprotons



- PAMELA/BESS constraints on annihilating/decaying dark matter are strong
- constraining DM properties in case of a measured excess is complicated as astrophysical background and different channels shapes are very similar

### Antideuterons



antideuterons are the most important unexplored indirect detection technique

 prediction: antideuterons from dark matter annihilations up to ~100 times more abundant than from conventional cosmic rays

P. von Doetinchem

### Antideuteron

### Primordial black holes and gravitinos



### • primary black holes:

- very small black holes could have formed in the early universe due to, e.g., initial density inhomogeneities
- might evaporate antideuterons and maybe the only chance to detect primordial black holes
- cosmological gravitino problem:
  - hypothetical mediator of gravity: graviton 
     → superpartner gravitino
  - late decays of unstable gravitinos to standard particles would produce antideuterons

### Uncertainties



Boost factor shouldn't be higher than 2-3 → remaining talk is conservative and assumes no boost

| P. von Doetinchem | Antideuteron | June 14 - p7 |
|-------------------|--------------|--------------|
|                   |              |              |

### Antideuteron formation



 antideuterons can be formed by an antiproton-antineutron pair if relative momentum is small (coalescence momentum p<sub>0</sub>)

$$\gamma \frac{\mathrm{d}^3 N_{\bar{d}}}{\mathrm{d}\vec{p}_{\bar{d}}^3} = \frac{4\pi}{\sqrt{p_0^3}} p_0^3 \left( \gamma \frac{\mathrm{d}^3 N_p}{\mathrm{d}\vec{p}_p^3} \right)^2; \qquad \frac{\mathrm{d}^3 N_i}{\mathrm{d}\vec{p}_i^3} = \frac{1}{\sigma_R} \frac{\mathrm{d}^3 \sigma_i}{\mathrm{d}\vec{p}_i^3}.$$

- major conventional production mechanisms of cosmic rays with ISM protons at rest:
  - *p*+*p* →  $\overline{d}$ +*X* (threshold 17GeV)
  - $\overline{p}$ +p →  $\overline{d}$ +X (threshold 7GeV)
    - → important even though antiproton flux is small
- coalescence momentum plays crucial role for cosmic-ray yield

### **Coalescence uncertaint**

$$E_{A} \frac{\mathrm{d}^{3} N_{A}}{\mathrm{d}^{3} P} = B_{A} \left( E_{p} \frac{\mathrm{d}^{3} N_{p}}{\mathrm{d}^{3} p} \right)^{Z} \left( E_{n} \frac{\mathrm{d}^{3} N_{n}}{\mathrm{d}^{3} p} \right)^{A-Z}$$
$$B_{A} = \left( \frac{4\pi}{3} p_{0}^{3} \right)^{(A-1)} \frac{m_{A}}{m_{n}^{A}}.$$

- Simple factorization model seems to be to simple and one choice of B<sub>2</sub> cannot describe all experiments at all energies
- Improvement during the last years using tools like Pythia and Herwig for hadronization:
  - produce antiprotons and antineutrons

P. von

 $m_n^A$ 

- respect jet structure
- antiproton and antineutron have to be close in space and momentum space
- What is best value? Z resonance (100GeV DM)? Y resonance (10GeV DM)?
- Coalescence does not affect antiproton/proton ratio  $\rightarrow$  break degeneracy of antiproton and antideuteron



Centre-of-mass energy (GeV)

|                                 | Experiment | Process  | Pythia 6     | Pythia 8 | Herwig++ |
|---------------------------------|------------|----------|--------------|----------|----------|
|                                 | ALEPH      | $e^+e^-$ | _            | 192      | 159      |
|                                 | CLEO       | $e^+e^-$ | _            | 133      | 145      |
|                                 | ZEUS       | ер       | 236          | _        | 150      |
|                                 | CERN ISR   | pp       | _            | 152      | 221      |
|                                 | ALICE      | pp       | 230          | —        | 154      |
| Table from Lars Dal             |            |          |              |          |          |
| Doetinchem Antideuteron June 14 |            |          | June 14 - p§ |          |          |

# Propagation uncertainty



- Propagation is the strongest uncertaintiy source for primary antideuterons: halo size for diffusion calculation poorly constrained
- More data on various nuclear speces are needed (and hope that they do not need more complicated modeling for interpretation!)

| P. von Doetinchem | Antideuteron | June 14 - p10 |
|-------------------|--------------|---------------|
|                   |              |               |

### **GEANT4 - Fritiof model for d simulation**

- new in GEANT4: antideuteron simulations
- FTF model was extended to handle nucleus-nucleus interaction down to 0 GeV
- now the best model for antiprotons, antineutrons, antideuterons also for stopped antiprotons and slow antineutrons:
  - very little data for validation available
  - needed: antideuteron formation



P. von Doetinchem

Antideuteron

June 14 - p11

# **Observational challenges**



antideuteron measurement with balloon and space experiments requires:

- strong background suppression
- long flight time and large acceptance
- geomagnetic location of experiment

# Balloon-borne: BESS



- magnetic-rigidity spectrometer:
  - superconducting solenoidal magnet
  - drift-chamber tracking system
  - time of flight
  - Cherenkov counter
- balloon flights in Canada and at Antarctica
- antideuteron results: kinetic energy range: 0.17-1.15 GeV/n limit 1.9×10<sup>-4</sup>(m<sup>2</sup>s sr GeV/n)<sup>-1</sup> @ 95% C.L.
- improved results from BESS polar coming soon (down to 10<sup>-5</sup>?)



### **Space-based: PAMELA**



- magnetic spectrometer in space since 2006
- particle identification with several typical particle physics sub-detectors
- relatively small acceptance (21.5cm<sup>2</sup>sr)

Antideuteron

 so far only indirect antideuteron limits derived from antiprotons [Kadastik et al. Phys. Lett. B, 683(4–5), 248 (2010]

June 14 - p14

# AMS antideuteron analysis

|                                        | e⁻         | р             | He,Li,Be,Fe              | γ  | e⁺          | p, d                   | He, C  |
|----------------------------------------|------------|---------------|--------------------------|----|-------------|------------------------|--------|
| TRD<br>γ=E/m                           |            | •             | Υ                        |    | Υ<br>Υ<br>Υ | Y                      | r      |
| TOF<br>dE/dx,<br>velocity              | ۲          | Ţ             | ጉ<br>ጉ                   | T  | т           | T<br>T                 | Υ<br>Υ |
| Tracker<br>dE/dx,<br>momentum          |            | $\overline{}$ |                          | Y  |             | $\mathcal{I}$          | ノ      |
| RICH<br>precise<br>velocity            | $\bigcirc$ | $\bigcirc$    | $\bigcirc \rightarrow ($ | 00 | $\bigcirc$  | $\bigcirc$             |        |
| ECAL<br>shower<br>shape,<br>energy det |            | *****         | Ŧ                        |    |             | TTTTTTT<br>TTTTTT<br>T | ¥<br>¥ |



 $m = R \cdot Z \sqrt{\frac{1}{\beta^2} - 1}$ 

### antideuteron identification:

-lower velocities: Time Of Flight scintillator system

-higher velocities: **R**ing Image **Ch**erenkov detector

### self-calibrated analysis:

 –calibrate antideuteron analysis with deuterons and antiprotons (simulations and data)

 –geomagnetic cut-off location is challenging: study low-energy protons and electrons to calibrate geomagnetic and solar effects **Protons**: right charge, wrong sign, wrong mass by factor 2, but extremely abundant

**Deuterons**: right charge, wrong sign, right mass, very abundant - dangerous especially if upgoing

Antiprotons: potentially one of the most difficult to deal with - same charge sign as antideuterons, also hadronic, several orders of magnitude more abundant

Electrons: most abundant CR component with negative charge, but non-hadronic and with very different mass

**Positrons**: same as electrons but less abundant and with wrong charge sign - if electrons are handled positrons will also be solved

Helium-4: extremely abundant, same mass/charge ratio, but wrong sign; frequently fragments into deuterons in AMS-02 - dangerous if upgoing (the He ion itself or its fragments)

### Novel approach for antideuteron identification

- antideuteron slows down and stops in material
- large chance for creation of an excited exotic atom (E<sub>kin</sub>~E<sub>l</sub>)
- Deexcitation [ns]:
  - fast ionisation of bound electrons (Auger
    → complete depletion of bound electrons
  - Hydrogen-like exotic atom (nucleus+antideuteron)
     deexcites via characteristic X.

deexcites via characteristic X-ray transition

$$\Delta E = 13.6 \, eV \cdot (z_x Z_N)^2 \cdot \frac{\mu_x}{\mu_H} \cdot \left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right)$$
$$\mu_x = \frac{m_x \cdot m_N}{m_x + m_N} \quad \wedge \quad \mu_e = \frac{m_e \cdot m_N}{m_e + m_N}$$

- nucleus-antideuteron annihilation: pions and protons
- KEK testbeam measurements → exotic physics well understood [Aramaki et al. Astropart. Phys. 49, 52 (2013)]
- Prototype 2012 worked very well [PvD et al., Astropart. Phys. 54, 93 (2014), I.Mognet et al. Nucl. Instr. Meth. A 735, 24 (2014)]
- Planned first science flight: 2018/19



P. von Doetinchem Antideuteron June 14 - p17

### Antideuteron sensitivity



# **Reach for the GAPS experiment**



Fornengo, Maccione, Vittino, JCAP 1309 (2013) 031

- important sensitivity from low to high dark matter masses
- Independent probe of direct dark matter searches

### Conclusion

- measurement of antideuterons is a promising way for indirect dark matter search
- AMS on the ISS is currently the best instrument for the study of antideuterons
- future GAPS is specifically designed for low-energetic antideuterons
- more exchange between theory and experiments: start a bigger community effort
- What experimental data are needed?
   What would we need from the collider community?





P. von Doetinchem

Antideuteron

June 14 - p20