The General AntiParticle Spectrometer

A Balloon Experiment

Physics & Astronomy Open House November 2013

Philip von Doetinchem Department of Physics & Astronomy, University of Hawai'i philipvd@hawaii.edu http://www.phys.hawaii.edu/~philipvd

What is a Physicist?

Google search returns:

More recently?

A lot of pretty normal(?) people are into Physics.

Everybody likes to understand how stuff works, don't you think so?

Major requirement: <u>curiosity</u>

DOU X-Kay nasinda=nbsindb L= Loln h=c/v (onstants

Total Internal Reflection: sind crit= "5/na Geometric Optics $M = \frac{y'}{Y} = -\frac{s'}{5} = \frac{1}{5} + \frac{1}{5^{+}} = \frac{z}{R} + \frac{1}{2} = \frac{R}{2}$ Reference of Surface $\frac{n_{g}}{5} + \frac{n_{b}}{5^{+}} = \frac{n_{b} - n_{4}}{R} \quad M = \frac{y'}{Y} = -\frac{n_{6}s'}{n_{b}s}$ 0f>0 Thin Lenses $\frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = (n-1)(\frac{1}{2} - \frac{1}{2})$ Tf<0

Two Source Light Interference Light : dsin@=ml Dark: dsin@=(m+===)) For Small Angles: Ym=R(mx/2) Phase Shift: \$= 2 Tr (rz-r.)=k(rz-r.) Amplitude: Ep= 2E |cos(\$12)| Intensity: I= To cos2(\$12) I= Io cos2(= kdsin0)= Io cos2(= sin0) When \$= O intensity is developed quadrupled and amplitude is doubled Thin Film Interference

Reflection Amplitude: Er=Ei(na-nb) 12+ 1. Interference (na+nb) 12+ na constructive: 2+=ml Destructive: 2+=(m+±))

Those are both when na>nb, otherwise the equations are switched

· Nonreflective Coating: + & thick and index of refraction less than lens · Reflective Coating: 4 thick and index

of refraction higher than lens • IT phase shift when ng = no & na < no Single Slit Diffraction

Dark: asin0=mh Light: asin0=(m+==)h

Intensity: $I = I_0 \left[\frac{\sin(\beta/2)}{\beta/2} \right]^2 I_m^2 \frac{+o}{(m+\frac{1}{2})^2 \pi^2}$ Amplitude: $E_p = 2Rsin(\beta/2) = E_0\left(\frac{sin(\beta/2)}{\beta/2}\right)$ where Eo= RB + B= 2Trasing Resolving Power: sind = 1.22(2/D) fy= +

Muttiple Slit Diffraction/Diffraction Grating dsind=mx R= (1/02)= Nm= chromatic resolv.pur. If there are n slits there will be n-1 minima

$$\begin{aligned} \mathcal{L} &= \mathcal{I}_{o} \cos^{2}\left(\frac{\emptyset}{2}\right) \left[\frac{\sin(\beta/2)}{\beta/2}\right]^{2} \text{ where} \\ \phi &= \frac{2\pi \lambda}{\lambda} \sin \theta \, \notin \beta = \frac{2\pi \eta}{\lambda} \sin \theta \end{aligned}$$

Bragg Condition (const.) 2dsing=ml Polarization Unpolarized: I== Io Malus's Law: I= Imax cos20 = Im cos2(w+)

Brewster Angle (polarized reflection) tanop= (nolna)

Relativity (Dilation) 8=1/1-02/22 At= 8 Ato l= lo/8 Lorentz Transformations

 $V_{x}^{1} = \frac{V_{x} - U}{I - \left(\frac{UV_{x}}{c_{2}}\right)} \quad V_{x} = \frac{V_{x}^{1} + U}{I + \left(\frac{UV_{x}^{1}}{c_{2}}\right)}$

x'= & (x-ut), y'=y, z'=z General Coordinate Transformation:

 $t' = \frac{t - \frac{\sqrt{2}}{\sqrt{1 - \frac{\sqrt{2}}{2}}}}{\sqrt{1 - \frac{\sqrt{2}}{2}}} = \delta(t - \frac{\sqrt{2}}{2})$

Doppler Effect

f=7(c+u)/(c-u)

Relativistic Momentum Work and Energy

P= 8m, V F= 83M, a m= 8m, K= (8-1)moc2 E= 8 mac2 => E2= (me2)2+(pe)2 rest energy: Eo=mc2

Continuous Light Spectra

I=0-TH 0=5.67×10-8 W Wien-Displacement: AnT= 2.9×10-3mk Planck Radiation Law: I(2) = 2TThe2/15 (p(nc)/(#2kt)-1) Photoelectric Effect

Photon: E=hf=he/2

P=E=ht=h Particle: E=P2/2m

p=mv=h/2 eVo=hf- \$ \$=work function eVo=stopping potential photoelectron: Kmar = zmvmar = eVo

Braking Radiation: eVac=hfmax his Compton: 1-1 = mc (1-cos0)

Atomic Spectral Energy Levels E:-Ef= hf=hc/A $\frac{1}{\lambda} = R\left(\frac{1}{n_{mp}^2} - \frac{1}{n_{mp}^2}\right) R = 1.697 \times 10^{-7} m^{-1}$

GROUND STATE En= - hcR E= -13.6Zeve 1= 100

Bohr Model

angular momentum: L=mur=nh/2tt orbital radii: r= Eon2h2 Trme2 orbital speed: V= E 2010 for photons: $K = \frac{1}{E_{M}} \frac{me^{4}}{E_{C}^{2}} \frac{me^{4}}{8n^{2}h^{2}}$ $U = -\frac{1}{4\pi\epsilon_0} \frac{e^2}{r} = -\frac{1}{\epsilon_0} \frac{me^4}{4m^2h^2}$ E=K+U De Broglie 2= = h/mu Electron Diffraction dsin@=ml de Broglie wavelength: A= P V2meVA Probability AxAp= h AEA+= h Electron Microscope resolving power: SX~ A= TzmeV Quantum Mechanics IZmeV $E_n = \frac{p^2}{2m} = \frac{n^2h^2}{8mL^2} = \frac{n^2\pi^2 k^2}{2mL^2}$ normal stationary state fonction Yn(L)= 72 sin(nTTX) probability: $P = \int_{a}^{b} |\psi(x)|^{2} dx = \left[\frac{2}{L}\left(\frac{x}{2} - \frac{L}{n\pi}\sin\left[\frac{2\pi nx}{L}\right]\right)\right]_{a}^{b}$ Hydrogen Atom ,n2 Lz=met -lsmesl & len-1

h= 6.636 × 10-34 J.s 1eV= 1.602 × 10-19 J kB= 1.38×10-23)/K Schrödinger Equation = 8.617E-5ev/k $-\frac{\pi^2}{2m}\frac{d^2\Psi(x)}{dx^2} + \nabla\Psi(x) = E\Psi(x)$ $if \psi(x) = A(e^{i\alpha x} - i\alpha x)$ then $E = \frac{\hbar^2 \alpha^2}{2m} + V$ Bohr Magnetron MB= et = 5.788×10-5 eV/T U= MEMBB (creates spectral lines) AE=MBB Electron Spin (===) 5===== h Molecular Bonds Covalent: Share electrons NSeV Ionic : Opposite charges NSeV Vous der Walls: Dipole moment NO.1eV Molecular Spectra E= L2/2I $E_{\ell} = \frac{\hbar^{2}}{2\pi} R(\ell+1) \quad T = \left(\frac{m_{\ell}m_{2}}{m_{\ell}m_{2}}\right) r_{0}^{2}$ Vibrational Energy Levels $\Delta E = \hbar \omega E_n = (n + \frac{1}{2}) \hbar \omega$ $E_{ne=}(n+\frac{1}{2})\pi\sqrt{\frac{k'}{m_{p}}}+\frac{\hbar^{2}}{2\pi}\ell(\ell+1)$ Rocket Away from Earth Problem $f^{1} = \frac{-\sqrt{L}}{3\epsilon_{8}}$ Visin units of C L is in cm Atom of mass m splits in half, pieces m more at V. What is the mass of each half in terms of M?

$$Mc^2 = \frac{2mc^2}{11 - v^2}$$

En= -13.GeV @Z V L= [R(1+1) \$ 1=0,1,2,3,4

angle between I and zaxis: cos 0, = Lz/L

stuff we know

keeps

2

T

oll. Mailer W. M.C. makes

NOM

CON

Dark Matter:

We know it's there!

Otherwise our whole Universe would look different.

So far: no proof for what it is exactly! :-(

Now what?

Why not ask somebody who has been there and runs fast?

<u>?Cosmic rays - What is that?</u>

It can get pretty violent out there, which can produce all sorts of things!

for example: protons and electrons (the matter we are made of)

Let's be honest: the details do require to study Physics in more depth...however:

We can build machines that measure these runners (cosmic rays) and tell us more

Where to put such an experiment?

Imagine you wanted to collect rain...

The atmosphere acts as a roof for cosmic rays

atmosphere

Pro-

Which is good to stay healthy, but bad to measure cosmic rays

when you are hiking at high altitudes

\rightarrow you are exhausted much faster

 \rightarrow because there is less air too breathe

→ <u>roof for cosmic</u> <u>rays is getting weaker</u> Therefore put the experiment as high as possible!

Space is great, but super expensive (\$1,000,000 for 2lbs)

Therefore put the experiment as high as possible!

Space is great, but super expensive (\$1,000,000 for 2lbs)

A lot of hands on work with all sorts of different tasks! **Playground for big kids:** model building, crafting, LEGO, electronics, chemistry sets, computers

Experiment landed in the Pacific ocean!

We are just at the beginning to understand Dark Matter!

I could only present one way to look at the question

Will keep us busy for many years!

Please join us with your ideas!