The General AntiParticle Spectrometer

Hunt for dark matter using cosmic-ray antideuterons

Symposium on Cosmology and Particle Astrophysics, Hawai'i November 2013

Philip von Doetinchem on behalf of the GAPS collaboration Department of Physics & Astronomy, University of Hawai'i philipvd@hawaii.edu www.gaps.ssl.berkeley.edu

Indirect dark matter search with charged particles

- unexplained features in positron and electron spectra
- proposed theories:
 - astrophysical origin
 - dark matter self-annihilation
- no feature visible in antiprotons

- we entered the era of discovery
- data analysis is starting to make claims, but so far inconclusive
- strategy: use search channel where additional dark matter contribution is much larger than astrophysical flux!

Antideuterons and dark matter

- antideuterons are the most important unexplored indirect detection technique
- uncertainties:
 - dark matter:
 - concentrated in halo, dominant uncertainty from propagation: factor ~10
 - antideuteron coalescence: factor ~2
 - boost factors
 - background: production in galactic disk dominant uncertainty from production cross-section

P. von Doetinchem

GAPS

Antideuteron sensitivity

- different scenarios give antideuteron fluxes within sensitivity: Supersymmetry, extra dimensions
- GAPS is very effective to search for light WIMPS such as proposed to explain DAMA/LIBRA/CoGENT/CDMS results

Primordial black holes and gravitinos

• primary black holes:

- very small black holes could have formed in the early universe due to, e.g., initial density inhomogeneities
- might evaporate antideuterons and maybe the only chance to detect primordial black holes
- baryon asymmetry/cosmological gravitino problem:
 - hypothetical mediator of gravity: graviton \rightarrow superpartner gravitino
 - late decays of unstable gravitinos to standard particles would produce antideuterons

Observational challenges

antideuteron measurement with balloon and space experiments requires:

- strong background suppression
- long flight time and large acceptance
- geomagnetic location of experiment

Novel approach for antideuteron identification

- antideuteron slows down and stops in material
- large chance for creation of an excited exotic atom (E_{kin}~E_l)
- Deexcitation [ns]:
 - fast ionisation of bound electrons (Auger)
 complete depletion of bound electrons
 - Hydrogen-like exotic atom (nucleus+antideuteron) deexcites via characteristic X-ray transition
- nucleus-antideuteron annihilation: pions and protons

GAPS

Nov 13 – p.7

- the General AntiParticle Spectrometer is especially designed for low-energy antideuterons
- identification by stopping them in the tracker and creating an exotic atom
- long duration balloon flights from Antarctica starting in 4-5 years
 - P. von Doetinchem

GAPS

Prototype GAPS

Goals:

- demonstrate stable operation of the detector components during flight
- study Si(Li) cooling approach for thermal model
- measure background levels

altitude 32.4km mean TRK T -18.4C

P. von Doetinchem

pGAPS flight: June 3rd 2012 from Taiki, Japan

trigger and tracker

time: 245min

run X-ray tube

time: 50min

time: 29min

~600,000

triggers carry out in-flight

calibration of Si(Li)

trigger on Si(Li)

detectors to study

incoherent X-ray

background

detectors

Thermal model

radiato

- Si(Li) detectors were cooled down to -46°C to ensure operation during flight
- in addition bGAPS flight representative radiator and cooling pipe system tested
- unfortunately: rotator failure

 detectors warmed up
 (64% still depleted by the end of the flight)
- **BUT** all critical parts were equipped with temperature sensors and thermal model was verified

cooling approach would have worked with correct pointing

P. von Doetinchem	GAPS	Nov 13 – p.11

Si(Li) tracker

- both TRK electronics channels worked very well:
 - high gain: X-ray measurement stable over the course of the flight within the expected change due to the temperature increase
 - low gain: clear Landau distribution for energy depositions on track
- detectors work flawlessly after the flight in the lab
- flux of coincident charged particles and atmospheric and cosmic X-rays is very small

 \rightarrow antideuteron analysis can easily reject this background type by requiring more than one coincident X-ray in the right range

Fime-of-flight

- only one tube failed \rightarrow understood why \rightarrow no problem in the future
- stable energy deposition measurement over time
- detectors work flawlessly after the flight in the lab (after careful cleaning of salt water)
- average of 640ps timing resolution per PMT

 → under further investigation for improvements in the future

pGAPS flux measurement

- flux at drift-out "boomerang" altitude (10-15km) is ~30% higher than at float (33km)
- flux as function of velocity compared to simulations with PLANETOCOSMICS
 - $-\beta$ <0.2 (E_{kin,proton}~20MeV) very good agreement
 - $-\beta$ =0.3-0.5 (E_{kin,proton}~50-150MeV) within systematic errors
 - β >0.7 (E_{kin.proton}~400MeV) good agreement
 - deviations at 0.3 and 0.6 visible \rightarrow more simulation work at low energies in the future
- α particles constitute about ~10% of the flux at 33km (~9g/cm²) \rightarrow in good agreement with BESS data

Si(Li) detector production

- GAPS will use 2875 4" Si(Li) detectors
- 2"-diameter detectors being produced at Columbia U. using simple fabrication scheme
- successfully drifted diameters from 1" to 2" with >90% yield, both 1 mm (prototype) and 2.5 mm thick

- leakage current ~1nA at -35 C
- confirmed performance with cosmic rays (MIPs) and Am-241 source (X-rays)
- FWHM at 59.5keV: 5keVeasy to improve with better mounting and preamp board
- 4" detector development underway!

CALS

X-rays from Am-241

Nov 13 – p.15

Timeline for GAPS

- 2000 first idea
- 2004/05 KEK beamtests with antiprotons
- 2006-08 design work
- 2008-12 technical validation
- 2009-12 prototype flight from Japan
- 2013-2017 detailed design and construction
- 2017 first science flight from Antarctica

pGAPS team before launch

Columbia University, UC Berkeley, Lawrence Livermore National Laboratory Japan Aerospace Exploration Agency, UC Los Angeles, U Hawaii

GAPS: Antiproton precision instrument?

AMS comparison

- AMS is a multi-purpose particle physics detector using subsequent detectors and a magnetic field
- AMS low-energy antideuteron challenges: geomagnetic cut-off, multiple scattering
- if AMS detects d: confirmation is needed if no detection: GAPS goes deeper
- different detection techniques are very important for rare event search
- building GAPS right now is important for timely comparison

GAPS

Conclusion

- measurement of antideuterons is a promising way for indirect dark matter search
- future GAPS is specifically designed for low-energetic antideuterons
- all goals for prototype GAPS were met
 - Nucl. Instr. Meth. A 735, 24 (2014)
 - arXiv:1307.3538
- Si(Li) detector production understood
 - it is the right time to start building GAPS to compare to AMS and direct searches

GAPS from Antarctica

Nov 13 - p.19

P. von Doetinchem

GAPS

Antideuteron formation

• antideuterons can be formed by an antiproton-antineutron pair if relative momentum is small (coalescence momentum p_0)

$$\gamma \frac{\mathrm{d}^3 N_{\bar{d}}}{\mathrm{d}\vec{p}_{\bar{d}}^3} = \frac{4\pi}{3} p_0^3 \left(\gamma \frac{\mathrm{d}^3 N_p}{\mathrm{d}\vec{p}_p^3} \right)^2; \qquad \frac{\mathrm{d}^3 N_i}{\mathrm{d}\vec{p}_i^3} = \frac{1}{\sigma_R} \frac{\mathrm{d}^3 \sigma_i}{\mathrm{d}\vec{p}_i^8}.$$

- major conventional production mechanisms of cosmic rays with ISM protons at rest:
 - *p*+*p* → \overline{d} +*X* (threshold 17GeV)
 - \overline{p} +*p* → \overline{d} +*X* (threshold 7GeV) → important even though antiproton flux is small
- coalescence momentum plays crucial role for cosmic-ray yield, but literature discusses p_o from 80MeV to 240MeV depending on exact process

Fime of flight

• tasks:

- charged particle trigger
- velocity measurement
- tracking
- design:
 - 3 planes of TOF
 - outer planes consists of 3×3, middle plane 2×2 crossed paddles

1 paddle has 2 PMTs = 16 paddles and 32 PMTs

- 3mm scintillator from Saint-Gobain (BC-408)
- Hamamatsu R-7600 PMT

Si(Li) tracker

- 6 detectors
 2 stacks with 3 layers
- 4mm/2.5mm thick, 8 strips
- N+: Lithium contact
 P+: Boron implanted (strips)
- operation at ambient pressure during flight (8mbar)
- closed-loop coolant pumping system (Fluorinert)
- first time Si(Li) on a balloon payload

Nov 13 – p.22

Si(Li) detector production

GAPS needs ~3000 individual Si(Li) detector modules (4" diameter, 2mm thick)

- production technique well understood:
 - 2" diameter detector delivers good muon and X-ray resolution (close to the desired 3keV FWHM at 59.5keV)
 - low leakage currents
- ready to start building 4" detectors

Validation of air shower simulations

- particle fluxes (ATM+CR) for certain particle types at different altitudes
- comparison of atmospheric simulations shows good agreement with BESS, ECC, BETS, PPB-BETS, CAPRICE measurements and models