Hunt for dark matter using cosmic-ray antideuterons

UHM Physics Department Colloquium November 2012

Philip von Doetinchem Space Sciences Laboratory, UC Berkeley doetinchem@ssl.berkeley.edu

Key questions throughout my talk

- How do we know that dark matter exist?
- How to study the nature of dark matter?
- Why are cosmic-ray antideuterons exciting?
- What is the current experimental status?

Existence of dark matter

velocity distributions of galaxies need mass extending along the disk

Why do we need something new?

- dark matter is so far only gravitationally visible and must be a new non-baryonic type of particle
 - neutral
 - with relatively high mass to explain the structure formation of the universe
 - with only very weak interactions with standard particles (if at all)
 - → most popular: Weakly Interacting Massive Particles
- discovering the nature of dark matter is one of the most striking problems in physics

General challenge

particle physics × astrophysics = signal

 solving the dark matter problem means therefore disentangling particle physics and astrophysics

 beyond standard model particle physics need to provide stable dark matter candidates, e.g.:

- Supersymmetry:
 fermions (bosons) have a bosonic (fermionic)
 superpartner
 dark matter candidate: neutralino
 (majorana fermion)
- Kaluza-Klein extra dimensions: extra dimensions seen as extra mass dark matter candidate: 1st excitation of photon (boson)
- solve also problems like electroweak symmetry breaking along the way

- astrophysics:
 - dark matter distribution: substructures, density, velocity distribution

How is dark matter interacting?

- natural assumption: dark matter was in thermal equilibrium in the early universe expansion led to dark matter freeze-out
- WIMP miracle: weak-scale particles are ideal candidates (~100-1000GeV) to reproduce observed relic dark matter density
- → dark matter must be able to interact with standard model particles

Direct dark matter searches (scattering)

- direct dark matter search: measure cross-section via nuclear recoil
- typically large, heavy and very pure target materials in deep mines (~20 operating experiments)
- experiments start to reach in theoretically preferred parameter space
- experiments disagree

 some
 experiments claim discovery, some
 set exclusion limits

Cosmic rays as messengers

Indirect dark matter searches (annihilation)

- assumption: cosmic-rays from dark matter annihilation follow different kinematics than conventional production
- peak/bump/shoulder on top of conventional spectrum expected
- use search channel without strong conventional production: positrons, photons, antiprotons, electrons, neutrinos, ...

Possible dark matter signals?

- unexplained features in positron and electron spectra
- proposed theories, e.g.:
 - dark matter self-annihilation
 - additional astrophysical sources, like γ-ray pulsars pair producing electrons and positrons?

What makes the interpretation difficult?

drawbacks exist:

- observed deviations are relatively small
- dark matter signals need boost
- antiprotons can be explained without additional contribution
- are pulsars able to produce enough electrons and positrons?

further questions:

- are experimental effects well understood (background rejections need to be very high)?
- are cosmic-ray propagation models good enough?

New: photons from the galactic center

- new FERMI analysis from Ch. Weniger published in April 2012 [arXiv:1204.2797]
- smoking gun signature for dark matter annihilation?
- caused big excitement: ~100 papers citing this discovery trying to explain what is going on
 - dark matter annihilation line from pair annihilation (DM particle mass 130GeV)
 - is it even two lines? [Rajaraman et al. arXiv:1205.4723]
 - cold ultrarelativistic pulsar winds [Aharonian et al. arXiv:1207.0458]
 - experimental effects, 130GeV line from Earth's albedo [Su et al. arXiv:1206.1616]
- needs independent confirmation and higher statistics
 - new FERMI data set from the galactic center
 - HESS telescope should be able to see lines
 - similar signal from spheroidal galaxies (high fraction of dark matter) expected

- we entered the era of discovery
- data analysis is starting to make claims
- but so far inconclusive
- strategy: use search channel where additional dark matter contribution is much larger than astrophysical flux!

[Search will always be a synergy between direct, indirect, and collider experiments]

Antideuterons

- deuterons are the nuclei of heavy water and antideuterons are the corresponding antimatter (q=-1,m=1876MeV, s=1)
- antideuterons were discovered in 1965 at CERN and Brookhaven and were the first real antimatter ever discovered
- seen since then at, e.g., LEP, Tevatron, LHC collider experiments
- have never been discovered in cosmic rays
 (next antinucleus in line after the antiproton and before antihelium)

Antideuterons and dark matter

• **prediction:** antideuterons from dark matter annihilations up to 100 times more abundant than from conventional cosmic rays

Antideuteron physics

- antideuterons can be formed by an antiproton-antineutron pair if relative momentum is small (coalescence momentum $p_{_{0}}$)
- major conventional production mechanisms of cosmic rays with ISM protons at rest:
 - $p+p \rightarrow \overline{d}+X$ (threshold 17GeV)
 - \overline{p} +p → \overline{d} +X (threshold 7GeV) → important even though antiproton flux is small
- coalescence momentum plays crucial role for cosmic-ray yield, but literature discusses $p_{_{0}}$ from 80MeV to 240MeV depending on exact process
- understanding of antideuteron physics is essential for interpretation
 - → antideuteron search has to be a synergy with collider experiments

Antideuteron measurement

conventional antideuterons

- p-ISM production in galactic disk
- dominant uncertainty from production cross-section

dark matter antideuterons:

- dark matter concentrated in halo
- dominant uncertainty from propagation

antideuteron measurement with balloon and space experiments requires:

- strong background suppression
- long flight time and large acceptance
- geomagnetic location of experiment

Geomagnetic shielding

- geomagnetic field shields especially low-energy charged particles
- effect depends on the position

Balloon-borne: BESS

- magnetic-rigidity spectrometer:
 - superconducting solenoidal magnet
 - drift-chamber tracking system
 - time of flight
 - Cerenkov counter
- balloon flights in Canada and at Antarctica
- antideuteron results:
 kinetic energy range: 0.17-1.15 GeV/n
 limit 1.9×10⁻⁴(m²s sr GeV/n)⁻¹ @ 95% C.L.

Space-based: PAMELA

- magnetic spectrometer in space since 2006
- particle identification with several typical particle physics subdetectors
- relatively small acceptance (21.5cm²sr)
- so far only indirect antideuteron limits derived from antiprotons [Phys. Lett. B, 683(4–5), 248 (2010]
- background rejection not strong enough for antideuterons?

- large international collaboration (~600 people from 60 countries involved)
- AMS collected billions of events over the first year
- first physics data coming soon

Launch STS-134

Ph. von Doetinchem **Antideuterons and dark matter**

AMS sub-detectors

AMS antideuteron analysis

	e-	р	He,Li,Be,Fe γ		e⁺	$ \overline{p},\overline{d} $	He, C
TRD γ=E/m	4444—	Y	Υ		Υ Υ Υ	*	7
TOF dE/dx, velocity	*	*	Y Y	7	۳	Ť	γ γ
Tracker dE/dx, momentum)			人		1	ノ
RICH precise velocity	0	\bigcirc	\bigcirc		0		
ECAL shower shape, energy det		***************************************	#			***************************************	Ţ, Ţ

antideuteron identification:

- particle velocity:
 - lower velocities: Time Of Flight scintillator system
 - higher velocities: Ring Image Cherenkov detector
- proton background: charge sign and momentum: tracker/magnetic field
- electron background: reject electrons with TRD and ECAL
- most complicated background: antiprotons

$$m = p\sqrt{\frac{1}{\beta^2} - 1}$$

AMS antideuteron analysis

	e-	р	He,Li,Be,Fe	γ	e ⁺	$ \overline{p},\overline{d} $	He, C	tracker			
TRD γ=E/m	7444	*	ν-		7 7 1	*	∵	TRD			
TOF dE/dx, velocity	7	7	Ť	T	*	Y Y	Υ Υ	TOF			
Tracker dE/dx, momentum				人		1	ノ				
RICH precise velocity								DOA			
ECAL shower shape, energy det		† † † † †	#			******		TOF			
• study change to permanent magnet and new tracker layout (2010):											

longer lifetime, but more multiple scattering

self-calibrated analysis:

- calibrate antideuteron analysis with deuterons and antiprotons (simulations and data)
- study low-energy protons and electrons to predict geomagnetic and solar effects

Novel approach for antideuteron identification

- antideuteron slows down and stops in material
- large chance for creation of an excited exotic atom (E_{kin}~E_I)
- deexcitation:
 - fast ionisation of bound electrons (Auger)
 complete depletion of bound electrons
 - Hydrogen-like exotic atom (nucleus+antideuteron) deexcites via characteristic X-ray transitions

$$\Delta E = 13.6 \, eV \cdot (z_x Z_N)^2 \cdot \frac{\mu_x}{\mu_H} \cdot \left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right)$$

$$\mu_x = \frac{m_x \cdot m_N}{m_x + m_N} \quad \land \quad \mu_e = \frac{m_e \cdot m_N}{m_e + m_N}$$

nucleus-antideuteron annihilation:
 pions and protons

The GAPS experiment

- the General AntiParticle Spectrometer is especially designed for low-energy antideuterons
- identification by stopping them in the tracker and creating an exotic atom
- (ultra) long duration balloon flights from Antarctica starting from 2017

Antideuteron sensitivity

Prototype GAPS

Goals:

- demonstrate stable operation of the detector components during flight
- study Si(Li) cooling approach for thermal model
- measure background levels

Integration in Berkeley

June 2011 April 2012

- solving all mechanical and electronics issues
- debugging, extensive test runs, and calibration

Altitude profile

Data taking modes

- trigger on coincidences of TOF paddles to find charged particle tracks
 - time: 244min
 - ~1Million triggers
- carry out in-flight calibration of Si(Li) detectors
 - run X-ray tube
 - time: 50min
- trigger on Si(Li) detectors to study incoherent X-ray background
 - time: 29min

pGAPS analysis status

- counts need to be corrected for
 - angular acceptance
 - efficiency
 - livetime
- TOF timing analysis
 - \rightarrow flux as function of velocity β

Timeline for GAPS

- 2000 first idea
- 2004/05 KEK beamtests with antiprotons
- 2006-08 design work
- 2008-12 technical validation
- 2009-12 prototype flight from Japan
- 2013-2017 detailed design and construction
- 2017 first science flight from Antarctica

T. Aramaki¹, N. Bando⁴, St. Boggs², W. Craig³, H. Fuke⁴, F. Gahbauer¹, **Ch. Hailey**¹(**PI)**, J. Koglin¹, N. Madden¹, S.I. Mognet⁵, B. Mochizuki², K. Mori¹, R. Ong⁵, K. Perez¹, T. Yoshida⁴, J. Zweerink⁵

1 Columbia University, 2 UC Berkeley, 3 Lawrence Livermore National Laboratory, 4 Japan Aerospace Exploration Agency, 5 UC Los Angeles

Future outlook: combine AMS and GAPS

- combination of two independent experiments with different techniques
 - e.g., use antiprotons as cross-check
 - rare event searches always require independent confirmation
- ideal case: AMS measures antideuterons also in high velocity range, break in spectrum?

Conclusion

- measurement of antideuterons is a promising way for indirect dark matter search
- AMS on the ISS is currently the best instrument for the study of antideuterons
- future GAPS is specifically designed for lowenergetic antideuterons (all goals for prototype GAPS were met)
- timeline: 5 year of AMS antideuteron search compatible with 3 long duration balloon flights of GAPS (starting ~2017)
- **necessary:** independent cross checks of AMS and GAPS results
- hopefully create similar excitement like the FERMI photon results did!

GAPS from **Antarctica**

Even more exotic sources producing antideuterons?

primary black holes:

- very small black holes could have formed in the early universe due to, e.g., initial density inhomogeneities
- might evaporate antideuterons and maybe the only chance to detect primordial black holes

baryon asymmetry/cosmological gravitino problem:

- hypothetical mediator of gravity: graviton → superpartner gravitino
- late decays of unstable gravitinos to standard particles would produce antideuterons

Extension to antihelium searches

baryon asymmetry in the universe:

- dynamically: large CP violation is needed
- separation of matter and antimatter in the early universe

antihelium is a natural extension of the antideuteron search:

- bound on antihelium gives constraint for the distance between galaxies and antigalaxies
- because antihelium production in p-ISM interactions in the matter universe is extremely small

GAPS antideuteron analysis

- GAPS needs a very reliable particle identification:
 - TOF velocity and tracks
 - charge |Z|
 - depth in tracker
 - X-rays from deexcitation
 - pions and protons from annihilation

GAPS antideuteron analysis

- main source of background: antiprotons (only differ in mass)
- other important backgrounds:
 - coincidences from cosmic and atmospheric X-ray flux
 - coincidences of X-rays produced in interactions of charged particles with the detector
 - atmospheric antideuterons

Time of flight

tasks:

- charged particle trigger
- velocity measurement
- tracking

design:

- 3 planes of TOF
 outer planes consists of 3×3, middle plane 2×2
 crossed paddles
 - 1 paddle has 2 PMTs = 16 paddles and 32 PMTs
- 3mm scintillator from Saint-Gobain (BC-408)
- Hamamatsu R-7600 PMT

properties:

timing resolution: 500pscharge resolution: 0.35e

angular resolution: 8°

Si(Li) tracker

- 6 detectors2 stacks with 3 layers
- 4mm/2.5mm thick, 8 strips
- N+: Lithium contact
 P+: Boron implanted (strips)
- operation at ambient pressure during flight (8mbar)
- closed-loop fluid pumping system (Fluorinert)

Tracker operation

06:59

• tracker worked reliably even at rather high temperatures by the end of the flight

In-flight X-ray tube calibration

 position and width appear to be stable over time even with a relatively warm detector by the end of the flight

Clean track analysis

Clean events: 6 TOF layers with only one paddle fired at least 2 TRK detectors with only one strip fired in low gain channel