The General Antiparticle Spectrometer (GAPS) -Dark matter search using cosmic-ray antideuterons

KAVLI, Stanford University October 2011

Philip von Doetinchem on behalf of the GAPS collaboration Space Sciences Laboratory, UC Berkeley doetinchem@ssl.berkeley.edu

T. Aramaki¹, N. Bando⁴, St. Boggs², W. Craig³, B. Donakowski², H. Fuke⁴,
F. Gahbauer¹⁵, **Ch. Hailey¹(PI)**, J. Hoberman², P. Kaplan¹, J. Koglin¹,
N. Madden¹, St. McBride², I. Mognet⁶, B. Mochizuki², K. Mori¹, R. Ong⁶, K. Perez¹,
D. Stefanik¹, M. Lopez-Thibodeaux², T. Yoshida⁴, R. Zambelli¹, J. Zweerink⁶

1 Columbia University, 2 UC Berkeley, 3 Lawrence Livermore National Laboratory, 4 Japan Aerospace Exploration Agency 5 University of Latvia, 6 UC Los Angeles

Outline

Why are antideuterons interesting?

How to measure them?

cosmic rays antideuteron physics GAPS concept GAPS prototype instrument

Cosmic rays in the GeV to TeV range

- in general good agreement of models and data
- what we already learned:
 - particle physics
 - interstellar medium
 - astronomical objects

small fluxes with no
primary astronomical
source are especially
sensitive to new effects

Positron fraction & electron flux

- unexplained features in positron and electron spectra
- proposed theories:
 - γ-ray pulsars can produce electron and positrons via pair production in the magnetosphere
 - positrons and electrons can also be accelerated in PWN or SNR shocks
 - dark matter self-annihilation

Dark matter

- evidence for dark matter exists in many different fields
- BUT we do not know its nature
- different search approaches: direct and indirect: here cosmic rays

dark matter annihilation

- different popular scenarios:
 - -Supersymmetry: neutralino (majorana)
 - Kaluza-Klein universal extra dimensions: 1st excitation of photon (boson)
- requires boost factors to explain e^{+/-} fluxes
- indirect dark matter searches are especially sensitive to extra contributions in the antiparticle spectra

Drawbacks...

Drawbacks exist for astronomical interpretations: Are pulsars really able to produce enough electrons and positrons?

Drawbacks exist also for dark matter interpretations:

- observed deviations are relatively small
- boosting mechanisms are needed

Hard to disentangle the different contributions!

Further questions:

- Is the experimental data well understood (large rejections are needed)?
- Why do antiprotons do not show a deviation?
- Are propagation models well understood?

Antideuterons

- deuterons are the nuclei of heavy water and antideuterons are the corresponding antimatter (q=-1,m=1876MeV, s=1)
- antideuterons were discovered in 1965 at CERN and Brookhaven and were the first real antimatter ever discovered

Cosmic rays

- antideuterons have never been detected in cosmic rays
- antideuteron production is understood and it should form in the galactic disk from the collisions of protons, alphas and antiprotons with Hydrogen and Helium IS gas
- if the antiproton and antineutron coalescence momentum is below 160MeV (ALEPH)
- understanding of jet structure is important for precise predictions

[arXiv:0803.264, arXiv:0908.1578]

Antideuterons and dark matter

 predicts large signal over background for low-energy antideuteron signals

Oct. 2011 – p. 8

Kinetic Energy (GeV/n)

10

Ph. von Doetinchem

The General Antiparticle Spectrometer (GAPS)

10

Antideuteron uncertainties

- nuclear uncertainties: production cross-section and coalescence momentum
- propagation uncertainties: fit of all propagation parameters shows degeneracy, such that the average uncertainty is about 50%
- in the following: plotted background flux is the mean of these uncertainties

The General Antiparticle Spectrometer (GAPS)

Antideuteron identification

- antideuteron slows down and stops in material
- large chance for creation of an excited exotic atom (E_{kin}~E_l)
- deexcitation:
 - fast ionisation of bound electrons (Auger)
 - → complete depletion of bound electrons
 - Hydrogen-like exotic atom (nucleus+antideuteron) deexcites via characteristic x-ray transitions
- nucleus-antideuteron annihilation: pions and protons
- exotic atomic physics quite well understood (tested in KEK 2004/5 testbeam)

GAPS concept

GAPS consists of two detectors (accep.: ~2.7m²sr):

Si(Li) tracker:

- Si(Li) tracker:13 layers composed of Si(Li) wafers
- relatively low Z material (2/3mm,escape fraction ~20keV)
 target and detector
- Lithium doped Silicon detectors for a good x-ray resolution
- circular modules segmented into 8 strips, ~8cm² each
 - → 3D particle tracking
- 270 per layer (total: ~3500)
- timing: ~50ns
- dual channel electronics
 5-200keV: X-rays (resolution:~2 keV)
 0.1-200MeV: charged particle

Time of flight and anticoincidence shield:

- plastic scintillator with PMTs surrounds tracker
- track charged particles
- velocity and charge measurement

Scientific balloon flights (bGAPS) planned from Antarctica in 2016

Ph. von Doetinchem

The General Antiparticle Spectrometer (GAPS)

Backgrounds

 etc...needs to studied in great detail

GAPS antideuteron sensitivity

- GAPS need small geomagnetic cut-off
 - → therefore (ultra) long
 duration balloon flights from
 South Pole are planned: 60
 (300) days
- different scenarios give reasonable antideuteron fluxes within sensitivity:
 - Supersymmetry
 - Kaluza-Klein UED
 - Warped extra dimensions
 - primordial black holes
- synergy with direct searches and neutrino telescopes:
 GAPS probes complementary dark matter regions!

Prototype experiment

Prototype GAPS (pGAPS) goals:

- demonstrate stable, low noise operation of the detector components at float altitude and ambient pressure.
- demonstrate the Si(Li) cooling approach and verify thermal model
- measure incoherent background level in a flight, like configuration.

Si(Li) tracker

- closed-loop fluid pumping system (Fluorinert)
- space radiator

- 6 commercial Semikon detectors (5 currently installed)
- 94mm diameter and 4mm/2.5mm thick, 8 strips
- operation at ambient pressure during flight (8mbar) and in N₂ atmosphere on ground
- cooling system has to deliver ~-35°C
- N+: Lithium contact
- P+: Boron implanted (strips)

Time of flight system

- 3 planes of TOF
 1 plane consists of 3×3
 (2×2 in the middle) crossed panels
 1 panel has 2 PMTs
 - = 16 panels and 32 PMTs
- 3mm scintillator from Bicron (BC-408)
- Hamamatsu R-7600 PMT
- timing resolution: 500ps
- charge resolution: 0.35e
- MOP value:
- ~15 photo electrons
- angular resolution: 8°

Oct. 2011 – p. 16

tracker readout electronics

two young scientists looking in an empty vessel

First tracker results

Ph. von Doetinchem

TOF testing

- TOF shows good distributions the energy depositions for each of the 32 tubes
- timing resolution is 590ps per paddle
- tracking resolution of the TOF is of order several cm

First tracks

The General Antiparticle Spectrometer (GAPS)

Ph. von Doetinchem

The General Antiparticle Spectrometer (GAPS)

Cut-off and particle direction

50% of cosmic rays with ~8GV get through to balloon altitude in Taiki

The General Antiparticle Spectrometer (GAPS)

Validation of air shower simulations

- particle fluxes (ATM+CR) for certain particle types at different altitudes
- comparison of atmospheric simulations shows
 good agreement with BESS, ECC, BETS, PPB-BETS, CAPRICE measurements and models

Ph. von Doetinchem

Conclusion and outlook

- measurement of low-energetic antideuteron flux is a promising way for indirect dark matter search
- GAPS is specifically designed for low-energetic antideuterons with a unique detection technique using the creation of exotic atoms
- GAPS is planned to have (U)LDB flights from South Pole starting from 2016
- prototype experiment is currently under test and a flight is planned for spring 2012 from Taiki, Japan

Ph. von Doetinchem

BESS & AMS-02 antideuterons

- BESS and AMS-02 use magnetometers for the antideuteron measurements
- protons are a huge source of background taking the momentum resolution of the tracker into account

