Background Simulations with Geant4 for the General Antiparticle Spectrometer (GAPS) Balloon Experiment

Geant4 Space Users Workshop August 2010 - Seattle

Philip von Doetinchem on behalf of the GAPS collaboration Space Sciences Laboratory, UC Berkeley doetinchem@ssl.berkeley.edu

Tsuguo Aramaki¹, Nobutaka Bando², Steven Boggs³, William Craig⁴, Philip von Doetinchem³, Hideyuki Fuke², Florian H. Gahbauer^{1,5}, **Charles Hailey¹(PI)**, Jason Koglin¹, Norm Madden¹, Isaac Mognet⁶, Kaya Mori¹, Rene Ong⁶, Atsushi Takada², Tetsuya Yoshida², Tracy Zhang⁶, Jeffrey Zweerink⁶

1 Columbia University, 2 Japan Aerospace Exploration Agency, 3 UC Berkeley, 4 Lawrence Livermore National Laboratory, 5 University of Latvia, 6 UC Los Angeles

Dark matter search

- evidence for dark matter exists in many different fields
- BUT we do not know its nature
- different search approaches: direct and indirect: here cosmic rays

in general good agreement of cosmic ray flux models with measurements, **but** deviations in **electron** and **positron** data (Fermi, Atic, Pamela)!

Antideuterons and dark matter

antideuteron flux is very small.

- challenging to measure the first antideuterons in cosmic rays (secondary interactions of protons with interstellar gas)
- good source to study new phenomena
- theories with **dark matter** self-annihilation predict "large" low-energy antideuteron signals

Ph. von Doetinchem

The General Antiparticle Spectrometer (GAPS)

GAPS concept

GAPS consists of two detectors (accep.: ~2.7m²sr):

Si(Li) tracker:

- Si(Li) tracker:13 layers composed of Si(Li) wafers
- relatively low Z material (2/3mm,escape fraction ~20keV)
 →target and detector
- Lithium doped Silicon detectors for a good x-ray resolution
- circular modules segmented into 8 strips, ~8cm² each
 3D particle tracking
- 270 per layer (total: ~3500)
- timing: ~50ns
- dual channel electronics
 - 5-200keV: X-rays (resolution:~2 keV)
 - 0.1-200MeV: charged particle

Time of flight and anticoincidence shield:

- plastic scintillator with PMTs surrounds tracker
- track charged particles
- velocity measurement
- anticoincidence for charged particles

Scientific balloon flights planned from Antarctica in 2014

Ph. von Doetinchem

The General Antiparticle Spectrometer (GAPS)

Antideuteron identification

- antideuteron slows down and stops in material
- large chance for creation of an excited exotic atom (E_{kin}~E_I)
- deexcitation:
 - fast ionisation of bound electrons (Auger)
 - Complete depletion of bound electrons
 - Hydrogen-like exotic atom (nucleus+dbar) rad. deexcitation: characteristic x-ray transitions
- nucleus-antideuteron annihilation: pions
- exotic atomic physics quite well understood (tested in KEK 2004 testbeam)

atomic transitions

Background & sensitivity

Identification uses:

• TOF velocity and track, depth in tracker, x-rays and pions from annihilation

Background sources:

 Antiprotons, protons,/electrons in coincidence with cosmic x-rays, atmospheric production of antideuterons Kinetic energy per nucleon (GeV n^{-1}) reasonable antideuteron fluxes within sensitivity:

Supersymmetry, Kaluza-Klein UED, Warped extra dimensions, primordial black holes

 synergy with direct searches and neutrino telescopes

Ph. von Doetinchem

The General Antiparticle Spectrometer (GAPS)

Prototype experiment (pGAPS)

- measure incoherent background
- Time of Flight: 3 layers, 18 panels, 36 PMTs
- Si(Li) tracker: 3 layers, 9 modules
- 2011 flight from Taiki, Japan

Ph. von Doetinchem

The General Antiparticle Spectrometer (GAPS)

August 2010 – p. 7

Si(Li) tracker: Semikon detec.

Guard Ring

4" diameter

Structured n⁺-contact: Li

(8 strips)

homemade

4"diameter, 2mm thick

Shallow Well, Au contact

4mm/2.5mm thick

Deep

Simulation roadmap

Aspects of the simulations

Cosmic fluxes

Atmospheric simulation simulation

Detector

Exotic atomic physics

Final goals of these efforts:

Analysis

- Test of analysis chain from flight computer format to reconstructed objects.
- Comparison with MC information to improve/understand analysis cuts.

Backgrounds

- Study backgrounds due to cosmic particles.
- Study backgrounds due to atmospheric particles.
- Study backgrounds due to particles produced in interactions of cosmic/atmospheric with inactive detector material.

Instrument Design

- Use these studies to determine the hardware requirements.
- Study trigger requirements.
- Final set of physics/full detector simulation should so flexible that it can be used for bGAPS designing.

Science Goal

Test capability and implications for creation/deexcitation of muonic atoms? Good demonstration of GAPS concept?

Ph. von Doetinchem

The General Antiparticle Spectrometer (GAPS)

Air shower & geomagnetic field

Ph. von Doetinchem The General Antiparticle Spectrometer (GAPS) A

Geomagnetic cut-off

- use IGRF 2010 magnetic field (mathematical description of Earth's main magnetic field)
- trace charged particles (here protons) through ⁻⁴⁰
 Earth's magnetic-60 field starting at -80 certain position, 0
 altitude and direction

- check if particle escapes the magnetic field
- cut-off for perpendicular incidence with respect to Earth's surface

Ph. von Doetinchem

The General Antiparticle Spectrometer (GAPS)

Cut-off and particle direction

50% of cosmic rays with ~8GV get through to balloon altitude in Taiki

Atmospheric influence

- use of NRLMSISE-00 atmospheric model: models the temperatures and densities of the atmosphere's components.
- grammage of matter in front of 33km:~8.4g/cm² (Space: 6-10g/cm²)
- on average ~20% of a radiation length (nuclear mean free pathlength ~10%) before 33km: Atmospheric background has to be calculated!

Ph. von Doetinchem

The General Antiparticle Spectrometer (GAPS)

Particle gun

- start particles at **500km altitude** above Earth and detect particles in spherical shells around the Earth
- choose starting positions such that the trajectories of undisturbed particles result in an isotropic distribution at detection altitude
- switch on atmosphere and magnetic field for the simulation
- physics models:
 - em.: standard
 - hadronic: QGSP, BIC, **HP** Neutron
 - ion: BIC

Validation of simulation

- particle fluxes (ATM+CR) for certain particle types at different altitudes
- comparison of atmospheric simulations shows **good agreement** with BESS, ECC, BETS, PPB-BETS, CAPRICE measurements and models
- simulations need check for light ion physics

Ph. von Doetinchem

Proton fluxes at Taiki

- total proton fluxes (cosmic + atmospheric) at 33km altitude
- upward fluxes have smaller energies
- no dependence on azimuth angle

Ph. von Doetinchem

The General Antiparticle Spectrometer (GAPS)

Particle rates for pGAPS

Ph. von Doetinchem

The General Antiparticle Spectrometer (GAPS) Augu

Particle gun for detector simulation

- distribute random starting points homogeneously on sphere around detector
 - random zenith angle (alpha) according to atmospheric simulation
- random azimuth angle (beta) uniformly distributed between 0-360°
- start particle from surface with random energy according to atmospheric simulation

Detector simulation

Ph. von Doetinchem

The General Antiparticle Spectrometer (GAPS)

Conclusion & outlook

- GAPS is specifically designed to measure low-energetic antideuterons which are a promising way for indirect dark matter search using the creation of exotic atoms
- antideuteron flux is very small
 understanding of backgrounds is essential
- modified PLANETOCOSMICS showed good agreement with measurements
- prototype experiment is currently under construction and a flight is scheduled for Summer 2011 from Taiki, Japan:
 - detailed simulation of particle fluxes in atmosphere and detector: light ion, antideuteron and exotic physics need to be improved/implemented/developed
 - hardware development: Si(Li), TOF, readout, structure, thermal model