Search for new Phenomena in Cosmic Rays with new Balloon-borne and Space-borne Experiments

Philip von Doetinchem I. Physical Institute B, RWTH Aachen University philip.doetinchem@rwth-aachen.de UC Berkeley – August 2009

RWTH Aachen Physics Department

Philip von Doetinchem Search for new Phenomena in Cosmic Rays

Outline

- cosmic-ray measurements: motivation and status of in the GeV to TeV range
- the PEBS detector in Earth's atmosphere:
 - experimental challenges: long duration balloon flights, residual atmosphere
 - simulation of cosmic ray measurements at the South Pole in Earth's atmosphere and prospects for PEBS e^{+/-} measurements
- the AMS-02 detector for the ISS in Space:
 - experimental challenges: Space qualification, no gravity
 - performance of the anticoincidence counter for antimatter search

Exciting times to search for new phenomena!

Philip von Doetinchem Search for new Phenomena in Cosmic Rays Bei

Particle & Astrophysics

- particle physics & astrophysics are merging
- particle physics methods are used in T(uK) astrophysics, particle physics input from astrophysics

- Dark matter exists! What is its nature?
- Where does the asymmetry between matter and antimatter in the universe come from (baryogenesis)?

WMAP 5 years

WMAP 5-year

~23%

dark matter

+200

Search for new Phenomena in Cosmic Rays Philip von Doetinchem

Berkeley Aug 2009 – p. 4

~72%

dark energy

< neutrinos baryons

~5%

′<1%

Cosmic Rays as Messengers

Search for new Phenomena in Cosmic Rays

Cosmic Rays in the GeV – TeV Range

- in general good agreement of models
- what we already learned:
 - Particle physics
 - Interstellar medium
 - $-\gamma$ -astronomy
- search for new phenomena:
 - dark matter
 - astrophysical objects
 - baryogenesis
 - unexpected things?

Philip von Doetinchem Search for new Phenomena in Cosmic Rays

Positron Fraction & Electron Flux

- unexplained features in positron and electron spectra
- proposed theories: dark matter, pulsars, supernova remnant acceleration

 Philip von Doetinchem
 Search for new Phenomena in Cosmic Rays
 Berkeley Aug 2009 – p. 7

Philip von Doetinchem Search for new Phenomena in Cosmic Rays

Pulsars

- spinning and magnetized neutron stars
- pulsars emit synchrotron radiation (lighthouse effect)
- γ-ray pulsars can produce electron and positrons via pair production in the magnetosphere

assumed injection spectrum:

R shocks
$$f_p(E) = E^{-\Gamma} \exp\left(-\frac{E}{E_c}\right)$$

 preferred candidates: distance < 1 kpc, age T > 5.10⁴yr, E_c=~1000GeV

Philip von Doetinchem Search for new Phenomena in Cosmic Rays

Baryogenesis

standard models of particle physics and cosmology: equal amounts of matter and antimatter in Big Bang, but:

$$\frac{n_B}{n_\gamma} < 6.5 \cdot 10^{-10}$$

any explanation needs (Sakharov):

- Baryon number is not conserved.
- Interaction rates for baryons and antibaryons are different. CP must be violated!
- The Universe cannot be in thermal equilibrium.

different approaches:

- dynamical CP violation
- separation of matter and antimatter in the early universe
- implications of antimatter measurements:
- NO(!) production of antihelium in our matter dominated universe possible!
- bound on antihelium/anticarbon contrains distance between galaxies and antigalaxies and baryogenesis theories

Philip von Doetinchem Search for new Phenomena in Cosmic Rays Berkeley Aug 2009 – p. 10

Search for Antihelium

 so far no antimatter found in cosmic rays. Needs a very good discrimination between Helium and Antihelium

Veto by Anticoincidence Counter

Philip von Doetinchem Search for new Phenomena in Cosmic Rays

New Cosmic-Ray Detectors

general requirements for direct measurements of cosmic rays up to TeV energies with balloons and in Space:

electron : antiproton flux ratio 10⁶ good proton suppression to measure proton : positron electrons, positrons, photons, solar Modulation: $\Phi = 442 \text{ MV}$ 10⁵ antiprotons, antimatter galdef 599278 / 599298(α) 10⁴ good momentum resolution 10³ long flight time and large acceptance 10^{2} small sources of background (high altitudes with balloons in the atmosphere or Space) 10⁻¹ 10² 10 energy [GeV] very robust behavior (shocks up to 10g possible), harsh environment Berkeley Aug 2009 – p. 12 Philip von Doetinchem Search for new Phenomena in Cosmic Rays

The PEBS Detector

Positron Electron Balloon Spectrometer

collaboration: Aachen, Chicago, Lausanne, Ohio

- planned balloon flights at the North and South Pole in Earth's atmosphere at ~40km (starting from 2014)
- in total ~100 days, acceptance: 0.3m²sr
- proposal decision by NASA next month
- goal: e-/+ data up to 2TeV

Philip von Doetinchem Search for new Phenomena in Cosmic Rays

The AMS-02 Detector

Alpha Magnetic Spectrometer

- very successful precursor AMS-01 was flown on a Space Shuttle in 1998
- flight with Space Shuttle to ISS STS-134, Discovery, Sep. 2010
- operation in space for 3 years
- spectroscopy of cosmic rays
- measurement/bounds on antimatter

Philip von Doetinchem Search for new Phenomena in Cosmic Rays

AMS-02 Components

Detector Characteristics

Event-by-event reconstruction!

	e-	p	He,Li,Be,Fe		Y	e⁺	p, D	He, C
TRD γ=E/m		γ	r				T	Υ
TOF dE/dx, velocity	T	T T	r r	T		T	T T	ř
Tracker dE/dx, momentum				人				ノ
RICH precise velocity				\bigcirc		\bigcirc		
ECAL shower		┺┺┺┺┺┺						
energy det.			Fermi:ECALATIC:ECALPAMELA:magnet + EPEBS:magnet + EAMS-02:magnet + E	ECAL ECAL + TRD ECAL + TRD +RICH			Ť	V
Ph. von Doetinchem Search for new Phenomena in cosmic Ravs Berke								g 2009 – p. 16

- only both types of experiments are able to deliver a homogeneously illuminated picture of the sky
- important to look for sources of TeV e^{-/+} and to distinguish between dark matter and pulsar models: large statistics are needed, anisotropies of 1% expected!

Philip von Doetinchem Search for new Phenomena in Cosmic Rays Berkeley Aug 2009 – p. 17

Balloon Experiments and Atmosphere

10GeV cosmic proton in atmosphere

> - proton - electron - positron - photon

- neutron

- muon

primary PEBS goal: e^{-/+} data up to 2TeV

- cosmic rays interact in Earth's atmosphere
- source of particle background
- understanding of background is very important for balloon experiments!
- important input to NASA proposal

Search for new Phenomena in Cosmic Rays Philip von Doetinchem

Berkeley Aug 2009 – p. 18

Residual Atmosphere

- grammage of matter in front of 40km: ~3.8g/cm² cosmic rays traversed in Space: 6 – 10g/cm²
- on average ~10% of a radiation length (nuclear mean free pathlength ~5%) before 40km: Atmospheric background has to be calculated!

Philip von Doetinchem Search for new Phenomena in Cosmic Rays Berkeley Aug 2009 – p. 19

Analysis of atmospheric Background

- use of program package: PLANETOCOSMICS based on GEANT4
- atmospheric model: NRLMSISE00

solar modulation

force field approximation

produce spectra of galactic cosmic ray

GALPROP DarkSUSY

magnetic field: IGRF 2005

Philip von Doetinchem Search for new Phenomena in Cosmic Rays Berkeley Aug 2009 – p. 20

Comparison of Backgrounds

Philip von Doetinchem Search for new Phenomena in Cosmic Rays Berkele

Particle Fluxes at the Detector

Philip von Doetinchem Search for new Phenomena in Cosmic Rays Berkeley Aug 2009 – p. 22

Composition of "Positrons"

total flux = cosmic + atmospheric + misidentified particles

- PEBS uses for the particle identification:
 - TOF: time measurement
 - TRD: transition radiation
 - ECAL: (m,p can be neglected)
 - Tracker momentum resolution:

$$\frac{\sigma_p}{p} = \frac{0.02\% \cdot p}{\text{GeV}} \oplus 2.3\%$$

- Positrons must be corrected for attenuation
- Atmospheric positrons from simulation!

Philip von Doetinchem Search for new Phenomena in Cosmic Rays Berkeley Aug

Positrons: Fluxes and Fraction

- assuming a total flight time of 100 days
- using systematic errors for detectors of 10% and 15% for the atmosphere a reliable positron fraction measurement with PEBS will be possible up to ~2000 GeV

Philip von Doetinchem Search for new Phenomena in Cosmic Rays Ber

AMS-02: ACC & Antimatter Search

ACC during

preintegration

ACC

ACC before

preintegration

AMS-02 after preintegration

Anticoincidence Counter:

- physics motivation
- detector concept
- detector construction and testing
- detection efficiency analysis

Philip von Doetinchem Search for new Phenomena in Cosmic Rays

Important Events for the ACC

- small ACC inefficiency needed (<10⁻⁴) for measurement of antimatter with very clean single tracks
- ACC can be included in the level 1 trigger decision as veto (reduce trigger rate: e.g. in the South Atlantic Anomaly)

Philip von Doetinchem Search for new Phenomena in Cosmic Rays Berkeley Aug

ACC System

Light Signals

Philip von Doetinchem Search for new Phenomena in Cosmic Rays

Panel and Fiber Production

16 Bicron BC414 Scintillator Panels with Kuraray wave length shifting fibers

- panel space qualification was done for AMS-01
- acceptance angle matching of wavelength shifting fiber and clear fiber is important to increase light output
- clear fiber matches NASA space qualification requirements

Philip von Doetinchem Search for new Phenomena in Cosmic Rays

16 Y-shaped

Toray clear fiber cables

panel

Space Qualification - PMTs

Philip von Doetinchem Search for new Phenomena in Cosmic Rays

Complete System Test

Philip von Doetinchem Search for new Phenomena in Cosmic Rays Berkeley Au

Preintegration (all components, but magnet)

always under supervision of Prof. Ting (Nobel Prize '76)

Philip von Doetinchem Search for new Phenomena in Cosmic Rays Bei

Flight Electronics

2 branches of signal processing:

- fast veto decision for level1 trigger with discriminator threshold
- charge and time measurement after trigger (ADC, TDC)
- production at CSIST, Taiwan, space qualification in Italy

) amplitude () 0.01

-0.02

-0.03

-0.04

-0.05

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04 time [s]

Search for new Phenomena in Cosmic Rays Philip von Doetinchem

Flight Electronics: ADC & TDC

Philip von Doetinchem Search for new Phenomena in Cosmic Rays B

Berkeley Aug 2009 – p. 34

ACC Inefficiency Study with Cosmics

ACC inefficiency as function of position!

Philip von Doetinchem Search for new Phenomena in Cosmic Rays Berkeley

ACC Inefficiency

Philip von Doetinchem Search for new Phenomena in Cosmic Rays Berkeley Aug 2009 – p. 36

AMS-02 Prospects for Antihelium

Philip von Doetinchem Search for new Phenomena in Cosmic Rays Berke

Conclusion & Outlook

- exciting times in cosmic-ray physics in the GeV-TeV range
 - positron fraction by PAMELA
 - -electron flux by ATIC, Fermi, HESS
- new experiments are needed to search for new phenomena
 - PEBS, balloon:
 - residual atmosphere
 - extend e.g. the positron fraction with a low cost detector up to ~2TeV
 - AMS-02, Space (ISS, 09/2010):
 - construction and Space qualification of the ACC
 - final integration this fall, testbeam, TVT @ ESTEC
 - wide field of physics: antiparticles, antimatter, sky coverage