128 channel waveform sampling digitizer/readout in the TOP counter for the Belle II upgrade

on behalf of: the Belle II bPID/TOP group **University of Hawai`i** SI AC **Indiana University** Nagoya University PNNI University of South Carolina University of Pittsburgh KFK

Belle II @ SuperKEKb @ KEK

KL and muon detector: Resistive Plate Counter (barrel) Scintillator + WLSF + MPPC (end-caps) EM Calorimeter: CsI(TI), waveform sampling (barrel) Pure CsI + waveform sampling (end-caps) electron (7GeV)

Beryllium beam pipe 2cm diameter

Vertex Detector 2 layers DEPFET + 4 layers DSSD

> Central Drift Chamber He(50%):C₂H₆(50%), Small cells, long lever arm, fast electronics

Particle Identification

Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (fwd)

positron (4GeV)

target is 30 kHz L1 trigger rate 50x higher luminosity much higher backgrounds

Time-Of-Propagation (TOP) counter: Cherenkov PID based on PDFs

Beamtest Experiment 2 Run 568 Event 1

folded ring images from SPring-8 / LEPS

2014-06-04

current prototype front-end electronics

- IRS3C ASIC
- higher gain from singlestage discrete amplifiers
- nearly same form-factor as production boardstack

 includes pogo pin PMT interface

*for more on MCP-PMTs, see talk by T. Yonekura

pogo pin landing pads

FEE+DAQ for production TOP module

Belle II

calibration steps (to aid online feature extraction and zero-suppression)

- Subtract storage cell pedestal
- Linearity correction
- Individual sample time offset correction

Three sets of calibration constants required:

- Sample pedestal values
 - o (262144 samples/ASIC)
- Sample time widths
 - (128 values per ASIC)
- Timewalk correction
 - (~20 values per ASIC)

Pulse Time Vs Sample Array Bin # (used to measure Sample-DTs)

*these data are from IRS3B with higher gain from single-stage discrete amplifier with 96% efficiency

Pulse Time Vs Height (timewalk correction)

TIPP'14

diagram of production front-end

bPID/TOP front-end boardstack schematic diagram

production ASIC (IRSX)

- 8 channels
- 128-sample Switched-Capacitor Array (SCA)
 - up to 4 GSa/s
- trimDAC for each sample in timing generator
 - to remove nonlinearities from time base
- 2-stage (analog) transfer to deep storage array (32,768 samples deep)
 - in principle allows deadtimeless readout
- trigger bit output
 - sent to global decision logic for Belle II
- 12-bit Wilkinson conversion of 8*64 samples
- serial readout over LVDS pair
- TSMC 0.25 um via MOSIS engineering run
- packaged in TQFP-128A

production "boardstack" design

carrier (mockup)

SCROD revB

two-stage amplifier

needed to run MCP-PMTs at 5x10^5 gain

power draw / cooling

- expected power draw for each production SRM: 50-78 W
- 200-312 W per TOP module

2014-06-04

power-supply sequencing

- 10 stages (per board; daisy-chained up boardstack)
 - reduces peak system inrush current

outstanding issues

- service space is extremely constrained
 - LV, HV, fiber optics, timing/trigger, JTAG links
 - cooling pipes
- must extract Q, t from waveforms in FPGA in real time to be sent to downstream DAQ system
 - processing done by dual ARM cores on each t
 FPGA (with help from programmable logic)
 - need to get data down from ~100 bytes per hit to ~10 bytes per hit

2014-06-04

O

status / plans

- took previous prototype electronics to beam test at SPring-8/LEPS (~95 ps; 80% efficient)
- continue to evaluate electronics in bench tests (~62 ps; 96% efficient)
- working on production board designs now:
 - will evaluate next few months thereafter
 - will go into production near end of this Summer
- cosmic-ray test for each TOP module this Fall
- installation into detector to commence next year

