bPID / TOP front-end electronics

University of Hawaii:
• Brian Kirby
• Gary Varner
• Matt Andrew
• James Bynes
• Boštjan Maček
• Matt Barrett

PNNL:
• Lynn Wood
• Eric Choi
• Hardeep Mehta
• Ryan Conrad

SLAC:
• Kurtis Nishimura

Indiana University:
• Gerard Visser

University of Pittsburgh:
• Vladimir Savinov
• Istvan Danko
bPID / TOP front-end electronics: Outline

- the past
- the present
- the future
bPID / TOP front-end electronics: SPring-8 / LEPS beam test

Table:

<table>
<thead>
<tr>
<th>iTOP configuration</th>
<th># events (IRS)</th>
<th># events (CFD)</th>
<th>LEPS fill pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal incidence</td>
<td>540k</td>
<td>250k</td>
<td>A-mode/H-mode</td>
</tr>
<tr>
<td>Normal incidence (highest rate poss.)</td>
<td>70k</td>
<td></td>
<td>A-mode</td>
</tr>
<tr>
<td>Forward (cosθ~0.4)</td>
<td>400k</td>
<td>950k</td>
<td>D-mode/H-mode</td>
</tr>
<tr>
<td>Forward (cosθ~0.4) + x shift (20cm)</td>
<td>235k</td>
<td>700k</td>
<td>D-mode/A-mode</td>
</tr>
</tbody>
</table>

2014-03-14 Belle II TRG/DAQ @ NTU M. Andrew
bPID / TOP front-end electronics: DAQ at SPring-8 / LEPS
bPID / TOP front-end electronics: PID based on PDFs
bPID / TOP front-end electronics: Ring images from SPring-8 / LEPS

vertical bands are due to dead channels (90/512)
bPID / TOP front-end electronics: FTSW-trigger/JTAG PCB

- provides a path for trigger and JTAG
- plugs directly into existing headers on FTSW (with minor soldering required to replace S4 with headers)
- which front-end module(s) is/are connected to JTAG selectable with front-panel rotary switch
- trigger maintains 50 Ohm path from LEMO cable, then uses high-speed comparator with LVPECL output to LVPECL/LVDS converter, fed directly into FTSW trigger input (special bPID firmware; but no other firmware modifications required)
bPID / TOP front-end electronics: Outline

- the past
- the present
- the future
bPID / TOP front-end electronics:
Boardstack / PMT testing in Hawaii

- Picosecond laser
- Inside Dark Box
- Module under test w/ reference SL-10 MCP
- FTSW, COPPER, CAMAC
- Stage for x-y control of illumination fiber (picosecond laser)
bPID / TOP front-end electronics: Intermediate boardstack

- for near-term testing
- uses IRS3C ASIC
- same form-factor as final boardstack*
 - *=except for presence of interconnect board and size of spacers between interconnect and SCROD

2014-03-14 Belle II TRG/DAQ @ NTU M. Andrew
bPID / TOP front-end electronics: Outline

- the past
- the present
- the future
bPID / TOP front-end electronics: final boardstack design
bPID / TOP front-end electronics: FEE+DAQ diagram for single bar

- PMTs (x8)
- amplifiers (x128)
- waveform sampling ASICs (x16)
- FPGAs (x5)

Front-end

- PMTs (x8)
- amplifiers (x128)
- waveform sampling ASICs (x16)
- FPGAs (x5)

Back-end
- FTSW
- timing/trigger
- JTAG
- UT3
- trigger fiber
- data fiber
- HSLB (x2)

Diagram of single FEE module on next page
bPID / TOP front-end electronics: Final boardstack diagram

bPID/TOP front-end boardstack schematic diagram
bPID / TOP front-end electronics: Pseudo-boardstack

- **pseudo-carrier (FMC HPC)**
 - ASIC
 - FPGA ZYNQ '030
 - 4 x GTX 14 LVDS
- **FMC HPC**
- **pseudo-SCROD (FMC LPC)**
 - ZC706 (Zynq '045)

- Fiber link for data (to HSLB)
- Fiber link for trigger (to UT3)
- Timing/trigger and JTAG links (to FTSW)
bPID / TOP front-end electronics: DAQ-based feedback loop

controlling of VadjN value implemented as a feedback through recorded files

after each file is recorded, pulse processing calculates new running parameters

current algorithm works on:

- distribution of pulses that cross the 'window' border
- distribution of pulses that do not cross the 'window' border

principle that these two distributions should have the same mean, and they have opposite gradients w.r.t. running parameter → from difference of mean values

a new VadjN is predicted (calibration run is needed to estimate gradients)

2014-03-14
Belle II TRG/DAQ @ NTU
M. Andrew
bPID / TOP front-end electronics: Calibration steps

1. Subtract storage cell pedestal (avg. ~2000 ADC +/- 100’s counts)
2. Linearity correction (optional)
3. Individual sample time offset correction

Three sets of calibration constants required:

- **Sample pedestal values**
 - (262144 samples/ASIC)

- **Sample time widths**
 - (128 values per ASIC)

- **Timewalk correction**
 - (~20 values per ASIC)

Waveform Pedestal Correction

Pulse Time Vs Sample Array Bin #
(used to measure Sample-DTs)

Pulse Time Vs Height
(timewalk correction)
bPID / TOP front-end electronics: Proposed in-detector processing steps
bPID / TOP front-end electronics: Status

- will have intermediate boardstack as soon as HV board is fabbed and assembled
- bench-testing DAQ is either through:
 - USB, or
 - fiber+DSP_FIN+COPPER-II+Radisys+copper server
- final boardstack is still in design stage
 - goal is to have this done by the end of March
- need to incorporate trigger output into the firmware for ASIC control/readout
bPID / TOP front-end electronics: Questions (1/2)

- What FTSW revision will TOP get? (need to know wiring for trigger/timing and JTAG)
 [answer=all FTSWs for production will have the same JTAG wiring; same for FTSW 2.0 as FTSW 3.1 (which is different from the FTSW 2.1 that we already have)]

- What FTSW will sci-KLM get? [see above answer]

- What will provide the TOP FTSWs with the program to stream over JTAG to the TOP modules? (there is no VME crate controller; does this stream come from upstream FTSWs?)
 [answer=yes, the stream comes from upstream FTSW]

- Were 127.21 MHz oscillators fabricated for bPID use (for DSP_FIN boards originally)?
 [answer=yes, there's enough]

- How much control will we have over JTAG through FTSW? Can we send an svf stream to bootstrap a single FPGA, then issue it some chipscope-like commands, then stream another 4 copies of a different svf file?
 [answer=we will have to test this]

- We're planning to chop the cat7 cables and use nicomatic cmm200 connectors for timing/trigger and JTAG links from FTSW; does anyone see a problem with this?
 [answer=we must test this and decide for ourselves]

- Can Hawaii have a UT3 board?
 [answer=Hawaii will buy some]
bPID / TOP front-end electronics: Questions (2/2)

- Does anyone know of a Xilinx Zynq SoC being used successfully in a 1.5T field with active gigabit transceivers? [answer=no]

- Where are the TOP power supply rack(s) located and how many U of vertical space do we have? (assuming a 24m power cable between the e-hut rack for TOP and the furthest TOP module) [answer=e-hut 2F, very near the detector; 64U or so (two racks)]

- Should we sign up for which Tsukuba B4 switchboards we want to reserve? [?]

- Worst case LV power consumption for all TOP is 12.5kW; Best case is 4.5kW
 - includes IR drop in the cables from the e-hut and ~85% inefficiency of supplies, but ignores power supply sequencing
 - plan is to stagger the programming (power up 1 TOP module, program it, 16 times)
 - will there be a command that can cause all TOP modules to become unprogrammed simultaneously? [answer=we must deal with this possibility]
backup
TOP FTSWs in KLM crates (on detector)
Triggered the 2 GeV/c e+ beam with the four trigger counters (two 40 x 40 mm² and two 5 x 5 mm²)

- γ rate: ~30 kHz
- Trigger rate: ~10 Hz
- DAQ rate: ~5 – 10 Hz
LV power draw details

Voltage on measured equipment (V)	LV power draw details																	
1.5V	1.5V	1.5V	1.5V	1.5V	1.5V	1.5V	1.5V	1.5V	1.5V	1.5V	1.5V	1.5V	1.5V	1.5V	1.5V	1.5V	1.5V	1.5V

2014-03-14 Belle II TRG/DAQ @ NTU M. Andrew