DAQ at Fermilab T-1019: Belle II bPID (iTOP)

Nagoya Daigaku
Kenji Inami
Toru Iijima
Kazuhito Suzuki
Naoto Kiribe
Kodai Matsuoka
Shota Suzuki
Yoshinori Arita
Shigeki Hirose
Yasuyuki Horii

KEK
Dmitri Liventsev

PPNL
Lynn Wood

University of Hawaii
Gary Varner
Kurtis Nishimura
Matt Andrew
Tom Browder
Marc Rosen
Casey Honniball
Christina Yee
Louis Ridley
Ricky Tso
Xin Gao
Serge Negrashov

Matt Andrew University of Hawaii 2012-01-16 Belle II TRG/DAQ meeting
DAQ at T-1019
review of hardware

- **front-end:**
 - SL10 PMT (Hamamatsu)
 - only had 20/32 tubes
 - IRS2 ASIC (Varner)
 - 8 channel; waveform sampling; large analog memory
 - boardstack (Ridley/Andrew/Caplett)
 - mechanical and electrical interconnects
 - SCROD (Ridley/Andrew)
 - controller board

- **back-end:**
 - DSP_cPCI (Ruckman)
 - accepts all data via fiber (Aurora streaming 32 bit) and delivers it to CPU
 - FTSW (Nakao)
 - allows JTAG programming of front-end
 - front-end generates synchronous derived clock from distributed 127.216 MHz clock
 - USB CAMAC crate controller (Weiner)
no zero-suppression (record 256 sample waveforms from all 384 channels)

trigger causes a gate generator to latch; not cleared until all data is readout
DAQ at T-1019 problems

- expected to have all computers on Fermilab's network (not possible due to lack of Kerberization)
- FPGAs refused to program (or even identify correctly) for a significant time on two occasions
- lost synchronization of clock derived from FTSW distributed clock ~15 times
- software development was occurring during beam time (cut into overall efficiency)
- configuration of CAMAC ADC/TDCs changed during runs (complicates the data processing scripts)
- for several runs, the LeCroy 3377 module wasn't given enough time to allow its FPGA to load its program (caused overall data rate to suffer)
DAQ at T-1019
statistics

- duration of beam test: 14 days * 12 hours/day
- spill structure: 4 s / 56 s
- number of spills: 5770 (out of 10080 possible spills)
- uptime: 57% (neglecting accelerator downtime)
- quantity of raw data acquired: 182 GB
- quantity of calibration data acquired: 179 GB
- average data collection rate during spill: ~8 MB/sec
- maximum instantaneous data collection rate: ~14.4 MB/sec (sans CAMAC)
- number of times a front-end module missed a trigger: 41 (99.3% of triggers were seen)
- number of times an FPGA needed to be reprogrammed (other than just after power-up): 18
- quantity of DST1/2/3/4 data: 215GB/319GB/?/?
DAQ for Belle II bPID status / plans

- process data (an iterative process)
- SCROD revB
 - SPI flash to allow booting on power-up
 - jitter cleaner on-board (plan to distribute 21 MHz)
 - shielded RJ45 connectors (to help with jtag problems)
 - plated edges for thermal coupling
 - other minor changes
- implement trigger in firmware
- implement zero suppression in firmware
- implement waveform processing in DSPs
- switch from cPCI to COPPER/FINESSE
 - may require a new DSP_FIN revision
backup slides

• documentation on bPID / TOP electronics/firmware/software:
 • http://code.google.com/p/idlab-scrod/
 • http://code.google.com/p/idlab-scrod/wiki/HowToUseFrontEndElectronics
 • http://code.google.com/p/idlab-scrod/wiki/BelleIIbPIDElectronicsDocumentation
 • http://code.google.com/p/idlab-daq/
 • http://code.google.com/p/idlab-daq/wiki/HowToUseDAQSystem

• all firmware compiled with Xilinx ISE 13.2