Physics-272 Lecture 21

Description of Wave Motion Electromagnetic Waves Maxwell's Equations Again!

Maxwell's Equations

James Clerk Maxwell (1831-1879)

- Generalized Ampere's Law
- And made equations symmetric:
 - a changing magnetic field produces an electric field
 - a changing electric field produces a magnetic field
- · Showed that Maxwell's equations predicted electromagnetic waves and c = $1/\sqrt{\epsilon_0\mu_0}$

Unified electricity and magnetism and light.

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \leftarrow Faraday's Law$$

$$\nabla \times \vec{H} = \vec{J}_{free} + \frac{\partial \vec{D}}{\partial t} \leftarrow Ampere's Law$$

and then there was light.

Maxwell's Equations

Gauss's Law

Ampere's Law

Faraday's Law

Non-existence of Magnetic Charge

Maxwell's Equations (integral form)

Name	Equation	Description
Gauss' Law for Electricity	$\int \vec{E} \cdot d\vec{A} = \frac{Q}{\varepsilon_0}$	Charge and electric fields
Gauss' Law for Magnetism	$\int \vec{B} \cdot d\vec{A} = 0$	Magnetic fields
Faraday's Law	$\oint \vec{E} \cdot d\vec{l} = -\frac{d\Phi_B}{dt}$	Electrical effects from changing B field
Ampere's Law (modified by Maxwell)	$ \oint \vec{B} \cdot dl = \mu_0 \left(i_c + \varepsilon_0 \frac{d\Phi_E}{dt} \right) $	Magnetic effects from current and Changing E field

All of electricity and magnetism is summarized by Maxwell's Equations.

On to Waves!!

 Note the symmetry now of Maxwell's Equations in free space, meaning when no charges or currents are present

$$\int \vec{E} \cdot d\vec{A} = 0$$

$$\int \vec{B} \cdot d\vec{A} = 0$$

$$\oint \vec{E} \cdot d\vec{l} = -\frac{d\Phi_B}{dt}$$

$$\oint \vec{B} \cdot dl = \mu_0 \varepsilon_0 \frac{d\Phi_E}{dt}$$

• Combining these equations leads to wave equations for E and B, e.g.,

$$\left(\frac{\partial^2 E_x}{\partial z^2} = \mu_0 \varepsilon_0 \frac{\partial^2 E_x}{\partial t^2}\right)$$

Do you remember the wave equation???

$$\frac{\partial^2 h}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 h}{\partial t^2}$$

h is the variable that is changing in space (x) and time (t). v is the velocity of the wave.

Review of Waves from Physics 170

• The one-dimensional wave equation:

$$\frac{\partial^2 h}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 h}{\partial t^2}$$

has a general solution of the form:

$$h(x,t) = h_1(x-vt) + h_2(x+vt)$$

where h_1 represents a wave traveling in the +x direction and h_2 represents a wave traveling in the -x direction.

A specific solution for harmonic waves traveling in the +x
 direction is:

$$h(x,t) = A\cos(kx - \omega t)$$

$$k = \frac{2\pi}{\lambda} \quad \omega = 2\pi f = \frac{2\pi}{T}$$

$$v = \lambda f = \frac{\omega}{k}$$

A = amplitude

 λ = wavelength

f = frequency

v = speed

k = wave number

Clicker problem

- Snapshots of a wave with angular frequency ω are shown at 3 times:
- Which of the following expressions describes this wave?

(a)
$$y = \sin(kx - \omega t)$$

(b)
$$y = \sin(kx + \omega t)$$

(c)
$$y = \cos(kx + \omega t)$$

(a)
$$+x$$
 direction (b) $-x$ direction

Clicker problem

- Snapshots of a wave with angular frequency ω are shown at 3 times:
- **2A** Which of the following expressions describes this wave?

(a)
$$y = \sin(kx - \omega t)$$

(b)
$$y = \sin(kx + \omega t)$$

(c)
$$y = \cos(kx + \omega t)$$

- The t = 0 snapshot \Rightarrow at t = 0, $y = \sin kx$
- At $t = \pi/2\omega$ and x=0, (a) $\Rightarrow y = \sin(-\pi/2) = -1$
- At $t = \pi/2\omega$ and x = 0, (b) $\Rightarrow y = \sin(+\pi/2) = +1$

Clicker problem

- Snapshots of a wave with angular frequency ω are shown at 3 times:
- Which of the following expressions describes this wave?

(a)
$$y = \sin(kx - \omega t)$$

(b)
$$y = \sin(kx + \omega t)$$

$$(c) y = \cos(kx + \omega t)$$

(a)
$$+ x$$
 direction

(b)
$$-x$$
 direction

- We claim this wave moves in the -x direction.
- The orange dot marks a point of constant phase.
- It clearly moves in the -x direction as time increases!!

Velocity of Electromagnetic Waves

The wave equation for E_x
 (Maxwell derived it in ~1865!):

$$\left(\frac{\partial^2 E_x}{\partial z^2} = \mu_0 \varepsilon_0 \frac{\partial^2 E_x}{\partial t^2}\right)$$

• Comparing to the general wave equation: $\frac{\partial^2 h}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 h}{\partial t^2}$

we have the velocity of electromagnetic waves in free space:

$$v = \frac{1}{\mu_0 \varepsilon_0} = 3.00 \times 10^8 \,\text{m/s} \equiv c$$

- This value is essentially identical to the speed of light measured by Foucault in 1860!
 - Maxwell identified light as an electromagnetic wave.

E & B in Electromagnetic Wave

Plane Harmonic Wave:

$$E_x = E_0 \sin(kz - \omega t)$$

$$B_y = B_0 \sin(kz - \omega t)$$

where $\omega = kc$

 $\succ [B_{\rm y} \text{ is in phase with } E_{\rm x}]$

$$\triangleright \left[B_0 = E_0 / c \right]$$

 \triangleright The direction of propagation \hat{s} is given by the cross product

$$\hat{s} = \hat{e} \times \hat{b}$$

where (\hat{e}, \hat{b}) are the unit vectors in the (E,B) directions. Nothing special about (E_x, B_y) ; e.g., could have $(E_y, -B_x)$

Clicker Problem

- Suppose the electric field in an e-m wave is given by:
 - 3A In what direction is this wave traveling?

(a) +
$$z$$
 direction (b) - z direction

- Which of the following expressions describes the magnetic field associated with this wave?
 - (a) $B_x = -(E_0/c) \cos(kz + \omega t)$
 - (b) $B_x = +(E_0/c) \cos(kz \omega t)$
 - (c) $B_r = +(E_0/c) \sin(kz \omega t)$

Clicker Problem

Suppose the electric field in an e-m wave is given by:

$$\vec{E} = -\hat{y} E_0 \cos(-kz + \omega t)$$

- In what direction is this wave traveling?

(a) +
$$z$$
 direction (b) - z direction

(b) -
$$z$$
 direction

- To determine the direction, set phase = 0: $-kz + \omega t = 0 \implies z = +\frac{\omega}{k}t$
- Therefore wave moves in + z direction!
- Another way: Relative signs opposite means + direction

Clicker Problem

Suppose the electric field in an e-m wave is given by:

$$\vec{E} = -\hat{y} E_0 \cos(-kz + \omega t)$$

- In what direction is this wave traveling?

(a) +
$$z$$
 direction

(a) +
$$z$$
 direction (b) - z direction

 Which of the following expressions describes the magnetic field **3B** associated with this wave?

(a)
$$B_x = -(E_0/c) \cos(kz + \omega t)$$

(b)
$$B_x = +(E_0/c) \cos(kz - \omega t)$$
)

(c)
$$B_x = +(E_o/c) \sin(kz - \omega t)$$

• ${\it B}$ is in phase with ${\it E}$ and has direction determined from: $\hat{b} = \hat{s} \times \hat{e}$

• At
$$t=0$$
, $z=0$, $E_y = -E_0$

• Therefore at $\hat{t}=0$, z=0, $\hat{b}=\hat{s}\times\hat{e}=\hat{k}\times(-\hat{j})=\hat{i}$

$$\overrightarrow{B} = +\hat{i} \frac{E_0}{c} \cos(kz - \omega t)$$

10) An electromagnetic wave is travelling along the x-axis, with its electric field oscillating along the y-axis. In what direction does the magnetic field oscillate?

- a) along the x-axis
- b) along the z-axis
- c) along the y-axis

Note: the direction of propagation \hat{s} is given by the cross product

$$\hat{s} = \hat{e} \times \hat{b}$$

 $\hat{s} = \hat{e} \times \hat{b}$ where (\hat{e}, \hat{b}) are the unit vectors in the (E,B) directions.

In this case, direction of \hat{s} is x and direction of \hat{e} is y

$$\hat{x} = \hat{y} \times \hat{z}$$

The fields must be perpendicular to each other and to the direction of propagation.

> Leads to the possibility of "polarization" of light to be discussed in next chapter.

Electromagnetic (EM) Waves in free space

Maxwell's eqns predict electric & magnetic fields can propagate in vacuum.

Examples of EM waves include; radio/TV waves, light, x-rays, and microwaves.

$$\left(\frac{\partial^2 E_x}{\partial z^2} = \mu_0 \varepsilon_0 \frac{\partial^2 E_x}{\partial t^2}\right)$$

A specific solution for harmonic waves traveling in the +x
 direction is:

$$h(x,t) = A\cos(kx - \omega t)$$
$$k = \frac{2\pi}{\lambda} \quad \omega = 2\pi f = \frac{2\pi}{T}$$
$$v = \lambda f = \frac{\omega}{k}$$

A = amplitude

 λ = wavelength

f = frequency

v = speed

k = wave number

Which equation correctly describes this electromagnetic wave?

$$\bigcirc \mathbf{E}_{\mathbf{x}} = \mathbf{E}_{\mathbf{o}} \sin(kz \bigoplus \omega t)$$
 No – moving in the minus z direction

$$\bigcirc \mathbf{E}_{\mathbf{y}} = \mathbf{E}_{\mathbf{o}} \sin (k\mathbf{z} - \omega t)$$
 No – has Ey rather than Ex

$$\bigcirc \mathbf{B}_{\mathbf{y}} = \mathbf{B}_{\mathbf{o}} \sin(k\mathbf{z} - \omega t)$$

Students must become familiar with the wavelengths of common types of EM radiation

5) Your iclicker operates at a frequency of approximately 900 MHz (900x10⁶ Hz). What is the approximately wavelength of the EM wave produced by your iclicker?

- 0.03 meters
 0.03 meters
 0.3.0 meters
 - ○30. meters

Wavelength is equal to the speed of light divided by the frequency.

$$\lambda = \frac{c}{f} = \frac{300,000,000}{900,000,000} = \frac{1}{3}$$

An electromagnetic wave is described by: where \hat{j} is the unit vector in the +y direction.

 $\vec{E} = \hat{j}E_0\cos(kz - \omega t)$

Which of the following graphs represents the z-dependence of $B_{\rm x}$ at t = 0?

E and B are "in phase" (or 180° out of phase)

 $\vec{E} \times \vec{B}$ points in direction of propagation

An electromagnetic wave is described by:

$$\vec{E} = \frac{\hat{i} + \hat{j}}{\sqrt{2}} E_0 \cos(kz + \omega t)$$

What is the form of B for this wave?

$$\vec{B} = \frac{\hat{i} + \hat{j}}{\sqrt{2}} (E_0 / c) \cos(kz + \omega t)$$

$$\vec{B} = \frac{\hat{i} - \hat{j}}{\sqrt{2}} (E_0 / c) \cos(kz + \omega t)$$

$$\mathbf{B)} \quad \vec{B} = \frac{-\hat{i} - \hat{j}}{\sqrt{2}} (E_0 / c) \cos(kz + \omega t)$$

$$\vec{B} = \frac{-\hat{i} - \hat{j}}{\sqrt{2}} (E_0 / c) \cos(kz + \omega t)$$

$$\vec{E} = \frac{\hat{i} + \hat{j}}{\sqrt{2}} E_0 \cos(kz + \omega t)$$

Wave moves in -z direction

 $\vec{E} \times \vec{B}$ points in negative z-direction

- +z points out of screen
- -z points into screen

B must be perp to E

Plane Waves

• For any given value of z, the magnitude of the electric field is uniform everywhere in the x-y plane with that z value.

Shown is an EM wave at an instant in time. Points A, B, and C lie in the same **x-y** plane.

3) Compare the magnitudes of the electric field at points A and B.

a)
$$E_a < E_b$$
b) $E_a = E_b$
c) $E_a > E_b$

4) Compare the magnitudes of the electric field at points A and C.

a)
$$E_a < E_c$$
b) $E_a = E_c$
c) $E_a > E_c$

Students said ...

Magnitude of field is determined only by value of z (and t) !!!

Right:

• for any given value of z, the magnitude of the electric field is uniform everywhere in the x-y plane with that z value

Wrong:

• The point A is where the electric field and magnetic field are zero. So the points c and b have a greater field.

(a common misconception)

EM wave; energy momentum, angular momentum

Previously, we demonstrated the energy density existed in E fields in capacitors and in B fields in inductors. We can sum these energies,

$$u = \frac{1}{2}\varepsilon_0 E^2 + \frac{1}{2\mu_0} B^2$$

Since, E=cB and $c=1/\sqrt{\mu_0\varepsilon_0}$ then u in terms of E,

$$u = \frac{1}{2}\varepsilon_0 E^2 + \frac{1}{2}\mu_0 \left(\frac{E}{c}\right)^2 = \frac{1}{2}\varepsilon_0 E^2 + \frac{1}{2}\varepsilon_0 E^2 = \varepsilon_0 E^2$$

=> EM waves have energy and can transport energy at speed c

Almost all energy resources on the earth come directly or indirectly via sunlight. What doesn't?

EM wave; energy flow & Poynting Vector

Suppose we have transverse E and B fields moving at velocity c, to the right. If the energy density is $u = \varepsilon_0 E^2$ and the field is moving through area A at velocity c covers volume Act,

that has energy, uAct. Hence the amount of energy

flow per unit time per unit surface area is,

$$\frac{1}{A}\frac{dU}{dt} = \frac{1}{At}(uAct) = uc = \varepsilon_0 cE^2$$

This quantity is called, S. In terms of E&B field magnitudes,

$$S = \varepsilon_0 c E^2 = \varepsilon_0 c E c E / c = \varepsilon_0 c E c B = E B / \mu_0$$

We also define the energy flow with direction, called the Poynting vector, _____, which is in the direction of propagation

$$\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$$

EM wave; Intensity

The intensity, I, is the time average of the magnitude of the Poynting vector and represents the <u>average energy flow per unit area</u>.

$$I = \langle \vec{S}(x, y, z, t) \rangle = \frac{1}{\mu_0} \langle \vec{E}(x, y, z, t) \times \vec{B}(x, y, z, t) \rangle$$

In Y&F, section 32.4, the average S for a sinusoidal plane wave (squared) is worked out,

$$I = \langle \vec{S}(x, y, z, t) \rangle = \frac{E_{\text{max}} B_{\text{max}}}{2\mu_0} \langle 1 + \cos(2kx - 2\omega t) \rangle = \frac{E_{\text{max}} B_{\text{max}}}{2\mu_0}$$

The can be rewritten as,

$$I = \langle \vec{S}(x, y, z, t) \rangle = \frac{E_{\text{max}} B_{\text{max}}}{2\mu_0} = \frac{\varepsilon_0 c}{2} E_{\text{max}}^2 = \frac{\varepsilon_0 c}{2c} B_{\text{max}}^2$$

Cell Phone Problem

32.22) A sinusoidal electromagnetic wave emitted by a cell phone has a wavelength of 35.4 cm and an electric field amplitude of 5.4×10^{-2} V/m at a distance of 250 m from the antenna. (a) What is the magnetic field amplitude? (b) The intensity? (C) The total average power?

a.) E = c B; B= E/c =
$$5.4 \times 10^{-2}$$
 (V/m)/3 × 10^{8} m/s
B = 1.8×10^{-10} T

b.)
$$I = \frac{1}{2} \varepsilon_0 c E^2;$$

$$I = \frac{1}{2} (8.85 \times 10^{-12} C^2 / Nm^2) (3 \times 10^8 m/s) (5.4 \times 10^{-2} V/m)$$

$$I = 3.87 \times 10^{-6} W/m^2$$

c.) Assume isotropic: I=P/A; $P=4\pi r^2 I=4\pi (250m)^2 I$ P=3 W

Waves Carry Energy

Intensity

Intensity = energy delivered per unit time, per unit area

Total Energy Density
$$u=\varepsilon_o E^2$$

Average Energy Density

Intensity
$$I = \frac{1}{2} c \varepsilon_o E_o^2 = c \langle u \rangle$$

 $I = c\langle u \rangle$

 $I \sim 1000 \text{ J/s/m}^2$ $\sim 1 \text{ kW/m}^2$

Comment on the Poynting Vector

Just another way to keep track of all this

- It's the same thing as ${\cal I}$ but it has a direction

Light has Momentum!

If it has energy and it's moving, then it also has momentum:

Analogy from mechanics:

$$E = \frac{p^2}{2m}$$

$$\frac{dE}{dt} = \frac{\nabla p}{\nabla m} \frac{dp}{dt} = \frac{mv}{m} \frac{dp}{dt} = vF$$

$$\frac{dE}{dt} \to \frac{dU}{dt} = IA$$

$$v \to c$$

For E-M waves:

$$P = \frac{I}{c}$$

$$\frac{I}{c} = \left(\frac{F}{A}\right) \text{ pressure}$$

CLASS FREQUENCY WAVELENGTH ENERGY 300 EHz 1 pm 1.24 MeV 30 EHz 10 pm 124 keV ΗX 100 pm 3 EHz 12.4 keV SX 300 PHz 1 nm 1.24 keV 30 PHz 10 nm 124 eV EUV 3 PHz 100 nm 12.4 eV ΝŪΫ 1.24 eV 300 THz 1 µm NIR 30 THz 10 µm 124 meV MIR 100 µm 3 THz 12.4 meV FIR 300 GHz 1 mm 1.24 meV EHF 30 GHz 124 µeV 1 cm SHF 3 GHz 12.4 µeV 1 dm UHF 300 MHz 1 m 1.24 µeV VHF 124 neV 30 MHz 10 m HF 3 MHz 100 m 12.4 neV MF 300 kHz 1.24 neV 1 km .F 30 kHz 124 peV 10 km VLF 3 kHz 100 km 12.4 peV VF/ULF 300 Hz 1 Mm 1.24 peV SLF 30 Hz 10 Mm 124 feV ELF 3 Hz 100 Mm 12.4 feV

3 G cell phone networks in the US use 1710-1756 MHz frequencies.

What is the corresponding wavelength range?

 $3 \times 10^8 m/s/(1710 \times 10^6 Hz) = 0.175 m$

 $3 \times 10^8 m/s/(1756 \times 10^6 Hz) = 0.170 m$