Lecture 11

Kirchoff Circuit Rules RC- Circuits

Review

In this circuit, assume V_i and R_i are known.

What is I₂ ??

- We have the following 4 equations:
 - 1. $I_2 = I_1 + I_3$ 2. $-V_1 + I_1R_1 - I_3R_3 + V_3 = 0$
 - 3. $-V_3 + I_3R_3 + I_2R_2 + V_2 = 0$
 - 4. $-V_2 I_2 R_2 I_1 R_1 + V_1 = 0$
- Why??
 - We need 3 INDEPENDENT equations
 - We must choose Equation 1 and any two of the remaining (2, 3, and 4)
 - Equations 2, 3, and 4 are NOT INDEPENDENT
 - Eqn 2 + Eqn 3 = Eqn 4

Calculation

In this circuit, assume V_i and R_i are known.

What is I₂ ??

• We have 3 equations and 3 unknowns.

$$I_{2} = I_{1} + I_{3}$$

$$V_{1} + I_{1}R_{1} - I_{3}R_{3} + V_{3} = 0$$

$$V_{2} - I_{2}R_{2} - I_{1}R_{1} + V_{1} = 0$$

- •The solution will get very messy in general.
- •Instead do a simpler problem:

•assume $V_2 = V_3 = V$; $V_1 = 2V$; $R_1 = R_3 = R$ with $R_2 = 2R$

Calculation: Simplify

In this circuit, assume V and R are known. What is I_2 ?

• We have 3 equations and 3 unknowns.

$$I_2 = I_1 + I_3$$

-2V + I₁R - I₃R + V = 0
(outside)

$$-V - I_2(2R) - I_1R + 2V = 0$$

(top)

• With this simplification, you can verify: $\frac{1}{5} = \frac{3}{5} + (\frac{-2}{5}) - \frac{1}{5}$

$$I_2 = (1/5) V/R$$

 $I_1 = (3/5) V/R$
 $I_3 = (-2/5) V/R$

 $X - X + I_3 R + 2I_2 R = 0 \quad I_3 / (+2)_z / (= 0) \quad \Rightarrow \quad |I_2 = -\frac{1}{2}I_3|$ $-2V + I_1R - I_3R + V = 0 \quad \exists R - \exists R - \forall - \exists R - \forall - \exists R - \forall R - \teltar R - \tel$ I, = ¥+I3 $\mathbf{I}_3 + \mathbf{I}_1 - \mathbf{I}_2 = \mathbf{0}$ $\sum_{3} + \bigvee_{R} + \sum_{3} + \bigcup_{7} \sum_{3} = 0$ $\frac{1}{T_3} = \frac{V}{R} = \frac{V}{T_3} = \frac{V}{R}$ $\frac{1}{T_3} = \frac{V}{R}$ $\frac{1}{T_3} = -\frac{V}{R}$

For reference only

Follow-Up Clicker

• We know:

 $I_2 = (1/5) V/R$ $I_1 = (3/5) V/R$ $I_3 = (-2/5) V/R$

• Suppose we short R₃: across R₂) ?

(A) V_{ab} remains the same (B) V_{ab} changes sign (C) V_{ab} increases (D) V_{ab} goes to zero $V_{cd} = +V$ $V_{bd} = +V$ $V_{ab} = +V$ $V_{ab} = +V$ $V_{ab} = +V$

What happens to V_{ab} (voltage Why? Redraw: $V_{ab} = V_{ad} - V_{bd} = V - V = 0$ Why? Redraw: $V_{ab} = V_{ad} - V_{bd} = V - V = 0$ $V_{ab} = V_{ad} - V_{bd} = V - V = 0$ $V_{ab} = V_{ad} - V_{bd} = V - V = 0$

BB

Is there a current flowing between a and b?

At first guess it might appear that since A & B have the same potential Current flows from battery and splits at A Some current flows down Some current flows right Consider the circuit shown below.

Which of the following statements best describes the current flowing in the blue wire connecting points a and b O Positive current flows from a to b O Positive current flows from b to a O No current flows between a and b

$$I_{1}R - I_{2} (2R) = 0 \implies I_{1} = 2 I_{2}$$

$$I_{4}R - I_{3} (2R) = 0 \implies I_{4} = 2 I_{3}$$

$$I_{2} = I_{3} \implies I_{1} = 2 I_{3}$$

$$I = I_{1} - I_{3} = 2I_{3} - I_{3} = +I_{3}$$

What is the same?

Current flowing in and out of the battery

What is different? Current flowing from a to b

What is the same?

Current flowing in and out of the battery

What is different? Current flowing from a to b

In which case is the current flowing in the blue wire connecting points a and b biggest O Case A O Case B O They are the same

Current will flow from left to right in both cases

In both cases,
$$V_{ac} = V/2$$

$$I(2R) = 2I(4R)$$

$$I_{A} = I(R) - I(2R)$$

$$= I(R) - 2I(4R)$$

$$I_{B} = I(R) - I(4R)$$

Resistor-capacitor circuits

Let's add a Capacitor to our simple circuit

Recall voltage "drop" on C?

$$V = \frac{Q}{C}$$

Write KVL:
$$\varepsilon - IR - \frac{Q}{C} = 0$$

Use $I = \frac{dQ}{dt}$ Now eqn. has only "Q": *KVL gives Differential Equation* ! $\mathcal{E} - R \frac{dQ}{dt} - \frac{Q}{C} = 0$

We will solve this later. For now, look at qualitative behavior...

Capacitors Circuits, Qualitative

Basic principle: Capacitor resists change in Q → resists changes in V

- Charging (it takes time to put the final charge on)
 - Initially, the capacitor behaves like a wire ($\Delta V = 0$, since Q = 0).
 - As current continues to flow, charge builds up on the capacitor
 - \rightarrow it then becomes more difficult to add more charge

 \rightarrow the current slows down

- After a long time, the capacitor behaves like an open switch.
- Discharging
 - Initially, the capacitor behaves like a battery.
 - After a long time, the capacitor behaves like a wire.

Clicker Problem (two parts)

• At *t*=0 the switch is thrown from position *b* to position *a* in the circuit shown: The capacitor is initially uncharged.

– What is the value of the current I_{0+} just after the switch is thrown?

(a)
$$I_{0+} = 0$$
 (b) $I_{0+} = \varepsilon/2R$ (c) $I_{0+} = 2\varepsilon/R$

2B – What is the value of the current I_{∞} after a very long time?

(a) $I_{\infty} = 0$ (b) $I_{\infty} = \varepsilon/2R$ (c) $I_{\infty} > 2\varepsilon/R$

Clicker problem (2 parts)

• At *t*=0 the switch is thrown from position *b* to position *a* in the circuit shown: The capacitor is initially uncharged.

– What is the value of the current I_{0+} just after the switch is thrown?

(a)
$$I_{0+} = 0$$
 (b) $I_{0+} = \varepsilon/2R$ (c) $I_{0+} = 2\varepsilon/R$

- Just after the switch is thrown, the capacitor still has no charge, therefore the voltage drop across the capacitor = 0!
- Applying KVL to the loop at t=0+, $\varepsilon IR 0 IR = 0 \Rightarrow I = \varepsilon/2R$

Clicker problem (2 parts)

- At *t*=0 the switch is thrown from position *b* to position *a* in the circuit shown: The capacitor is initially uncharged.
 - What is the value of the current I_{0+} just after the switch is thrown?

(a)
$$I_{0+} = 0$$
 (b) $I_{0+} = \varepsilon/2R$ (c) $I_{0+} = 2\varepsilon/R$

2B $\Big|_{-}$ What is the value of the current I_{∞} after a very long time?

(a)
$$I_{\infty} = 0$$
 (b) $I_{\infty} = \varepsilon/2R$ (c) $I_{\infty} > 2\varepsilon/R$

- The key here is to realize that as the current continues to flow, the charge on the capacitor continues to grow.
- As the charge on the capacitor continues to grow, the voltage across the capacitor will increase.
- The voltage across the capacitor is limited to ε ; the current goes to 0.

Clicker problem

The capacitor is initially uncharged, and the two switches are open.

3) What is the voltage across the capacitor immediately after switch S_1 is closed?

(a)
$$V_c = 0$$

(b) $V_c = E$
(c) $V_c = 1/2 E$

4) Find the voltage across the capacitor after the switch has been closed for a very long time.

a)
$$V_c = 0$$
 (b) $V_c = E$ $Q = E C$ $I = 0$
c) $V_c = 1/2 E$

Clicker problem:

6) After being closed a long time, switch 1 is opened and switch 2 is closed. What is the current through the right resistor immediately after the switch 2 is closed?

a)
$$I_R = 0$$

b) $I_R = E/(3R)$
c) $I_R = E/(2R)$
d) $I_R = E/R$

Now, the battery and the resistor 2*R* are disconnected from the circuit, so we have a different circuit. Since *C* is fully charged, $V_C = E$. Initially, *C* acts like a battery, and $I = V_C/R$.

RC Circuits (Time-varying currents, charging)

Charging Capacitor

Charge capacitor: $\mathcal{E} = R \frac{dQ}{dt} + \frac{Q}{C}$ E Guess solution: $Q = C \mathcal{E}(1 - e^{-t/RC})$ Check that it is a solution: Note that this "guess" fits the boundary $\frac{dQ}{dt} = C \mathcal{E} e^{-t/RC} \left(+ \frac{1}{RC} \right)$ conditions: $t = 0 \Longrightarrow Q = 0$ $t = \infty \Longrightarrow Q = C\varepsilon$ $\Rightarrow R \frac{dQ}{dt} + \frac{Q}{C} = \pm \varepsilon e^{-t/RC} + \varepsilon (1 - e^{-t/RC}) = \varepsilon \quad !$

Charging Capacitor in a RC circuit

• Charge capacitor:

$$Q = C \varepsilon \left(1 - e^{-t/RC} \right)$$

Current is found from differentiation:

$$\left[I = \frac{dQ}{dt} = \frac{\varepsilon}{R} e^{-t/RC}\right] \implies$$

- Capacitor reaches its final charge($Q=C\varepsilon$) exponentially with time constant $\tau = RC$.
- Current decays from max $(=\varepsilon/R)$ with same time constant.

Charging Capacitor

Discharging Capacitor

• Check that it is a solution:

$$\frac{dQ}{dt} = C \varepsilon e^{-t/RC} \left(-\frac{1}{RC} \right)$$

$$\Rightarrow R \frac{dQ}{dt} + \frac{Q}{C} = -\varepsilon e^{-t/RC} + \varepsilon e^{-t/RC} = 0$$

Note that this "guess"
fits the boundary
conditions:
$$t=0 \Rightarrow Q=C\varepsilon$$

 $t=\infty \Rightarrow Q=0$

Discharging Capacitor

• Discharge capacitor:

$$Q = Q_0 \mathrm{e}^{-t/\tau} = C \mathcal{E} \mathrm{e}^{-t/RC}$$

 Current is found from differentiation:

$$\underbrace{I = \frac{dQ}{dt} = \frac{\varepsilon}{\sqrt{R}} e^{-t/RC}}_{N} \implies$$

Minus sign: Current is opposite to original definition, i.e., charges flow *away* from capacitor.

Conclusion:

- Capacitor discharges exponentially with time constant *τ* = RC
- Current decays from initial max value (= -ε/R) with same time constant

Discharging Capacitor

Clicker problem:

The two circuits shown below contain identical fully charged capacitors at t=0. Circuit 2 has twice as much resistance as circuit 1.

8) Compare the charge on the two capacitors a short time after t = 0

Initially, the charges on the two capacitors are the same. But the two circuits have different time constants: $\tau_1 = RC$ and $\tau_2 = 2RC$. Since $\tau_2 > \tau_1$ it takes circuit 2 longer to discharge its capacitor. Therefore, at any given time, the charge on capacitor 2 is bigger than that on capacitor 1. Clicker:

The circuit below contains a battery, a switch, a capacitor and two resistors

10) Find the current through R_1 after the switch has been closed for a long time.

a)
$$I_1 = 0$$
 b) $I_1 = E/R_1$ c) $I_1 = E/(R_1 + R_2)$

After the switch is closed for a long time

The capacitor will be fully charged, and $I_3 = 0$. (The capacitor acts like an open switch).

So, $I_1 = I_2$, and we have a one-loop circuit with two resistors in series, hence $I_1 = E/(R_1+R_2)$

Y&F Problem 26.84 (*Not a clicker problem*)

A resistor with a resistance of 850Ω is connected to the plates of a charged capacitor with a capacitance of 4.62μ F. Just before the connection is made, the charge on the capacitor is 8.10 mC.

A) What is the energy initially stored in the capacitor?

$$U = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} \frac{(8.1x10^{-3})^2}{4.62x10^{-6}} = 7.1 J$$

B) What is the electrical power dissipated in the resistor just after the connection is made ?

$$P = \frac{V^2}{R} = \frac{(Q/C)^2}{R} = \frac{(8.10x10^{-3}/4.62x10^{-6})^2}{850} = 3600 W$$

C) At what time has the energy stored in the capacitor has decreased to half the value calculated in part (A)?

$$U_{1/2} = \frac{1}{2} \frac{Q_{1/2}^2}{C} = \frac{1}{2} U_0 = \frac{1}{2} \left(\frac{1}{2} \frac{Q_0^2}{C} \right) \qquad Q_{1/2} = \frac{Q_0}{\sqrt{2}} = Q_0 e^{-t/RC}$$
$$-t/RC = \ln(1/\sqrt{2})$$
$$t = -(850)(4.62x10^{-6})\ln(1/\sqrt{2}) = 1.36x10^{-3}s$$

Power distribution systems

Conventional House wiring has 240/120V lines

Which prong is hot?? (Hint: Black is Ground)

Remark; houses typically have two single phase, 120V hot lines

Electricity Costs (\$\$\$\$)

Your electric costs are charged in units of energy, Kilowatt-hours

1 Kilowatt-Hour = 1000 watts x 3600 sec = 3.6 million joules

Oahu residential charges are about 20 cents per K-H. This can be read on your AC Kilowatt-Hour meter outside your house. Electricity costs in Hawaii are high!

Example

100W light bulb run for 10hrs/day for 30 days uses 0.1 KW x 10 x 30 = 30 Kilowatt-Hours and costs \$6.00.