Lecture 11

Kirchoff Circuit Rules
 RC- Circuits

Review

- We have the following 4 equations:

1. $I_{2}=I_{1}+I_{3}$
2. $-\mathrm{V}_{1}+\mathrm{I}_{1} \mathrm{R}_{1}-\mathrm{I}_{3} \mathrm{R}_{3}+\mathrm{V}_{3}=0$
3. $-V_{3}+I_{3} R_{3}+I_{2} R_{2}+V_{2}=0$
4. $-\mathrm{V}_{2}-\mathrm{I}_{2} \mathrm{R}_{2}-\mathrm{I}_{1} \mathrm{R}_{1}+\mathrm{V}_{1}=0$

- Why??
- We need 3 INDEPENDENT equations

We need 3 equations:

 which 3 should we use? A) Any 3 will doB) 1,2 , and 4
C) 2,3 , and 4

$$
\begin{gathered}
E Q 2+E Q^{3} \\
-Y_{1}+I_{1} R_{1}+I_{2} R_{2}+V_{2}=0
\end{gathered}
$$

- We must choose Equation 1 and any two of the remaining (2, 3, and 4)
- Equations 2, 3, and 4 are NOT INDEPENDENT
- Eqn $2+$ Eqn $3=-$ Eq 4

Calculation

\checkmark

In this circuit, assume V_{i} and R_{i} are known.
What is I_{2} ??

- We have 3 equations and 3 unknowns.

$$
\begin{aligned}
& \mathrm{I}_{2}=\mathrm{I}_{1}+\mathrm{I}_{3} \\
& \mathrm{~V}_{1}+\mathrm{I}_{1} \mathrm{R}_{1}-\mathrm{I}_{3} \mathrm{R}_{3}+\mathrm{V}_{3}=0 \\
& \mathrm{~V}_{2}-\mathrm{I}_{2} \mathrm{R}_{2}-\mathrm{I}_{1} \mathrm{R}_{1}+\mathrm{V}_{1}=0
\end{aligned}
$$

-The solution will get very messy in general.
-Instead do a simpler problem:
-assume $\mathrm{V}_{2}=\mathrm{V}_{3}=\mathrm{V} ; \mathrm{V}_{1}=2 \mathrm{~V} ; \mathrm{R}_{1}$
$=\mathrm{R}_{3}=\mathrm{R}$ with $\mathrm{R}_{2}=2 \mathrm{R}$

Calculation: Simplify

In this circuit, assume V and R are known.
What is I_{2} ??

- We have 3 equations and 3 unknowns.

$$
\begin{aligned}
& \mathrm{I}_{2}=\mathrm{I}_{1}+\mathrm{I}_{3} \\
& -2 \mathrm{~V}+\mathrm{I}_{1} \mathrm{R}-\mathrm{I}_{3} \mathrm{R}+\mathrm{V}=0 \\
& \quad(\text { outside }) \\
& -\mathrm{V}-\mathrm{I}_{2}(2 \mathrm{R})-\mathrm{I}_{1} \mathrm{R}+2 \mathrm{~V}=0 \\
& \quad \text { (top) }
\end{aligned}
$$

- With this simplification, you can verify:

$$
\begin{aligned}
& \mathrm{I}_{2}=(1 / 5) \mathrm{V} / \mathrm{R} \\
& \mathrm{I}_{1}=(3 / 5) \mathrm{V} / \mathrm{R} \\
& \mathrm{I}_{3}=(-2 / 5) \mathrm{V} / \mathrm{R}
\end{aligned}
$$

$$
\begin{aligned}
& X^{\top}-X+I_{3} R+2 I_{2} R=0 \quad I_{3} \not \subset+2 I_{2} \text { DR }=0 \rightarrow I_{2}=-\frac{1}{2} I_{3} \\
& -2 V+I_{1} R-I_{3} R+V=Q \quad I_{1} R-I_{3} R=V \rightarrow I_{1}-I_{3}=\frac{V}{R} \\
& \begin{array}{ll}
I_{3}+I_{1}-I_{2}=0 & I_{1}=\frac{V}{R}+I_{3} \\
&
\end{array} \\
& \rightarrow I_{3}+\frac{V}{R}+I_{3}+\frac{1}{2} I_{3}=0 \\
& I_{3}\left(1+1+\frac{1}{2}\right)=-\frac{V}{R} \Rightarrow \frac{5}{2} I_{3}=-\frac{V}{R} \\
& I_{3}=-\frac{2}{5} \frac{V}{R} \\
& I_{2}=\frac{1}{5} \frac{V}{R} \\
& \rightarrow I_{1}=I_{2}-I_{3}=\frac{1}{5} \frac{V}{R}+\frac{2}{5} \frac{V}{R}=\frac{3}{5} \frac{V}{R}
\end{aligned}
$$

Follow-Up Clicker

- We know:

$$
\begin{aligned}
& \mathrm{I}_{2}=(1 / 5) \mathrm{V} / \mathrm{R} \\
& \mathrm{I}_{1}=(3 / 5) \mathrm{V} / \mathrm{R} \\
& \mathrm{I}_{3}=(-2 / 5) \mathrm{V} / \mathrm{R}
\end{aligned}
$$

- Suppose we short R_{3} : What happens to V_{ab} (voltage across R_{2}) ?
(A) $V_{a b}$ remains the same (B) $V_{a b}$ changes sign
(C) $V_{a b}$ increases
(D) $V_{a b}$ goes to zero

Why?
Redraw:

$$
\begin{aligned}
& V_{c d}=+V \\
& V_{b d}=+V
\end{aligned}
$$

$$
\Rightarrow V_{a b}=V_{a d}-V_{b d}=V-V=0
$$

$$
v \frac{T^{i n}}{T} \frac{T}{T} v
$$

Is there a current flowing between a and b ?
A) Yes
B) No

At first guess it might appear that since A \& B have the same potential No current flows between A \& B Current flows from battery and splits at A Some current flows down Some current flows right

Consider the circuit shown below.

Clicker

Which of the following statements best describes the current flowing in the blue wire connecting points a and b Positive current flows from \mathbf{a} to \mathbf{b} Positive current flows from \mathbf{b} to $\mathbf{a} O$ No current flows between \mathbf{a} and \mathbf{b}

$$
\begin{array}{r}
I_{1} R-I_{2}(2 R)=0 \Rightarrow I_{1}=2 I_{2} \\
I_{4} R-I_{3}(2 R)=0 \Rightarrow I_{4}=2 I_{3} \\
I_{2}=I_{3} \Rightarrow I_{1}=2 I_{3} \\
I=I_{1}-I_{3}=2 I_{3}-I_{3}=+I_{3}
\end{array}
$$

What is the same? Current flowing in and out of the battery

What is different? Current flowing from a to b

What is the same? Current flowing in and out of the battery

What is different? Current flowing from a to b

7) Consider the circuit shown below. Clicker Problem

In which case is the current flowing in the blue wire connecting points a and b biggest
\bigcirc Case A OCase B They are the same

Current will flow from left to right in both cases
In both cases, $\mathrm{V}_{\mathrm{ac}}=\mathrm{V} / 2$

$$
\begin{aligned}
& I(2 R)=2 I(4 R) \\
I_{A} & =I(R)-I(2 R) \\
= & I(R)-2 I(4 R)
\end{aligned}
$$

$$
I_{B}=I(R)-I(4 R)
$$

RC Circuits

Resistor-capacitor circuits

Let's add a Capacitor to our simple circuit
Recall voltage "drop" on C ?

$$
V=\frac{Q}{C}
$$

Write KVL: $\quad \varepsilon-I R-\frac{Q}{C}=0$

Use $\quad I=\frac{d Q}{d t} \quad$ Now eqn. has only " Q ":
KVL gives Differential Equation! $\varepsilon-R \frac{d Q}{d t}-\frac{Q}{C}=0$
We will solve this later. For now, look at qualitative behavior...

Capacitors Circuits, Qualitative

Basic principle: Capacitor resists change in $Q \rightarrow$ resists changes in V

- Charging (it takes time to put the final charge on)
- Initially, the capacitor behaves like a wire ($\Delta V=0$, since $Q=0$).
- As current continues to flow, charge builds up on the capacitor
\rightarrow it then becomes more difficult to add more charge
\rightarrow the current slows down
- After a long time, the capacitor behaves like an open switch.
- Discharging
- Initially, the capacitor behaves like a battery.
- After a long time, the capacitor behaves like a wire.

Clicker Problem (two parts)

- At $t=0$ the switch is thrown from position b to position a in the circuit shown: The capacitor is initially uncharged.
- What is the value of the current $I_{0_{+}}$ just after the switch is thrown?

(a) $I_{0+}=0$
(b) $I_{0_{+}}=\varepsilon / 2 R$
(c) $I_{0_{+}}=2 \varepsilon / R$

2B - What is the value of the current I_{∞} after a very long time?
(a) $I_{\infty}=0$
(b) $I_{\infty}=\varepsilon / 2 R$
(c) $I_{\infty}>2 \varepsilon / R$

Clicker problem (2 parts)

- At $t=0$ the switch is thrown from position b to position a in the circuit shown: The capacitor is initially uncharged.
- What is the value of the current $I_{0_{+}}$ just after the switch is thrown?

(a) $I_{0+}=0$
(b) $I_{0_{+}}=\varepsilon / 2 R$
(c) $I_{0_{+}}=2 \varepsilon / R$
- Just after the switch is thrown, the capacitor still has no charge, therefore the voltage drop across the capacitor $=0$!
- Applying KVL to the loop at $\mathrm{t}=0+, \varepsilon-I R-0-I R=0 \Rightarrow I=\varepsilon / 2 R$

Clicker problem (2 parts)

- At $t=0$ the switch is thrown from position b to position a in the circuit shown: The capacitor is initially uncharged.
- What is the value of the current $I_{0_{+}}$ just after the switch is thrown?

(a) $I_{0+}=0$
(b) $I_{0_{+}}=\varepsilon / 2 R$
(c) $I_{0+}=2 \varepsilon / R$

2B - What is the value of the current I_{∞} after a very long time?
(a) $I_{\infty}=0$
(b) $I_{\infty}=\varepsilon / 2 R$
(c) $I_{\infty}>2 \varepsilon / R$

- The key here is to realize that as the current continues to flow, the charge on the capacitor continues to grow.
- As the charge on the capacitor continues to grow, the voltage across the capacitor will increase.
- The voltage across the capacitor is limited to ε; the current goes to 0 .

Clicker problem

The capacitor is initially uncharged, and the two switches are open.

3) What is the voltage across the capacitor immediately after switch S_{1} is closed?
a) $V_{c}=0$
b) $V_{\text {c }}=E$
Initially: $Q=0$
$V_{C}=0 \quad I=E /(2 R)$
c) $V_{c}=1 / 2 E$
4) Find the voltage across the capacitor after the switch has been closed for a very long time.
a) $V_{\mathrm{c}}=0$
b) $V_{\mathrm{c}}=E$
$Q=E C$
$I=0$
c) $V_{c}=1 / 2 E$

Clicker problem:

6) After being closed a long time, switch 1 is opened and switch 2 is closed. What is the current through the right resistor immediately after the switch 2 is closed?
a) $I_{R}=0$
b) $I_{R}=E /(3 R)$
c) $I_{R}=E /(2 R)$
d) $I_{R}=E / R$

Now, the battery and the resistor $2 R$ are disconnected from the circuit, so we have a different circuit. Since C is fully charged, $V_{C}=E$. Initially, C acts like a battery, and $I=V_{C} / R$.

RC Circuits (Time-varying currents, charging)

- Charge capacitor:
C initially uncharged; connect switch to a at $t=0$

Calculate current and
charge as function of time.

- Loop theorem $\Rightarrow \quad \varepsilon-I R-\frac{Q}{C}=0 \quad \begin{aligned} & \text { Would it matter where } R \\ & \text { is placed in the loop?? }\end{aligned}$
-Convert to differential equation for Q :

$$
I=\frac{d Q}{d t} \Rightarrow \varepsilon=R \frac{d Q}{d t}+\frac{Q}{C}
$$

Charging Capacitor

- Charge capacitor:

$$
\varepsilon=R \frac{d Q}{d t}+\frac{Q}{C}
$$

- Guess solution:

$$
Q=C \varepsilon\left(1-e^{-t / R C}\right)
$$

-Check that it is a solution:

Note that this "guess"

$$
\frac{d Q}{d t}=C \varepsilon e^{-t / R C}\left(+\frac{1}{R C}\right)
$$

$\Rightarrow R \frac{d Q}{d t}+\frac{Q}{C}=+\varepsilon e^{-t / R C}+\varepsilon\left(1-e^{-t / R C}\right)=\varepsilon \quad!$

$$
\begin{gathered}
t=0 \Rightarrow Q=0 \\
t=\infty \Rightarrow Q=C \varepsilon
\end{gathered}
$$

Charging Capacitor in a RC circuit

- Charge capacitor:

$$
Q=C \varepsilon\left(1-e^{-t / R C}\right)
$$

- Current is found from differentiation:

$$
I=\frac{d Q}{d t}=\frac{\varepsilon}{R} e^{-t / R C}
$$

Conclusion:

- Capacitor reaches its final charge $(Q=C \varepsilon)$ exponentially with time constant $\tau=R C$.
- Current decays from max ($=\varepsilon / R$) with same time constant.

Charging Capacitor

Discharging Capacitor

$$
R \frac{d Q}{d t}+\frac{Q}{C}=0
$$

- Guess solution:

$$
Q=Q_{0} \mathrm{e}^{-t / \tau}=C \varepsilon \mathrm{e}^{-t / R C}
$$

- Check that it is a solution:

$$
\begin{aligned}
& \frac{d Q}{d t}=C \varepsilon \mathrm{e}^{-t / R C}\left(-\frac{1}{R C}\right) \\
& \Rightarrow R \frac{d Q}{d t}+\frac{Q}{C}=-\varepsilon \mathrm{e}^{-t / R C}+\varepsilon \mathrm{e}^{-t / R C}=0!
\end{aligned}
$$

Note that this "guess" fits the boundary conditions:

$$
\begin{aligned}
& t=0 \Rightarrow Q=C \varepsilon \\
& t=\infty \Rightarrow Q=0
\end{aligned}
$$

Discharging Capacitor

- Discharge capacitor:

$$
Q=Q_{0} \mathrm{e}^{-t / \tau}=C \varepsilon \mathrm{e}^{-t / R C}
$$

- Current is found from differentiation:

$$
I=\frac{d Q}{d t}=\frac{\varepsilon}{\hat{\gamma}} \frac{\varepsilon}{R} e^{-t / R C}
$$

Minus sign:
Current is opposite to original definition, i.e., charges flow away from capacitor.

Conclusion:

- Capacitor discharges exponentially with time constant $\tau=R C$
- Current decays from initial max value $(=-\varepsilon / R)$ with same time constant

Discharging Capacitor

Clicker problem:
The two circuits shown below contain identical fully charged capacitors at $t=0$. Circuit 2 has twice as much resistance as circuit 1 .

8) Compare the charge on the two capacitors a short time after $t=0$

Initially, the charges on the two capacitors are the same.
a) $Q_{1}>Q_{2}$ But the two circuits have different time constants: $\tau_{1}=R C$ and $\tau_{2}=2 R C$. Since $\tau_{2}>\tau_{1}$ it takes circuit 2
b) $Q_{1}=Q_{2}$ longer to discharge its capacitor. Therefore, at any given time, the charge on capacitor 2 is bigger than that on
c) $Q_{1}<Q_{2}$ capacitor 1.

Clicker:

The circuit below contains a battery, a switch, a capacitor and two resistors

10) Find the current through R_{1} after the switch has been closed for a long time.
a) $I_{1}=0$
b) $I_{1}=E / R_{1}$
c) $I_{1}=\mathrm{E} /\left(R_{1}+R_{2}\right)$

After the switch is closed for a long time The capacitor will be fully charged, and $I_{3}=0$.
(The capacitor acts like an open switch).
So, $I_{1}=I_{2}$, and we have a one-loop circuit with two resistors in series, hence $I_{1}=E /\left(R_{1}+R_{2}\right)$

Charging

Discharging

Y\&F Problem 26.84 (Not a clicker problem)

A resistor with a resistance of 850Ω is connected to the plates of a charged capacitor with a capacitance of $4.62 \mu \mathrm{~F}$. Just before the connection is made, the charge on the capacitor is 8.10 mC .
A) What is the energy initially stored in the capacitor?

$$
U=\frac{1}{2} \frac{Q^{2}}{C}=\frac{1}{2} \frac{\left(8.1 \times 10^{-3}\right)^{2}}{4.62 \times 10^{-6}}=7.1 \mathrm{~J}
$$

B) What is the electrical power dissipated in the resistor just after the connection is made ?

$$
P=\frac{V^{2}}{R}=\frac{(Q / C)^{2}}{R}=\frac{\left(8.10 \times 10^{-3} / 4.62 \times 10^{-6}\right)^{2}}{850}=3600 \mathrm{~W}
$$

C) At what time has the energy stored in the capacitor has decreased to half the value calculated in part (A)?

$$
\begin{aligned}
& U_{1 / 2}=\frac{1}{2} \frac{Q_{1 / 2}^{2}}{C}=\frac{1}{2} U_{0}=\frac{1}{2}\left(\frac{1}{2} \frac{Q_{0}^{2}}{C}\right) \quad Q_{1 / 2}=\frac{Q_{0}}{\sqrt{2}}=Q_{0} e^{-t / R C} \\
& -t / R C=\ln (1 / \sqrt{2}) \\
& t=-(850)\left(4.62 \times 10^{-6}\right) \ln (1 / \sqrt{2})=1.36 \times 10^{-3} \mathrm{~s}
\end{aligned}
$$

Power distribution systems

Conventional House wiring has 240/120V lines

Which prong is hot??
(Hint: Black is Ground)

Remark; houses typically have two single phase, 120 V hot lines

Electricity Costs (\$\$\$)

Your electric costs are charged in units of energy, Kilowatt-hours
1 Kilowatt-Hour $=1000$ watts $\times 3600 \mathrm{sec}$
$=3.6$ million joules
Oahu residential charges are about 20 cents per K-H. This can be read on your AC Kilowatt-Hour meter outside your house. Electricity costs in Hawaii are high!

Example
100W light bulb run for 10hrs/day for 30 days uses
0.1 KW x $10 \times 30=30$ Kilowatt-Hours and costs $\$ 6.00$.

