General Physics (DHY 170)

- Motion in one dimension

Position and displacement
> Velocity
average
\checkmark instantaneous

- Acceleration
motion with constant acceleration
- Motion in two dimensions

Dynamics

- The branch of physics involving the motion of an object and the relationship between that motion and other physics concepts
- Kinematics is a part of dynamics
- In kinematics, you are interested in the description of motion
- Not concerned with the cause of the motion

Position and Displacement

- Position is defined in terms of a frame of reference

- Frame A: $\quad x_{i}>0$ and $x_{f}>0$
- Frame B: $x_{i}<0$ ' but $x_{f}>0^{\prime}$

Before describing motion, you must set up a coordinate system - define an origin and select a positive direction.

Distance

Distance is the total length of travel.

If you drive from your house to the grocery store and back, you have covered a distance of 8.6 mi .

Displacement

- Displacement measures the change in position
- Represented as Δx if horizontal or Δy if vertical.
- $\Delta x=X_{\text {final }}-X_{\text {initial }}$
- Vector quantity (needs directional information): + or - is generally sufficient to indicate direction for one-dimensional motion

Displacement

Displacement is the net change in position.

If you drive from your house to the grocery store and then to your friend's house, the distance you have traveled is 10.7 mi , your displacement is $\mathbf{- 2 . 1} \mathrm{mi}$.

Example: Displacement

- Displacement measures the change in position

(b)

Distance or Displacement?

- Distance may be, but is not necessarily, the magnitude of the displacement

Example: Distance \&

Displacement of a Dog

You are playing a game of catch with your dog. The dog is initially standing near your feet. Then he runs 20 feet in a straight line to retrieve a stick and carries it I5 feet back toward you before lying down on the ground to chew on the stick.

What is the total distance the dog travels?
What is the net displacement of the

Time 0	Time 2		Time 1	
0 $x_{0}=0$	$x_{2}=5 \mathrm{ft}$			0 $x_{1}=20 \mathrm{ft}$
0	5	10	15	20
x, ft				

Show that the net displacement for the trip is the sum of the net displacements that make up the trip.

Example: Distance \&

\section*{Displacement of a Dog
 What is the total distance the dog travels? What is the net displacement of the dog?
 Show that the net displacement for the trip is
 | Time 0 | Time 2 | | | $\begin{gathered} \text { Time } 1 \\ x_{1}=20 \mathrm{ft} \end{gathered}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{0}=0$ | $x_{2}=5 \mathrm{ft}$ | | | | |
| 0 | 5 | 10 | 15 | 20 | x, ft | the sum of the net displacements that make up the trip.

$$
\begin{aligned}
& s_{02}=s_{01}+s_{12}=(20 \mathrm{ft})+(15 \mathrm{ft})=35 \mathrm{ft} \\
& \Delta x_{02}=x_{2}-x_{0}=(5 \mathrm{ft})-(0 \mathrm{ft})=5 \mathrm{ft} \\
& \Delta x_{01}=x_{1}-x_{0}=(20 \mathrm{ft})-(0 \mathrm{ft})=20 \mathrm{ft} ; \quad \Delta x_{12}=x_{2}-x_{1}=(5 \mathrm{ft})-(20 \mathrm{ft})=-15 \mathrm{ft} \\
& \Delta x_{01}+\Delta x_{12}=\left(x_{1}-x_{0}\right)+\left(x_{2}-x_{1}\right)=x_{2}-x_{0}=\Delta x_{02}
\end{aligned}
$$

Position-time graphs

- Even though the motion is along x direction, position-time graph is not necessarily a straight line

Speed

- Speed is a scalar quantity (no information about sign/direction)
- Average speed $=$ total distance / total time
- Units $[\mathrm{v}]=[\mathrm{L}] /[\mathrm{T}]=>\mathrm{m} / \mathrm{s}, \mathrm{km} / \mathrm{h}, \mathrm{mi} / \mathrm{h} .$. .

Average Speed

The average speed is defined as the distance traveled divided by the time the trip took:

Average speed = distance / elapsed time
Question: Is the average speed of the red car 40.0 mi / h, more than $40.0 \mathrm{mi} / \mathrm{h}$, or less than $40.0 \mathrm{mi} / \mathrm{h}$?

Average Velocity

- The average velocity is rate at which the displacement occurs
- it's a vector
- Direction of the average velocity will be the same as the direction of the displacement ($\Delta \mathrm{t}$ is always positive)
- Average velocity $=$ displacement $/$ elapsed time

$$
v_{\mathrm{av}-x}=\frac{x_{2}-x_{1}}{t_{2}-t_{1}}=\frac{\Delta x}{\Delta t} \quad \text { (average } x \text {-velocity, straight-line motion) }
$$

Example:Average Velocity

Example:Average Velocity

- If you return to your starting point, your average velocity is zero.
- Question: Calculate your average speed

Example:Average Speed and

Velocity

- Graphical Interpretation of Average Velocity:
- The same motion, plotted one-dimensionally and as a two dimensional position-time graph:

Average speed $(0-4 \mathrm{~s})=(8 \mathrm{~m}) /(4 \mathrm{~s})=2 \mathrm{~m} / \mathrm{s}$

Example:

Speed \& Velocity of the Dog

The dog that you were playing with in the previous example jogged 20 ft away
 from you in 1.0 s to retrieve the stick and ambled back 15 feet in 1.5 s .
a. Calculate the dog's average speed.

$$
\begin{aligned}
& s=s_{1}+s_{2}=20 \mathrm{ft}+15 \mathrm{ft}=35 \mathrm{ft} \\
& \Delta t=\left(t_{1}-t_{i}\right)+\left(t_{f}-t_{2}\right)=1.0 \mathrm{~s}+1.5 \mathrm{~s}=2.5 \mathrm{~s} \\
& \text { Average speed }=\frac{35.0 \mathrm{ft}}{2.5 \mathrm{~s}}=14 \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

b. Calculate the dog's average velocity for the total trip.

$$
\begin{aligned}
& v_{a v, x}=\frac{\Delta x}{\Delta t} \quad \Delta x=x_{f}-x_{i}=5.0 \mathrm{ft}-0 \mathrm{ft}=5.0 \mathrm{ft} \\
& v_{a v, x}=\frac{\Delta x}{\Delta t}=\frac{5.0 \mathrm{ft}}{2.5 \mathrm{~s}}=2.0 \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

Graphical Interpretation of Average Velocity

- Velocity can be determined from a position-time graph
- Average velocity equals the slope of the line joining the initial and final positions

Instantaneous velocity

- This plot shows the average velocity being measured over shorter and shorter intervals. Instantaneous velocity is the slope of the tangent to the curve at the time of interest

$t_{i}(\mathrm{~s})$	$t_{f}(\mathrm{~s})$	$\Delta t(s)$	$x_{i}(\mathrm{~m})$	$x_{f}(\mathrm{~m})$	$\Delta x(m)$	$v_{\mathrm{av}}(\mathrm{m})=\Delta x / \Delta t(\mathrm{~m} / \mathrm{s})$
0	2.00	2.00	0	27.4	27.4	13.7
0.250	1.75	1.50	9.85	28.0	18.2	12.1
0.500	1.50	1.00	17.2	28.1	10.9	10.9
0.750	1.25	0.50	22.3	27.4	5.10	10.2
0.900	1.10	0.20	24.5	26.5	2.00	10.0
0.950	1.05	0.10	25.1	26.1	1.00	10.0

Example

- $A-B v=0$
- B-C walking
- C-D running
- D-E v=0
- E-F running faster
(a) $x-t$ graph

(b) Particle's motion

Instantaneous velocity

- Instantaneous velocity is defined as the limit of the average velocity as the time interval becomes infinitesimally short, or as the time interval approaches zero
- This means that we evaluate the average velocity over a shorter and shorter period of time; as that time becomes infinitesimally small, we have the instantaneous velocity.

Definition:

$$
\mathrm{v}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \mathrm{x}}{\Delta \mathrm{t}}=\frac{d x}{d t}
$$

Average vs

Instantaneous velocity

Slope

$v=\Delta x / \Delta t$

Instantaneous velocity

Tangent

$$
v=\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}=\frac{d x}{d t}
$$

Uniform velocity

- Uniform velocity is constant velocity
- The instantaneous velocities are always the same
- All the instantaneous velocities will also equal the average velocity

> The position vs. time graph of a particle moving at constant velocity has a constant slope.

