Physics 170 - Mechanics Lecture 14
Circular Motion

@ home:

- example in the book:
- 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9,
- 5.10, 5.11,
- 5.12 (check the reference frames)
- 5.13, 5.14, 5.15, 5.16, 5.17

Circular Motion

Angular Position θ

The angular position θ (in radiants):

$$
\theta=s / r
$$

s is the "arc length", i.e., the length of the arc traced by the trajectory of the particle as it moves from the x axis to its current position.

```
TABLE 6-2
\frac{\operatorname{sin}0}{0}}\mathrm{ for Values of }0\mathrm{ Approaching Zero
```


$\boldsymbol{\theta}$, radians	$\frac{\sin \boldsymbol{\theta}}{\boldsymbol{\theta}}$
1.00	0.841
0.500	0.959
0.250	0.990
0.125	0.997
0.0625	0.999

Angular Position θ

The angular position θ (in radiants):

$$
\begin{gathered}
\theta=s / r \\
0 \leq|\theta| \leq 2 \pi .
\end{gathered}
$$

The "radians" unit is dimensionless (length/length).

$$
1 \mathrm{rad}=180^{\circ} / \pi=57.296^{\circ}
$$

The "degree" measure of angle is:

$1^{\circ}=\left(\pi / 180^{\circ}\right) \mathrm{rad}=0.0174533 \mathrm{rad} ;$

A Particle in

Uniform Circular Motion

$T \equiv$ period $=$ the time required for one complete rotation.
The velocity vector v :
$v=\frac{1 \text { circumference }}{1 \text { period }}=\frac{2 \pi \vec{r}}{T}$

For a particle in uniform circular motion, the velocity vector v remains constant in magnitude, but it continuously changes its direction.

Angular Velocity ω

The angular velocity ω is in radians/s and it is the speed with which the angle θ changes as the particle moves in its circular path.

$$
\omega_{\mathrm{ave}}=\frac{\theta_{2}-\theta_{1}}{t_{2}-t_{1}}=\frac{\Delta \theta}{\Delta t}
$$

Another unit used is rpm: revolutions per minute. $1 \mathrm{rpm}=2 \pi \mathrm{rad} / \mathrm{min}=2 \pi / 60 \mathrm{rad} / \mathrm{s}=$ $=0.10472 \mathrm{rad} / \mathrm{s} \approx 1 / 10 \mathrm{rad} / \mathrm{s}$.

Angular Velocity ω

It is conventional to treat θ and ω as quantities that have a sign.

- θ increases counterclockwise
- ω describes a counterclockwise rotation.

Example: A Rotating Crankshaft

A 4.0 cm diameter crankshaft turns at 2400 rpm . What is the speed of a point on the surface of the crankshaft?

$$
\begin{aligned}
& \frac{2400 \mathrm{rev}}{1 \mathrm{minute}} \times \frac{1 \text { minute }}{60 \mathrm{~s}}=40 \mathrm{rev} / \mathrm{s} \\
& T=\frac{1}{40 \mathrm{rev} / \mathrm{s}}=0.025 \mathrm{~s} \text { (per revolution) } \\
& v=\frac{2 \pi r}{T}=\frac{2 \pi(0.020 \mathrm{~m})}{0.025 \mathrm{~s}}=5.03 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Alternative method:

$$
\begin{aligned}
& \omega=\frac{2400 \mathrm{rev}}{1 \text { minute }} \times \frac{1 \text { minute }}{60 \mathrm{~s}} \times \frac{2 \pi \mathrm{rad}}{1 \mathrm{rev}}=80 \pi \mathrm{rad} / \mathrm{s} \\
& v=\omega r=(80 \pi \mathrm{rad} / \mathrm{s})(0.020 \mathrm{~m})=5.03 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Acceleration and Circular Motion

What keeps the body in the circle?

An object moving at a constant speed in a circle must have a force acting on it; otherwise it would move in a straight line.

It's a constant acceleration a toward the center of the circle: the centripetal acceleration

$$
a_{c p}=\frac{v^{2}}{r}(\text { centripetal acceleration })
$$

Centripetal Acceleration

$$
v_{t}=\frac{2 \pi r}{T} \text { (tangential velocity) }
$$

$$
a_{c p}=\frac{v^{2}}{r} \text { (centripetal acceleration) }
$$

Centripetal Force

From the centripetal acceleration $\boldsymbol{a}_{c p}$, we find the centripetal force $f_{c p}$, required to keep an object of mass m moving in a circle of radius r.

The magnitude of the force $f_{c p}$, called centripetal force because it points toward the center of rotation, is given by:

$$
f_{c p}=m a_{c p}=m \frac{v^{2}}{r}=m \omega^{2} r
$$

Sources of Centripetal Force

This centripetal force may be provided by the tension in a string, the normal force, or friction, among other sources.

Example: Rounding a Corner

A $1,200 \mathrm{~kg}$ car rounds a corner of radius $r=45.0 \mathrm{~m}$. If the coefficient of friction between the tires and the road is $\mu_{s}=0.82$, what is the maximum speed the car can have on the curve without skidding?
$\sum F_{x}=f_{s}=\mu_{s} N=m a_{x}=m \frac{v^{2}}{r} \quad \sum F_{y}=0=N-W=N-m g \rightarrow N=m g$
$\sum F_{x}=\mu_{s} h g=n \frac{v^{2}}{r}$

$$
v=\sqrt{\mu_{s} r g}=\sqrt{(0.82)(45.0 \mathrm{~m})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}=19.0 \mathrm{~m} / \mathrm{s}
$$

Question: How does this result depend on the weight of the car?

Banked Curves

Example: Bank on It

If the road is banked at the proper angle θ, a car can round a curve without the assistance of friction between the tires and the road and without skidding.

What bank angle θ is needed for a 900 kg car traveling at $20.5 \mathrm{~m} / \mathrm{s}$ around a curve of radius 85.0 m ?
$\sum F_{y}=0=N \cos \theta-W=N \cos \theta-m g \quad \frac{N \sin \theta}{N \cos \theta}=\tan \theta=\frac{m v^{2} / r}{m g}=\frac{v^{2}}{g r}$
$\sum F_{x}=N \sin \theta=m a_{c p}=m v^{2} / r$
$\theta=\arctan \frac{v^{2}}{g r}=\arctan \frac{(20.5 \mathrm{~m} / \mathrm{s})^{2}}{\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(85.0 \mathrm{~m})}=26.7^{\circ}$

Example: Spinning in a Circle

An energetic father places his 20 kg child in a 5.0 kg cart to which is attached a 2.0 m long rope. He then holds the end of the rope and spins the cart and child in a circle, keeping the rope parallel to the ground.

Known
$m=25 \mathrm{~kg}$
$r=2 \mathrm{~m}$
$T=100 \mathrm{~N}$
Find
ω in rpm

Pictorial representation

Physical representation the cart make?

Edge view
$(1.41 \mathrm{rad} / \mathrm{s} * 1 \mathrm{rev} / 2 \mathrm{pi} * 60 \mathrm{sec} / 1 \mathrm{~min}=13.5 \mathrm{rpm})$

Tangential \& Total Acceleration

An object may be changing its speed (speeding up or slowing down) as it moves in a circular path.

In that case, there is a tangential acceleration as well as a centripetal acceleration.

The total acceleration $a_{\text {total }}$ is the vector sum of the centripetal acceleration $a_{c p}$, which points toward the center of rotation, and the tangential acceleration a_{t}, which points in the direction of speed increase.

Radial-Tangential Coordinates

The r axis (radial) points from the particle to the center of rotation; The t axis (tangential) points from the particle tangent to the circle in the counterclockwise (ccw) direction;
The z axis (axial) points up from the particle perpendicular to the
plane of rotation;

The r - and t-axes
change as the
particle moves.

The r-axis points toward the center of the circle.

The vector \vec{A} can be decomposed into r and t components:

$$
A_{r}=A \cos \phi ; \quad A_{t}=A \sin \phi ;
$$

Example: Normal Force in a Dip

While driving on a country road at a constant speed of $17.0 \mathrm{~m} / \mathrm{s}$, you encounter a dip in the road. The dip can be approximated by a circular arc with a radius of 65.0 m .

What is the normal force exerted by the car seat on an 80.0 kg passenger at the bottom of the dip?

$$
\begin{aligned}
& \sum F_{y}=N-m g=m a_{y}=m v^{2} / r \\
& N=m g+m v^{2} / r=m\left(g+v^{2} / r\right) \\
& N=(80.0 \mathrm{~kg})\left[\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)+(17.0 \mathrm{~m} / \mathrm{s})^{2} /(65.0 \mathrm{~m})\right] \\
& \quad=(80.0 \mathrm{~kg})\left(14.26 \mathrm{~m} / \mathrm{s}^{2}\right)=1140 \mathrm{~N} \text { (about } 45 \% \text { more) }
\end{aligned}
$$

Note that $(\mathbf{8 0} \mathbf{~ k g})\left(9.81 \mathrm{~m} / \mathrm{s}^{\mathbf{2}}\right)=\mathbf{7 8 5} \mathrm{N}$

Example: A Satellite's Motion

A satellite moves at constant speed in a circular orbit about the center of the Earth and near the surface of the Earth. If the magnitude of its acceleration is $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$ and the Earth's radius is $6,370 \mathrm{~km}$, find:
(a) its speed v; and
(b) the time T required for one complete revolution.

$$
\begin{aligned}
& a_{c p}=\frac{v^{2}}{r}=g \\
& v=\sqrt{r g}=\sqrt{\left(6,370 \times 10^{3} \mathrm{~m}\right)\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}=7.91 \times 10^{3} \mathrm{~m} / \mathrm{s}=17,700 \mathrm{mi} / \mathrm{h} \\
& T=2 \pi r / v=2 \pi\left(6,370 \times 10^{3} \mathrm{~m}\right) /\left(7.91 \times 10^{3} \mathrm{~m} / \mathrm{s}\right)=5,060 \mathrm{~s}=84.3 \mathrm{~min}
\end{aligned}
$$

The Centrifuge

The apparent weight of an object can be greatly increased using circular motion.

A centrifuge is a laboratory device used in chemistry, biology, and medicine for increasing the sedimentation rate and separation of a sample by subjecting it to a very high centripetal acceleration.

Accelerations on the order of 10,000 g can be achieved.

Example: Big Gees

A centrifuge rotates at a rate such that the bottom of a test tube travels at a speed of $89.3 \mathrm{~m} / \mathrm{s}$. The bottom of the test tube is 8.50 cm from the axis of rotation.

What is the centripetal acceleration $a_{c p}$ at
the bottom of the test tube in m / s and in g (where $1 g=9.81 \mathrm{~m} / \mathrm{s}^{2}$)?

$$
a_{c p}=\frac{v^{2}}{r}=\frac{(89.3 \mathrm{~m} / \mathrm{s})^{2}}{(0.0850 \mathrm{~m})}=93,800 \mathrm{~m} / \mathrm{s}^{2}=9,560 \mathrm{~g}
$$

Question:

Which motion has the largest centripetal acceleration?

