
TARGET Calibration

- Used (roughly) same method from code snippets of Jihane:
 - Find zero crossings of input sine wave (135 MHz).
 - Since near the zero crossings, $\sin x \approx x$, voltage difference is proportional to the Δt value.
 - Average time per bin: calculated from average number of bins between zero crossings and known input frequency.
 - Actual time per bin: average voltage difference for that bin / mean voltage difference for all bins * average time per bin.
- Added step:
 - Waveforms first must be corrected for mean offset and gain.
- To check performance:
 - After calibration, use the same data to determine the period of the input signal. Subtract from this the known period to calculate a residual.

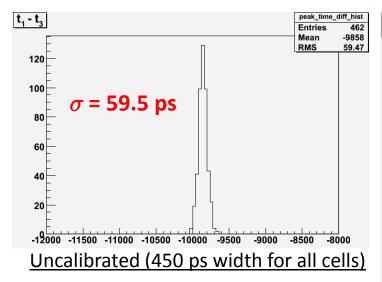
Calibration Results

V profile v. sampl. cell

Significant offset from 0. Significant gain variation! 2/18/2010

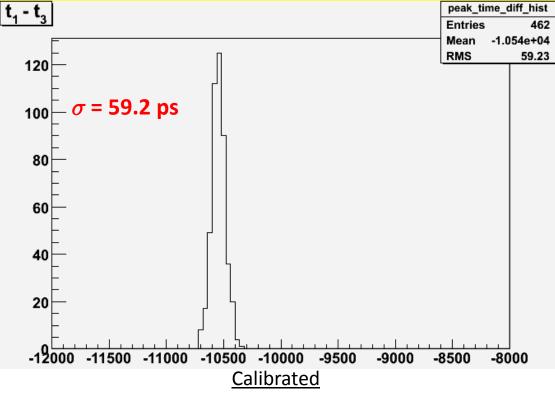
 Δ t histogram

~17 ps RMS


Some structure still appears... correlated w/ gain & offset. K. Nishimura

Residual on meas. T 129 ps RMS residual

Residual v. sampl. cell **Residual shows** <u>structure</u> correlated to gain & offset.


CFD Timing

Quick checks to see if this helped w/ software
CFD (22%):

→ Basically no change.

I also considered doing a baseline correction waveform-by-waveform and a gain correction pixel by pixel... still no change → also no change.

- Calibrations appeared to make little to no difference, probably because the waveform is always at the same place in the window.
 - Also happens to be in a fairly stable region of gain.
 - Best performance with CFD method, ~60 ps resolution.
- Calibration file is available at:
 - http://www.phys.hawaii.edu/~kurtisn/lib/exe/fetch.p hp?media=target:target.voltage.cal.2010-02-18.txt
 - Format: CHANNEL SAMPLING_CELL Δ t GAIN