Non-Accelerator Neutrinos
And the State of Neutrino Studies

John G. Learned
University of Hawaii, Manoa

With Many thanks to UH Neutrino Colleagues:
 P. Gorham, J. Kumar, S. Matsuno, A. McDonald, J. Murillo, S. Pakvasa,
 M. Rosen, M. Sakai, S. Smith, G. Varner, and more....
 + slides from T. Lasserre, R. Raffelt, T. Schwetz
“Talking to the neighbors”

SETI with Neutrinos

“A modest proposal for an interstellar communications network”
Economist, 7 April 2011

Not what this talk is about....

http://www.economist.com/PrinterFriendly.cfm?story_id=18526871
Neutrino Contents about
0.00000000000000000002 kCal

Breakfast Nus?
Where do Neutrinos come from?

<table>
<thead>
<tr>
<th>Source</th>
<th>Image</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear Reactors (power stations, ships)</td>
<td>![Image]</td>
<td>✓</td>
</tr>
<tr>
<td>Sun</td>
<td>![Image]</td>
<td>✓</td>
</tr>
<tr>
<td>Particle Accelerator</td>
<td>![Image]</td>
<td>✓</td>
</tr>
<tr>
<td>Supernovae (star collapse)</td>
<td>![Image]</td>
<td>SN 1987A</td>
</tr>
<tr>
<td>Earth’s Atmosphere (Cosmic Rays)</td>
<td>![Image]</td>
<td></td>
</tr>
<tr>
<td>Astrophysical Sources</td>
<td>![Image]</td>
<td>Soon ?</td>
</tr>
<tr>
<td>Bulk Earth (U/Th Radioactivity)</td>
<td>![Image]</td>
<td></td>
</tr>
<tr>
<td>Big Bang (here 330 ν/cm³)</td>
<td>![Image]</td>
<td>Indirect Evidence</td>
</tr>
</tbody>
</table>
What do we know well about neutrinos?

- No electric charge.
- Little or no electric/magnetic dipole moment.
- Essentially point particles.
- Very small mass compared to other fermions.
- Participates only in SM weak interaction.
- Falls under gravity (SN1987A).
- Produced in only left-handed helicity state (nubar = righthanded).
- Comes in three flavors, e, μ and τ.
- Lepton number is conserved (but not lepton flavor).
- No known lifetime (but...).
- Has nothing to decay to amongst known particle zoo (but \(\nu_m \rightarrow \nu_n \) OK).
- SM processes produce neutrinos as superposition of mass states.
- Mass states' relative phases change with flight time, producing morphing between interaction states (“\(\nu \) oscillations”).
- Three mass states explains all accepted data, but room for new things.
- Almost surely we are living in a bath of undetectable \(\sim 600 \text{nu/cm}^3 \) left from Big Bang, which travel \(\sim 300 \text{ km/s} \).
Unanswered Neutrino Questions

1) Who needed them anyway? Only uncharged fundamental fermion.
2) Why are masses so small?
3) What is the absolute mass scale?
4) What is the mass order?
5) Why is mixing matrix so different from quarks? (Why not?)
6) What is $|\theta_{13}|$? Is mixing tri-bimax ($\theta_{13} = 0$)?
7) Is there CP violation as with quarks?
8) Are there heavy (TeV - GUT scale) right handed neutrinos?
9) Are neutrinos Majorana or Dirac particles?
10) Are there any light (eV scale) sterile neutrinos?
11) Are heavy right handed neutrinos responsible for leptogenesis?
12) What role do neutrinos play in heavy element production in SN?

We have no guidance from a unified theory...
almost all prior theory guesses/biases were wrong...

It is an experimentalists game.
Neutrinos as Key To Grand Unification?

Fermion Mass Puzzle

Fundamental Fermion Masses

Charged Fermion Masses

Neutrino Masses

SeeSaw?

10^{10}!

CP and CPT Violation Possible in ν Sector: Could be Key?
Leptogenesis

Neutrinos may play crucial role in the genesis of excess matter over anti-matter in the universe.
Matter Inventory of the Universe

- Dark Energy
 - (Cosmological Constant)

- Normal Matter
 - (of which ca. 10% luminous)

- Dark Matter

- Neutrinos
 - min. 0.1%
 - max. 6%

Copernicus²!
Neutrinos in the Mass-Energy of the Universe

Cosmological Density

Ω

Matter & Energy

- Dark Energy: 0.7 ± 0.1
- Matter: 0.3 ± 0.1

Matter Composition

- Cold Dark Matter: 0.35 ± 0.1
- Non-Baryonic Dark Matter
- Baryons: 0.037 ± 0.001
- Dark Baryons
- Stars: ~0.003

Observed Particle Dark Matter

- Neutrinos: > 0.003
- < 0.05
- < 0.15

Karsten M. Heeger
June 12, 2002
... and vast lands to be explored: one should be open to unexpected results

A synoptic view of neutrino fluxes. (from ASPERA roadmap)
Astrophysical Neutrino Sources... not yet found

High and Ultra-high energy neutrinos?

Supernova neutrinos from GSC in our galactic neighborhood?

Neutrinos associated with Gamma Ray Bursts?

Relic SN neutrinos?

Neutrinos from Dark Matter annihilations in earth, sun or galactic center?

Who knows?

Lesson of history... the latter may be most probable!
Neutrinos from Earlier Supernovae

SRN Predictions (ν_e Fluxes)

The graph depicts the expected neutrino fluxes from various sources, including Reactor ν (ν_e), Solar 8B (ν_e), and Solar hep (ν_e), compared to the atmospheric $\bar{\nu}_e$ fluxes.

Reference Configuration

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Expected Annual SRN Signal (events/year)</th>
<th>Expected Annual Background (events/year)</th>
<th>Years of LBNE Data Needed for a 3.0-σ Signal Assuming Maximum/Minimum SRN Flux</th>
</tr>
</thead>
<tbody>
<tr>
<td>300kt WCD 30%</td>
<td>5 – 52</td>
<td>320</td>
<td>1.3/144</td>
</tr>
<tr>
<td>300kt WCD 30% + Gd</td>
<td>13 – 74</td>
<td>64</td>
<td>0.13/0.9</td>
</tr>
<tr>
<td>100kt WCD + 100kt WCD-Gd + 17kt LAr</td>
<td>5 – 39</td>
<td>114</td>
<td>0.35/3</td>
</tr>
<tr>
<td>100kt WCD-Gd + 34 kt LAr</td>
<td>4 – 27</td>
<td>21</td>
<td>0.32/3</td>
</tr>
</tbody>
</table>

Mary Bishai at NuTel 2011
neutralino capture and annihilation

See “Indirect Detection” of Dark Matter in Laura Baudis’ talk

\[\rho_\chi \]
\[\chi \]
\[\text{velocity distribution} \]
\[\text{v interactions} \]
\[\sigma_{\text{scatt}} \]
\[\Gamma_{\text{capture}} \]
\[\Gamma_{\text{annihilation}} \]

\[\chi \chi \rightarrow q\bar{q} \]
\[\chi \chi \rightarrow l\bar{l} \]
\[\chi \chi \rightarrow \cdots \rightarrow \nu_\mu \]
\[W^\pm, Z, H \]
\[\rightarrow c\bar{c}, b\bar{b}, t\bar{t}, \tau^+\tau^-, W^\pm, Z^0, H^\pm H^0 \]

Silk, Olive and Srednicki, ’85
Gaisser, Steigman & Tilav, ’86
See “Indirect Detection” of Dark Matter in Laura Baudis’ talk

Freese, ’86; Krauss, Srednicki & Wilczek, ’86 Gaisser, Steigman, Tilav, ’86
<table>
<thead>
<tr>
<th>Telescope</th>
<th>User</th>
<th>Date</th>
<th>Intended Use</th>
<th>Actual use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical</td>
<td>Galileo</td>
<td>1608</td>
<td>Navigation</td>
<td>Moons of Jupiter</td>
</tr>
<tr>
<td>Optical</td>
<td>Hubble</td>
<td>1929</td>
<td>Nebulae</td>
<td>Expanding Universe</td>
</tr>
<tr>
<td>Radio</td>
<td>Jansky</td>
<td>1932</td>
<td>Noise</td>
<td>Radio galaxies</td>
</tr>
<tr>
<td>Micro-wave</td>
<td>Penzias, Wilson</td>
<td>1965</td>
<td>Radio-galaxies, noise</td>
<td>3K cosmic background</td>
</tr>
<tr>
<td>X-ray</td>
<td>Giacconi …</td>
<td>1965</td>
<td>Sun, moon</td>
<td>neutron stars accreting binaries</td>
</tr>
<tr>
<td>Radio</td>
<td>Hewish, Bell</td>
<td>1967</td>
<td>Ionosphere</td>
<td>Pulsars</td>
</tr>
<tr>
<td>γ-rays</td>
<td>military</td>
<td>1960?</td>
<td>Thermonuclear explosions</td>
<td>Gamma ray bursts</td>
</tr>
<tr>
<td>Water-Cherenkov</td>
<td>IMB, Kamioka</td>
<td>1987</td>
<td>Nucleon Decay</td>
<td>ν’s from SN1987A</td>
</tr>
<tr>
<td>Water-Cherenkov</td>
<td>SuperK</td>
<td>1998</td>
<td>Nucleon Decay</td>
<td>νμ↔ντ mixing ν mass</td>
</tr>
<tr>
<td>Solar Neutrino</td>
<td>Homestake, SuperK, SNO</td>
<td>2001</td>
<td>Solar Burning</td>
<td>ν_e Oscillations</td>
</tr>
</tbody>
</table>
Some Neutrino Experimental Peculiarities

1) Flux calcs always under-predict observed rate both at accelerators, and from atmospheric cosmic ray interactions. (Known but may be boring, or not?) (And reactors, see #7?)

2) SN1987A events pointed too well…. Need another SN

3) Where are the very high energy cosmic neutrinos? (Later today…)

4) MINOS finds apparent CPT violation hints in two different runs?

5) LSND anomaly... $\bar{\nu}_e$ appear from stopped pion target (1991).

6) MiniBOONE... unexplained bumps in both nu and antinu runs, but not at same E

7) Revised reactor neutrino flux calcs exceed measurements taken over many years in experiments from 10-2000 m distance.

8) Solar Gallium experiments radioactive source calibrations came out a little low in 4 trials

9) Cosmological neutrino counting coming in high by +1 or +2

Mike Shaevitz will cover #5-9 shortly....
Step back...

- Quick historical tour
- Small tutorial on oscillations
1920-1927 Charles Drummond Ellis (along with James Chadwick and colleagues) establishes clearly that the beta decay spectrum is really continuous, ending all controversies.

1930 Wolfgang Pauli hypothesizes the existence of neutrinos to account for the beta decay energy conservation crisis.

1932 Chadwick discovers the neutron.

1933 Enrico Fermi writes down the correct theory for beta decay, incorporating the neutrino.

1946 Shoichi Sakata and Takesi Inoue propose the pi-mu scheme with a neutrino to accompany muon. (There is a long story about the confusion of mu for pi etc. They were the first to straighten it out and get the spins right, and write down the correct decay scheme completely: pi -> mu + nu_mu, mu -> e + nu_e + nu_mu, and noticed that both nu_mu and nu_e are light, and neutral with spin 1/2, and suggested that they might be “different”.)

1956 Fred Reines and Clyde Cowan discover (electron anti-) neutrinos using a nuclear reactor.

1957 Neutrinos found to be left handed by Goldhaber, Grodzins and Sunyar.

1957 Bruno Pontecorvo proposes neutrino-antineutrino oscillations analogously to K0-K0bar, leading to what is later called oscillations into sterile states.

1962 Ziro Maki, Masami Nakagawa and Sakata introduce neutrino flavor mixing and flavor oscillations.

1962 Muon neutrinos are discovered by Leon Lederman, Mel Schwartz, Jack Steinberger and colleagues at Brookhaven National Laboratories and it is confirmed that they are different from nu_e’s.

1964 John Bahcall and Ray Davis propose feasibility of measuring neutrinos from the sun.

1965 The first natural neutrinos are observed by Reines and colleagues in a gold mine in South Africa, and by Goku Menon and colleagues in Kolar Gold fields in India, setting first astrophysical limits.

1968 Ray Davis and colleagues get first radiochemical solar neutrino results using cleaning fluid in the Homestake Mine in North Dakota, leading to the observed deficit known thereafter as the “solar neutrino problem”.

1976 The tau lepton is discovered by Martin Perl and colleagues at SLAC in Stanford, California. After several years, analysis of tau decay modes leads to the conclusion that tau is accompanied by its own neutrino nutau which is neither nue nor numu.

1976 Designs for a new generation neutrino detectors made at Hawaii workshop, subsequently leading to IMB, HPW and Kamioka detectors.

1980s The IMB, the first massive underground nucleon decay search instrument and neutrino detector is built in a 2000’ deep Morton Salt mine near Cleveland, Ohio. The Kamioka experiment is built in a zinc mine in Japan.

1983 The “atmospheric neutrino anomaly” is observed by IMB and later by Kamiokande.

1986 Kamiokande group makes first directional counting observation solar of solar neutrinos and confirms deficit.

1987 The Kamiokande and IMB experiments detect burst of neutrinos from Supernova 1987A, heralding the birth of neutrino astronomy, and setting many limits on neutrino properties, such as mass.

1988 Lederman, Schwartz and Steinberger awarded the Nobel Prize for the discovery of the muon neutrino.

1989 The LEP accelerator experiments in Switzerland and the SLC at SLAC determine that there are only 3 light neutrino species (electron, muon and tau).

1991-2 SAGE (in Russia) and GALLEX (in Italy) confirm the solar neutrino deficit in radiochemical experiments.

1995 Frederick Reines and Martin Perl get the Nobel Prize for discovery of electron neutrinos (and observation of supernova neutrinos) and the tau lepton, respectively.

1996 Super-Kamiokande, the largest ever detector at 50 kilotons gross, begins searching for neutrino interactions on 1 April at the site of the Kamioka experiment, with Japan-US team (led by Yoji Totsuka).

1998 After analyzing more than 500 days of data, the Super-Kamiokande team reports finding oscillations and, thus, mass in muon neutrinos. After several years these results are widely accepted and the paper becomes the top cited experimental particle physics paper ever.

2000 The DONUT Collaboration working at Fermilab announces observation of tau particles produced by tau neutrinos, making the first direct observation of the tau neutrino.

2000 SuperK announces that the oscillating partner to the muon neutrino is not a sterile neutrino, but the tau neutrino.

2001 and 2002 SNO observes observation of neutral currents from solar neutrinos, along with charged currents and elastic scattering, providing convincing evidence that neutrino oscillations are the cause of the solar neutrino problem.

2002 Masatoshi Koshiba and Raymond Davis win Nobel Prize for measuring solar neutrinos (as well as supernova neutrinos).

2002 KamLAND begins operations in January and in November announces detection of a deficit of electron anti-neutrinos from reactors at a mean distance of 175 km in Japan. The results combined with all the earlier solar neutrino results establish the correct parameters for the solar neutrino deficit.

2004 SuperKamiokande and KamLAND present evidence for neutrino disappearance and reappearance, eliminating non-oscillations models.

2005 KamLAND announces first detection of neutrino flux from the earth and makes first measurements of radiogenic heating from the earth.
• Neutrinos were proposed in 1930 as solution to missing energy in beta decays.
• Said to be undetectable, but....
First Detection! (1954 - 1956)

Clyde Cowan (1919 - 1974)

Fred Reines (1918 - 1998)
Nobel Prize 1995

Detector Prototype

Anti-Electron Neutrinos from Hanford Nuclear Reactor

\(\bar{\nu}_e \) → p → e\(^+\) → e\(^-\) → 3 gamma quanta in coincidence

n → Cd → γ
First Natural Cosmic Ray Neutrinos, 1965

Reines and company in South Africa, and Gaku Menon and company in Kolar Gold Fields, India
First Observation of Solar Neutrinos

Inverse Beta-Decay ("Neutrino Capture")

\[\nu_e \rightarrow e^- + \frac{37}{36}Cl \rightarrow e^- + \frac{37}{38}Ar \]

600 Tons Cleaning Fluid

Homestake Solar-Neutrino Observatory (since ca. 1967)
Solar neutrino experiments not seeing predicted rates... blame game between solar modelers and experimentalists. Theory provides a few possible explanations, including oscillations.

Underground cosmic ray neutrino detectors built to search for nucleon decay, but find peculiar deficit of muon/electron neutrinos in US and Japan (“muon neutrino anomaly”), but not in Europe.

Lots of confusion, finger pointing, enthusiasm, but only ambiguous conclusions.

But then one great highlight, resulting in hundreds of papers:
Neutrino Signal of Supernova 1987A

Within clock uncertainties, signals are contemporaneous.

Kamiokande (Japan)
Water Cherenkov detector
Clock uncertainty ±1 min

Irvine-Michigan-Brookhaven (US)
Water Cherenkov detector
Clock uncertainty ±50 ms

Baksan Scintillator Telescope
(Soviet Union)
Clock uncertainty +2/-54 s

Within clock uncertainties, signals are contemporaneous.
Neutrino Fever Hits in the 1990’s

Kamiokande detects solar electron neutrinos, with directionality! (Eliminates question as to whether radiochemical expts actually detecting solar neutrinos)

Solar rates observed in 4 experiments 1/3-1/2 models... suspicions of electron neutrino oscillations, but other solutions not ruled out.

Early 1990’s LSND finds peculiar nu_e appearance, claim oscillations. Almost ruled out by other experiments. People generally suspicious of result, but nobody finds smoking gun of problem. (More on this in next talk).

In 1996 the 50 kiloton SuperKamiokande detector starts, and by 1997 some things are beginning to become clear...
Atmospheric Neutrino Anomaly

from above

\[\nu_e \quad \nu_\mu \]

Super-Kamiokande

from below

\[\nu_e \quad \nu_\mu \]

only half of the muon neutrinos from the far side of earth
SuperK neutrino oscillations paper now most cited paper in history of experimental particle physics

Consistency Between Measurements

$$\Phi_{\text{ssm}} = 5.05^{+1.01}_{-0.81} \quad \Phi_{\text{sno}} = 5.09^{+0.44+0.46}_{-0.43-0.43}$$

$\Phi_{\mu\tau}$ is 5.3 σ from zero
SNO Settles the Solar Neutrino Problem

Homestake
Chlorine

Gallex/GNO
SAGE
Gallium

Super-Kamiokande
Water

SNO (Deuterium)

ν_e + d → p + p + e^−
ν + d → p + n + ν

Electron-Neutrinos
All Neutrino Types
29 April 2011

KamLAND Reactor Neutrino Experiment (Japan)

Japanese nuclear reactors 60 GW (20% world total)

- ~1 neutrino capture per day
- Taking data since Jan. '02
- Conclusive Results Fall '02.

Detect ν_e from >100km and observe deficit due to oscillations.
KamLAND ... no escaping oscillations

- Reactor neutrinos
- Geo neutrinos
- Accidental events

2003

- 2.6 MeV
- KamLAND data
- No oscillation
- Best-fit oscillation
- $\sin^2 2\theta = 1.0$
- $\Delta m^2 = 6.9 \times 10^{-3} \text{eV}^2$

2010

- Selection efficiency

- Distance to Reactor (m)
- Events 0.25-2.5 MeV
- E_{ν} (MeV)
- Survival Probability
- Data - BG - Geo ν_e
- CHOOZ data
- Expectation based on oscil. parameters determined by KamLAND
Neutrino Mass and Composition

Atmospheric Neutrinos:
\[232^{\text{2}} \text{ eV} \times 10^{-2} \text{ m}^2 \]

Solar Neutrinos:
\[2 \text{ eV} \times 10^{-7} \text{ m}^2 \]

Differences of neutrino masses deduced from oscillation experiments.

Mixings peculiarly large
Neutrino Oscillation Mixing Matrix

\[U = U_\text{CP} (2 \text{ Majorana phases}) \]

\[
U =
\begin{pmatrix}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{pmatrix}
\begin{pmatrix}
c_{13} & 0 & s_{13} e^{i\delta} \\
0 & 1 & 0 \\
-s_{13} e^{-i\delta} & 0 & c_{13}
\end{pmatrix}
\begin{pmatrix}
c_{21} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

\[
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix}
=
\begin{pmatrix}
U_{e1} & U_{e2} & U_{e3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix}
\]

Neutrinos

\[U_{\text{MNS}} \sim \begin{pmatrix}
0.8 & 0.5 & ? \\
0.4 & 0.6 & 0.7 \\
0.4 & 0.6 & 0.7
\end{pmatrix} \]

Quarks

\[V_{\text{CKM}} \sim \begin{pmatrix}
1 & 0.2 & 0.008 \\
0.2 & 1 & 0.04 \\
0.008 & 0.04 & 1
\end{pmatrix} \]

Very Different
Three Neutrinos Fits Almost all Data

Update of Schwetz et al, NJP 10 (2008) 113011

Homestake, SAGE
GALLEX/GNO,
Super-K, SNO-leta, SSM
Borexino
KamLAND (180 Km)

... Super-K
K2K (250 Km)
MINOS latest app
(735 Km)
Precision Reactor Experiments for θ_{13}

L. Mikaelyan, arXiv:hep-ex/0008046v2 (Krasnoyarsk)

P_{survival}

$E_{\nu} \approx 3$ MeV

$\sin^2 2\theta = 0.03$
$\sin^2 2\theta = 0.09$
$\sin^2 2\theta = 0.19$

Sub-Dominant θ_{13} Oscillation

Dominant θ_{12} Oscillation

Detector 1 Detector 2

build nearly identical detectors with nearly identical efficiency
Three New Reactor Experiments Starting

- Double CHOOZ in France
- Daya Bay in China
- RENO in Korea

- DC starting with one detector now
- DB to start in a year or two
- RENO claims start in June!

Will be interesting horse race!
(more in next talk)
What next in Neutrino Measurements?

• For lack of time will skip details of exciting doings in absolute neutrino mass measure and double beta decay (now about half dozen experiments)...

• Also no comments on indirect Dark Matter measurements via neutrinos

• Everyone agrees 3 nu oscillations real
• Where next? Measure theta_13
Neutrinos mass: status and perspectives

status and potential of neutrino masses in lab experiments

kinematics of β-decay
absolute ν_e-mass: m_ν

model-independent
squared neutrino mass:

$$m_{\nu e}^2 = \sum_i |U_{ei}|^2 \cdot m_{\nu i}^2$$

- direct, from kinematics
- status: $m_\nu < 2.3$ eV
- potential: $m_\nu = 200$ meV
- MARE, Project 8, KATRIN

search for $0\nu\beta\beta$
eff. Majorana mass $m_{\beta\beta}$

model-dependent (CP-phases)
effective Majorana mass:

$$m_{\beta\beta} = \left| \sum_i U_{ei}^2 \cdot m_{\nu i} \right|$$

- probe ν as Majorana particle: $\nu = \bar{\nu}$?
- status: $m_{\beta\beta} < 0.35$ eV, evidence?
- potential: $m_{\beta\beta} = 20$-50 meV
- GERDA, SNO+, EXO, CUORE

Talks by: Rodejohann/Pavan/Dolinski/Nakamura
F. Simkovic (Session II / Friday)
Measuring the Neutrino Mass

Two complementary approaches with different systematics:

<table>
<thead>
<tr>
<th>Source</th>
<th>Calorimeter</th>
<th>Spectrometer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>187Re (metallic or dielectric)</td>
<td>T_2 (gaseous or condensed)</td>
</tr>
<tr>
<td></td>
<td>• source = detector</td>
<td>• external β source</td>
</tr>
<tr>
<td>Endpoint</td>
<td>2.47 keV</td>
<td>18.6 keV</td>
</tr>
<tr>
<td>$t_{1/2}$</td>
<td>4.3×10^{10} y</td>
<td>12.3 y</td>
</tr>
<tr>
<td>Activity</td>
<td>low: $< 10^5 \beta$/s, ≈ 1 Bq / mg Re</td>
<td>high: $\approx 10^{11} \beta$/s, 4.7 Ci/s injection</td>
</tr>
<tr>
<td>Technique</td>
<td>single crystal bolometer</td>
<td>electrostatic spectrometer</td>
</tr>
<tr>
<td>Response</td>
<td>entire β decay energy</td>
<td>kinetic energy of β decay electrons</td>
</tr>
<tr>
<td>Interval</td>
<td>entire spectrum</td>
<td>narrow interval close to endpoint</td>
</tr>
<tr>
<td>Method</td>
<td>differential energy spectrum</td>
<td>integrated energy spectrum</td>
</tr>
<tr>
<td>Set-up</td>
<td>modular size, scalable</td>
<td>integral design, size limits</td>
</tr>
<tr>
<td>Resolution</td>
<td>$\Delta E_{\text{expected}} \approx 5 - 10$ eV (FWHM)</td>
<td>$\Delta E_{\text{expected}} \approx 0.93$ eV (100 %)</td>
</tr>
</tbody>
</table>

MARE
KATRIN
Measuring the Neutrino Mass

m(νe) from β decay: model-independent, based on kinematics and energy conservation

\[
m(ν_e) = \sqrt{\sum_{i=1}^{3} |U_{ei}|^2 \cdot m_i^2}
\]

\[
\frac{dΓ_i}{dE} = C \cdot p \cdot (E + m_e) \cdot (E_0 - E) \cdot \sqrt{(E_0 - E)^2 - m_i^2} \cdot F(E,Z) \cdot θ(E_0 - E - m_i)
\]

\[(ν^- \text{ mass})^2\]

mν ≠ 0 influence:
- shift of E₀
- changed shape
- shape to be analysed!

key requirements:
- low endpoint β source
- high count rate
- high energy resolution
- extremely low background
Measuring the Neutrino Mass

MARE: Microcalorimeter Arrays for a Rhenium Experiment
- ^{187}Re as β-emitter: isotropic abundance of 62.6%
- $5/2^+$ to $1/2^-$ first order unique forbidden transition

MARE Phase-I:
- $\Delta E = 15 \text{ eV}$
- $\Delta t = 50 \mu\text{s}$
- 3 years

- based on MANU and MIBETA (result: $m_\nu < 15 \text{ eV} / 6 \times 10^6 \beta$'s)
- improve sensitivity for m_ν by factor 10
- increase statistics to $10^{10} \beta$ decays
- scrutinize tritium-based MAINZ and TROITZK result

- Genova: metallic Re, superconducting at $T = 1.6 \text{ K}$, 1 mg absorber
- Milano: new AgReO$_4$ crystals, 500 μg absorber at $T \approx 85 \text{ mK}$, 6x6 pixel arrays, energy resolution $\Delta E = 34 \text{ eV}$ at 2.5 keV

MARE Phase-II:
- $\Delta E = 5 \text{ eV}$
- $\Delta t = 1 \mu\text{s}$
- > 5 years

- improve sensitivity for m_ν by another factor 10
- increase statistics to $10^{14} \beta$ decays
- scrutinize KATRIN in future

- R&D program for new detectors
- magnetic micro-calorimeters (MMC) + paramagnetic sensor + SQUID
- projected sensitivity requires ≈ 50000 bolometers and $t > 5$ years

for details see talk: A. Nucciotti (Session II, Friday)
Measuring the Neutrino Mass

3rd approach, proposed recently: Project 8

- **Source:** gaseous T₂
- **Technique:** radio-frequency spectroscopy of coherent cyclotron radiation of β decay electrons
- **More details:** arXiv:0904.2860v1 [nucl-ex]
- **Design values:** projected energy resolution: 1 eV, estimated sensitivity on m(ν_e): 0.1 eV
- **Status:** preparations for a proof-of-principle experiment

Talk: J. Formaggio, Session II, Saturday
The KATRIN Setup

- Tritium source
- Transport section
- Pre spectrometer
- Spectrometer
- Detector

- ^3H β decay
- $\nu_e \rightarrow e^-$ with 10^{10} e$^-$/s
- ^3He
- $E = 18600$ eV

- $^3\text{H} \rightarrow 10^3$ e$^-$/s
- ^3He
- $E > 18.3$ keV

- $\Delta E = 0.92$ eV
- $e^- \rightarrow 1$ e$^-$/s

- ~70 m
Double Beta Decay

ββ2ν: two simultaneous β decays

\[
(Z, A) \rightarrow (Z + 2, A) + e_1^- + e_2^- + \bar{\nu}_{e_1} + \bar{\nu}_{e_2}
\]

\[
\frac{1}{T_{1/2}^{2\nu}} = G_{2\nu}^2(Q, Z) |M_2\nu|^2
\]

ββ0ν: requires massive Majorana neutrinos. Non-SM process.

\[
(Z, A) \rightarrow (Z + 2, A) + e_1^- + e_2^- + \bar{\nu}_{e_1} + \bar{\nu}_{e_2}
\]

\[
(\Delta L = 2)
\]

\[
\frac{1}{T_{1/2}^{0\nu}} = G_{0\nu}^2(Q, Z) |M_{0\nu}|^2 \langle m_{\beta\beta} \rangle^2
\]

Other mechanisms are possible, but all of them imply a Majorana neutrino mass.

Exchange of light Majorana neutrinos
Observing DBD is not the same as measuring neutrino mass.

\[
(T_{1/2}^{0v})^{-1} = G_{0v}(Q_{\beta\beta}, Z) |M_{0\nu}|^2 m_{\beta\beta}^2
\]

\[
m_{\beta\beta} = \left| \sum_i U_{ei}^2 m_i \right|
\]
Past Results

<table>
<thead>
<tr>
<th></th>
<th>Mass Limit (y)</th>
<th>Mass Limit (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>48Ca</td>
<td>$>1.4\times10^{22}$ y</td>
<td>$<(7.2-44.7)$ eV</td>
</tr>
<tr>
<td>76Ge</td>
<td>$>1.9\times10^{25}$ y</td>
<td><0.35 eV</td>
</tr>
<tr>
<td>76Ge</td>
<td>$>1.6\times10^{25}$ y</td>
<td>$<(0.33-1.35)$ eV</td>
</tr>
<tr>
<td>76Ge</td>
<td>$=1.2\times10^{25}$ y</td>
<td>$=0.44$ eV</td>
</tr>
<tr>
<td>82Se</td>
<td>$>2.1\times10^{23}$ y</td>
<td>$<(1.2-3.2)$ eV</td>
</tr>
<tr>
<td>100Mo</td>
<td>$>5.8\times10^{23}$ y</td>
<td>$<(0.6-2.7)$ eV</td>
</tr>
<tr>
<td>116Cd</td>
<td>$>1.7\times10^{23}$ y</td>
<td><1.7 eV</td>
</tr>
<tr>
<td>128Te</td>
<td>$>7.7\times10^{24}$ y</td>
<td>$<(1.1-1.5)$ eV</td>
</tr>
<tr>
<td>130Te</td>
<td>$>3.0\times10^{24}$ y</td>
<td>$<(0.41-0.98)$ eV</td>
</tr>
<tr>
<td>136Xe</td>
<td>$>4.5\times10^{23}$ y</td>
<td>$<(1.8-5.2)$ eV</td>
</tr>
<tr>
<td>150Nd</td>
<td>$>1.2\times10^{21}$ y</td>
<td><3.0 eV</td>
</tr>
</tbody>
</table>
Effective DB Mass Could be Vanishingly Small

Steve Elliott, LANL

KKDC Claim

Atmospheric Scale

Solar Scale

Atm dm²

\[U_{e1} = 0.866 \quad \delta m_{\text{sol}}^2 = 70 \text{ meV}^2 \]
\[U_{e2} = 0.5 \quad \delta m_{\text{atm}}^2 = 2000 \text{ meV}^2 \]
\[U_{e3} = 0 \]
Race Towards the Ultimate Experiment

- Ge diodes (GERDA, MAJORANA)
- Cryogenic bolometers (CUORE)
- LXe TPC w/scint (EXO)
- Liquid scintillators (SNO+, KamLAND)
- HPXe TPC w/scint (NEXT, EXO?)
- Foils + tracking (SuperNEMO, MOON)
- CZT detectors (COBRA)
- Scintillating bolometers (BOLUX)
- Scintillating crystals (CANDLES)
And now for something different, but related...

- We have been studying large and in some versions portable electron antineutrino detectors for three applications:
 - More detailed oscillations studies
 - Development of remote reactor monitoring
 - Study of geoneutrinos
Geoneutrinos: An Emerging Field

- Neutrinos from U and Th chains thought to be major source of earth internal heat, and geodynamics (crustal motions, earthquakes, volcanoes),
- Much debate about how much total and here it originates. Major question in geology, and no other way to access information than neutrinos.
- Results indicate earth heat probably no totally radiogenic. Also no indication (yet) of major natural reactor source.
- This is a budding field... but needs large detectors, and in ocean to discern below local crust.
- A number of workshops, talks at major neutrino meetings, and papers. Nice Geonu meeting Gran Sasso 10/10
Nuclear Reactor Monitoring for Anti-Proliferation

- Series of Workshops over last seven years about reactor monitoring (Hawaii, Palo Alto, Paris, Livermore, Maryland, Japan, Italy).
- Several major (p)review papers (arXiv:0908.4338, arXiv:1011.3850, one in preparation)
- Near: ~1m^3, ~20m, cooperative site, IAEA application
- Demonstrations a San Onofre Calif., and other places. Efforts in US, France, Russia, Japan, Brazil, Italy, and more.
- Far: 1-1000 km, possibly clandestine reactor, look at location and operation patterns, huge detectors needed at long dist. (1/r^2 inescapable)
- Developing new techniques to utilize all possible information from multiple detectors.
Doing Detailed Modeling of Reactor Backgrounds

Plots from Glenn Jocher, Integrity Applications Inc.
We have a program allowing arbitrary placement of detectors, including depth and calculations of all backgrounds (based on KamLAND and Borexino experience).
Change Gears and Talk about New Detectors

- Intro to new means of reconstructing events in liquid scintillator, where tracks radiate light isotropically
- (not like Cherenkov radiation in water as in SUperK)
2009 Realization that Liquid Scint Detector Can Reconstruct Events

First light yields topology. Now important part of LENA project proposal.

Snapshot of the Fermat Surface for a Single Muon-like Track

Incoherent sum coincident with Cherenkov surface: Not polarized!
LENA is major project proposed for Europe, probably Finland (1/3 of LAGUNA initiative).

Much nice physics to be done with such.

Major White Paper on Web today.

Most interesting for this talk, is ability to do long baseline GeV neutrino studies Using the Fermat trick.

(Michinari Sakai at UH working on testing with KamLAND atmospheric nu data.)
FIG. 18: A 500 MeV muon in LENA. On the left, the color coded information is the charge seen by each PMT, while the hit time of the first photon at each PMT is shown on the right, applying a time of flight correction with respect to the charge barycenter of the track.
Muons Reconstructed Very Well

FIG. 19: Results obtained by reconstructing 300 MeV muons created in the center of the detector and traveling in negative x direction (500 events). The upper row shows the results for the start point of the track, the lower row shows the reconstructed start time (left), the angular deviation of the reconstructed track from the Monte Carlo truth (center) and the kinetic energy of the muon (right).
If one can employ the full waveforms...

Scinderella reconstruction of a 2 GeV quasi-elastic neutrino event in liquid scintillator. Note 3.15% resolution of neutrino energy, as well as short stub reconstructing recoil nucleon.
Springboarding from this and wanting to develop a way to get directionality for electron antineutrinos we came up with a new type of detector, with time replacing optics.

miniTimeCube: UH building tiny portable unshielded neutrino detector which can measure useful rate near power reactor, and get some neutrino directionality.

Assemble this year, take to reactor for demonstration. For economical construction need LAPPDs (ANL/Chicago project).

Next version ~1m3, able to measure reactors outside the fence from small van.

Future: stacks of same in shipping containers.

Reactor monitoring, but also moving towards geoneutrinos and other science.
Idea for Small and Directional Inverse Beta Detector

- Small portable 2.2 liter scintillating cube with neutron capture doping.
- Contain positron, lose gammas
- Do imaging with fast timing, not optics (time reversal imaging).
- Get some neutrino directionality between positron origin and neutrino capture point.
- Reject noise on the fly; no shielding needed
- 4 x 6 MCP (x64 pixels each) fast (<100 ps) pixel detectors on surrounding faces
- ~10/day anti-neutrino interactions (inverse beta decay signature) from reactor.
Mini Time Cube Based On 13cm³ Boron Loaded Plastic Scintillator

MTC with read-out electronics on one face

MTC fully populated with read-out UH-ID electronics

MTC within 2ft³ enclosure

Stackable transport cases

DAQ fits upper case

Detector fits lower case
mTC Virtues, Summary

- Small size avoids gammas which smear resolution ($X \sim 42$ cm)
- Fast pixel timing (<100ps) and fast processing of waveforms rejects background in real time, resulting in
- Lack of need for shielding (unlike other detectors).
- Feasible even in high noise environment, near reactor vessel, at surface (e.g. in a truck).
- Neutrino directionality via precision measure of positron production and neutron absorption locations.
- Challenges: build one and demonstrate, scale up, make more economically.
- Question under present study: Can we attack RANA with this?
Conclusion: Much Fun to be Had
Untangling the Secrets of the Neutrinos

• Probably a hundred neutrino projects, large and small, underway around the world.
• This talk does no justice to the scope of the programs at accelerators, and with reactors and natural sources.
• Hopefully you get the sense of adventure as we look for the newest twists and surprises from the wiley neutrino...
A couple of comments on the MINOS CPT? results

MINOS \(\overline{\nu}_\mu \) result

- Expected (no osc.): 155 events
- Observed: 97 events
- No oscillation is disfavored at 6.3σ

Danko NNN2010
Observe **42 events** in the Far detector

First direct observation of $\bar{\nu}_\mu$ in an accelerator long-baseline experiment

- **Predicted events** with CPT conserving oscillations:
 - $58.3 \pm 7.6 \text{ (stat.)} \pm 3.6 \text{ (syst.)}$
- **Predicted events** with null oscillations:
 - $64.6 \pm 8.0 \text{ (stat.)} \pm 3.9 \text{ (syst.)}$
more antineutrino running is underway to improve nu-bar

- 2σ inconsistency

<table>
<thead>
<tr>
<th>Δm^2</th>
<th>$\sin^2(2\theta)$ (90% C.L.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3.36^{+0.45}_{-0.40} \times 10^{-3}$ eV2</td>
<td>0.86 ± 0.11</td>
</tr>
</tbody>
</table>

$\left| \Delta m^2 \right|$ and $\left| \overline{\Delta m^2} \right|$ (10$^{-3}$ eV2)

$\overline{\nu}$ versus ν

Danko NNN2010
Contours obtained using Feldman-Cousins technique, including systematics.

Null oscillation hypothesis excluded at 99%.

CPT conserving point from the MINOS neutrino analysis is within 90% contour.

$\bar{\nu}_\mu$ best fit is at high value, due to deficit at high energy.

Unshaded region around maximal mixing is excluded at 99.7% C.L.

Some internal problems in MINOS.
UH Neutrino Group Projects

Past
• Beginning Neutrino Astronomy (Workshops, DUMAND)
• IMB (firstHints at Neutrino Oscillations 1983, SN1987A observed in neutrinos)
• Neutrino Phenomenology and Astrophysics
• K2K (confirmation of oscillations with accelerator)
• Forte’ (terrestrial radio pulses seen from space)
• GLUE (radio pulses from moon)

Present
• Super-Kamiokande (discovery of neutrino oscillations)
• KamLAND (electron neutrino oscillations from reactors)
• Radio Detection Studies (mechanisms, at accelerators, lab)
• [ASHRA (Nitrogen Fluorescence Air Shower, Mauna Loa)]
• ANITA (radio neutrino detection from balloon in Antarctic)
• miniTimeCube
• Reactor Monitoring
• ARA (radio detection in ice at South Pole)

Future Possibilities
• Long Baseline Neutrino Detector (DUSEL, Homestake South Dakota)
• Hanohano (ocean going >10 kiloton liquid scintillation detector)
• LENA (50 kiloton, liquid scintillation detector in Europe)
• Giant version of ANITA
Now Enters the Peculiar New “Reactor Neutrino Anomaly”

- Re-evaluation of the calculation of the neutrino flux from reactors leads French group to conclude that all earlier experiments have been observing a deficit.
- No significant objection so far from nuclear experts.
- If so, where could these be going? Possibly short range oscillations into a new fourth but “sterile” neutrino.
- Could solve some other problems...
- This could be revolutionary, and could be a key to a new domaine of matter.
New Prediction, Old Results and Implications for θ_{13}

- The choice of normalization is crucial for reactor experiments looking for θ_{13} without near detector

$\sigma_{f}^{\text{pred,new}}$: new prediction of the antineutrino fluxes

σ_{f}^{ano}: experimental cross section (best fitted mean averaged)

- A deficit observed at 1-2 km can either be induced by θ_{13} induced oscillation BUT also by other explanations (experimental, new ϕ, ...)

Daya Bay, Double Chooz, Reno

θ_{13} area
The Reactor Neutrino Anomaly

\[\chi^2 = (r - \overline{R})^T W^{-1} (r - \overline{R}) \]

- Best fit: $\mu = 0.943$
- Uncertainty: 0.023
- $\chi^2 = 19.6/19$
- Deviation from unity
 - Naïve Gaussian: 99.3% C.L.
 - Toy MC: 98.6% C.L. (10^6 trials)
- No hidden covariance
 - 18% of Toy MC have $\chi^2_{\text{min}} < 19.6$
An Oscillations fit to Old and New Data

3+2 best fit point

$\Delta \chi^2$ between global bfp and app/disapp separate bfp:

<table>
<thead>
<tr>
<th></th>
<th>LSND</th>
<th>MB\bar{\nu}</th>
<th>MB\nu</th>
<th>KAR</th>
<th>React</th>
<th>CDHS</th>
<th>Atmos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>1.2</td>
<td>2.9</td>
<td>2.5</td>
<td>1.5</td>
<td>0.9</td>
<td>2.4</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Kopp, Maltoni, TS, 1103.xxxx
Other Possible Evidence: the Gallium Anomaly

- 4 calibration runs with intense MCi neutrino sources:
 - 2 runs at Gallex with a 51Cr source (750 keV ν_e emitter)
 - 1 run at SAGE with a 51Cr source
 - 1 run at SAGE with a 37Ar source (810 keV ν_e emitter)
 - All observed a deficit of neutrino interactions compared to the expected activity. Hint of oscillation?

- Our analysis for Gallex & Sage:
 - Monte Carlo computing mean path lengths of neutrinos in Gallium tanks
 - NEW: Correlate the 2 Gallex runs together & the 2 SAGE runs together

![Data and correlation matrix](image)
Latest Cosmological Sterile Neutrino Analysis

Blue: CMB+HST+SDSS
Red: CMB+HST+SDSS+SN-Ia

<table>
<thead>
<tr>
<th>Parameter</th>
<th>68% CL (r1)</th>
<th>95% CL (r1)</th>
<th>68% CL (r2)</th>
<th>95% CL (r2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{ν_s}</td>
<td>0.94 – 3.16</td>
<td>0.21 – 4.63</td>
<td>0.69 – 2.53</td>
<td>0.13 – 3.56</td>
</tr>
<tr>
<td>m_ν [eV]</td>
<td>0.02 – 0.19</td>
<td>< 0.36</td>
<td>0.01 – 0.14</td>
<td>< 0.24</td>
</tr>
<tr>
<td>m_{ν_s} [eV]</td>
<td>0.04 – 0.31</td>
<td>< 0.70</td>
<td>0.03 – 0.30</td>
<td>< 0.70</td>
</tr>
</tbody>
</table>
Summary of Possible Signatures of Light Sterile Neutrinos

- checked solar/KamLAND fit: U_{e4}, U_{e5} similar effect as U_{e3}
- MINOS NC analysis may give additional constraints
- Deficit in radioactive source experiments at Gallium exps C. Giunti

- Cosmology:

$$\begin{align*}
m_s & (eV) \\
N_s & \\
0 & 1 \ 2 \ 3 \ 4 \ 5
\end{align*}$$

CMB, SDSS, HST
Hamann et al., 1006.5276

talk by A. Melchiorri

- BBN: $N_s < 1.2$ (95% CL) Mangano, Serpico, 1103.1261
Need for New Experiments!

New reactor ν flux
arXiv:1101.2663

2 m!

Terra Incognita
4th neutrino ???

Reactor Antineutrino Anomaly
arXiv:1101.2755

ν-oscillation
θ_{12} mixing angle
ν-oscillation ?
θ_{13} mixing angle
Double Chooz

Physics scenarios
- 3 active ν + 1 sterile ν (new)
- 3 active ν
- Data

Distance to Reactor (m)
Temporary Conclusions on Reactor Neutrino Anomaly

- slightly ambiguous status of θ_{13} due to new reactor fluxes:
 $\sin^2 \theta_{13} = 0.1 - 0.3$ with hints for $\theta_{13} > 0$ at $1.8 - 3.2\sigma$

- intriguing accumulation of hints for eV-scale sterile neutrinos
 (LSND/MiniBooNE/reactor/Gallium)
 3+2 model with two eV-scale neutrinos gives good fit to global data

Stay tuned for a rush of proposals to untangle this shaky web!
First Installation of Tubes on mTC

29 April 2011

John Learned at IceCube Dedication
Starting Counting of Muons in Lab

29 April 2011

John Learned at IceCube Dedication
First Scope Traces
Fitting the Positron Track in mTC

GEANT Event in mTC

Positron track, and fitting to it
Angular Response Studies for KamLAND

- Neutron diffuse and capture point

Angular resolution

- ^6Li: 12 cm

- ^6Li: 0.15 wt%
- ^{10}B: 1.0 wt%
- KamLAND LS

<table>
<thead>
<tr>
<th></th>
<th>Angler resolution $\Delta \theta$</th>
<th>$\theta > 45^\circ$</th>
</tr>
</thead>
<tbody>
<tr>
<td>^6Li LS</td>
<td>90.1°</td>
<td>27.7%</td>
</tr>
<tr>
<td>^{10}B LS</td>
<td>114.1°</td>
<td>19.0%</td>
</tr>
<tr>
<td>KamLAND LS</td>
<td>118.6°</td>
<td>17.0%</td>
</tr>
</tbody>
</table>

... miniTimeCube will be much better