JASON Briefing 2008 La Jolla

Reactor Monitoring (near and far) with Neutrinos

Neutrino Applications

are on the horizon

John G. Learned

Physics and Astronomy, University of Hawaii

relevant JGL background

- Particle physics and astrophysics, initiator and participant in many neutrino experiments (IMB, DUMAND, SuperK, KamLAND, K2K,+...).
- Pioneered much muon neutrino oscillations analysis in SuperK.
- Group were first to find SN1987A events in IMB
- Worked at SLAC: beam polarization, psi photoproduction, etc.
- Early work in liquid Ar drifting. co-proposed LANDD.
- Long worked towards establishment of neutrino astronomy.
- Long engagement in nucleon decay searches.
- Former life as engineer, worked in communications and cryptography.
- Also write neutrino phenomenolgy and speculative future science papers.

Nuclear Proliferation is a Great Danger to Mankind: **Can v Physics Help?**

- Monitor cooperating reactors for compliance with stated operations (no making bomb material)? Yes, close-in. (Bernstein talk)
 - Detect clandestine reactors at modest ranges? Yes.
- Track multiple reactor operations in a region? Yes, with multidetectors.
- But are these affordable? Yes, but large arrays need development.
- What about bomb detection? Comes for free with very large array.

JASON, La Jolla

14 July 2008,

Hawaii,

John G. Learned,

Outline

- Review anti-neutrino detection and state of the art of measuring properties, mainly oscillations.
- Long range reactor measurements, potential and some examples.
- Hanohano: geophysics, particle physics and remote reactor monitoring demonstration
- Summary of needs to make long range progress.

Reines' Old Method: Detect Inverse Beta Decay

ASON

2008

Ve

Need ~1 MeV sensitivity

reaction process : inverse- β decay ($\overline{\nu}_e + p \longrightarrow e^+ + n$) + $p \longrightarrow d + \gamma$

distinctive two-step signature

 $E_{th} = \frac{(M_n + m_e)^2 - M_p^2}{2M_n} = 1.806 \, MeV$

• prompt part : e⁺

 \overline{v}_{ρ} energy measurement

$$E_{v} \sim (E_{e} + \Delta) [1 + \frac{E_{e}}{M_{p}}] + \frac{\Delta^{2} - m_{e}^{2}}{M_{p}}$$
$$\Delta = M_{n} - M_{p}$$

- delayed part : γ (2.2 MeV)
 (shorter time & ~8 MeV in Gd or Cl)
- tagging : correlation of time, position and energy between prompt and delayed signal

- Scale rates from KamLAND measurements ~0.5/d from 180km, including oscillations.
- Negligible background if deep (> 3km water equiv). Less depth manageable, but needs study.

 $L_0 = 180 km flux$ -weighted average reactor distance

Definitely oscillations... alternatives not viable any more.

Oscillation Parameters

The State of the Neutrino Mixing Matrix (MNSP)

 ${\cal V}_e$

Normal hierarchy --- Inverted Hierarchy

Close-in Monitoring: Seems to be ready to develop for wide deployment

See notes from JASON briefing Thur 7/10/08 by Adam Bernstein of LLNL

Ve

LLNL/Sandia Antineutrino Detector at San Onofre

Currently operational at SONGS:

- · 3 Test Detectors (LLNL/Sandia)
- · Prototype coherent detector (Collar)
- · Few meters of concrete shielding

• Unintrusively monitor daily operations (present IAEA protocol requires tap into plumbing!)

• Possible economic benefit to power companies.

Need development of surface detector for use in portable container outside. Must use segmentation to beat backgrounds.

11

Ve Reactor Monitoring with Anti-Neutrinos

ASON

2008

4

med

small 10 MWt reactor observed with 10MT detector no background

- daily ops out to ~60 km
- annual output to >1000 km

Sum of All Reactor Power

- 440 power reactors, 2GWt/reactor
- Rate in 1 gigaton about 17,000 nuebar/day
 - Typical pwr reactor 1000 km away,
 - 1543 cts/day,
 - ~12 σ measurement each day!

25 MWt N. Korea reactor

Reactor V_e Rates with Oscillations nuebar events/kt-yr

Thanks Andreas Piepke

SON, La Jolla

 \mathcal{V}

Bernstein's Example 3: 10 MWt reactor in YongByon @130 km

But assume: <u>10 megaton</u> water Cherenkov detector

Reactor	Standoff	Evts/yr	S/sqrt(B)
All SK reactors (~40GWt)	400-600 km	288k	
Unknown 10 MWt	130 km	1100	~2 σ

What can improve this?

- Precise monitoring of SK reactors (predict Bkgd)
- Multiple detectors (several 1 MT detectors)
- Time variations in other reactor signals
- Directionality (not ready yet)

A 10 MT detector could be built now, in a mine, BUT COSTLY.

10 MWt reactor in NK could be monitored from 130km as of now, but is it worth it?

Toy Model of Unknown Reactor Position Resolution in One Year

Ve

Counting rate asymmetry, $(n_1-n_2)/(n_1+n_2)$, between 2 detectors spaced 4500 km apart along the equator.

2 detectors gets longitude and power of unknown reactor.
3 detectors gets 2D location and power.

Practical Application

 Example: finding unknown PRK reactor with 3 10MT detectors.

- Answer depends upon question: location known? Power known?
 Neighbor reactors monitored?
- Network can detect bomb tests too.

Far future: Gigaton Scale Multi-component Detector

• 10 Megaton modules?

- Place in deep ocean for low rates and mobility. Mine based detectors not affordable.
- Must use water, nothing else affordable.
- Not ocean water, for acceptable backgrounds.
- Possibly load with low ⁴⁰K salt: not expensive, helps neutron detection and 3% buoyancy of seawater.

Need New Photodetectors

- Need research and industrial effort on new technology.
- Develop new photodetection with cost reduction of 10x, aim for 100x.
- PMTs cost \$1/cm², aim for \$100/m²
- Encouraging new technology with sheets, such as micromegas technique.
- Explore organic sensors.

- Possibility for photodetector "wallpaper".
- Significant investment needed in R&D.

PMTs outmoded?

"Wallpaper" photodetectors?

Original motivation for first mass-production of MPGDs: Low-background applications (in particular coherent neutrino-nucleus scattering... J. Collar)

 V_{e}

but many other applications can profit from "industrialization": TPC readout, large-area tracking devices, X-ray astronomy, neutron physics, medical & industrial imaging, photonics... **very large v detectors?**

21

Future Dreams: Directional Sensitivity

Directional information provides:

- Rejection of backgrounds
- Separation of crust and mantle
- Earth tomography by multiple detectors

Good News:

Recoiled neutron remembers direction

Bad News:

- Thermalization blurs the info
- Gamma diffusion spoils the info
- Reconstruction resolution is too poor

Wish List:

- large neutron capture cross-section
- (heavy) charged particle emission &
- good resolution detector (~1cm)

Towards Directional Sensitivity 1

Various chemical forms for Li loading are being tested...

Tohoku

10 Megaton Modules

- Assume 100 modules at 10⁷ ton each.
- Reverse osmosis is affordable.
- Size equivalent to balloons with radius 134 m.
- Flexible bag with photodetector and electronics on inner wall, pressure tolerant.
- Anchoring forces <30 tons, OK.
- Slightly buoyant, haul up for service.
- Large quantity cost on \$100 M scale.

Sensitivity

• Assume 100% wall coverage with photodetectors.

Ve

SON

2008

- Pure water, >100 m attenuation length.
- Sensitivity to Cherenkov ~same as SuperK: 10 PE/MeV (larger size, larger coverage).
- Add some dopant to multiply sensitivity, but keep directionality.
- Achieve ~3x sens, min signal ~66 PE at 2.2 MeV appears viable.

optical absorption length reaches

225 m in pure water

Pope & Fry 1997

Far Future: Exploring Distribution of Detectors Around the World

Easy model: place them on a 5 deg x 5 deg grid, except near poles, in all oceans
Add in some lakes (Baikal, Victoria, Great Lakes)
Get 1596 detectors.... clearly too many.
Use for study, but can eliminate most.

Finding Hidden Reactors **Day-by-day**

One day 3 sigma detection hidden reactor power

Ve

SON

1596 10 megaton detectors (roughly every 5 deg in oceans and some big lakes)

Can eliminate many detectors in southern oceans.

Can Detect Bomb Material Production Reactors Anywhere in the World

Integrating over one year operation. At this level can detect bomb material production at level

Ve

of North Korean activity, anywhere.

US tpotmoth 1955 2Kt

Detection of Nuclear Explosions? Yes!

- Beauty of this method is that neutrinos cannot be faked, jammed or shielded.
- Detection measures weapon yield.
- Detect 100 kT device out to 1000 km → 2000 counts in gigaton equiv. detector.
- **Distributed arrays do** much better (*next slide*).

Detect Bomb Tests >0.3 kT Anywhere on Earth !

• Integrate over 10 seconds in world array

Gigaton Array has Huge Program of Unprecedented Other Physics Studies

- **Proton decay** search to >10³⁶ yr, tests all SUSY models.
- **Solar neutrino** temporal variation to 0.13%/sqrt(days).
- >1 Type II Supernova/ 20 days (~100 counts/few sec, E~10-50 MeV), clear signal from all of Virgo Cluster.
- Neutrino point source astronomy.... MeV to PeV.
- Far detector for neutrino-factory physics.
- Search for dark matter annihilations in earth, sun, galaxy
- **Geophysics** in study of earth density to core.
- Large enough program to engage many scientists and engineers for many years.

Example: Neutrinos from Distant Past Supernovae

0 L 0

FIG. 1: Spectra of low-energy $\bar{\nu}_e + p \rightarrow e^+ + n$ coincidence events and the sub-Čerenkov muon background. We assume full efficiencies, and include energy resolution and neutrino oscillations. Singles rates (not shown) are efficiently suppressed.

Ve

Beacom and Vagins hep-ph/030930

Strigari, et al, astro-ph/0312346

 \mathbf{z}

2

3

Type II Supernova Early Warning

Silicon burning during last ~2 days prior to collapse detectable from whole galaxy! Sudden increase in single neutron appearance

Burning	T_c	ρ_c	μ_{e}	L_{ν}	Duration	Total energy
Phase	$[\mathrm{MeV}]$	[g/cc]	$[\mathrm{MeV}]$	[erg/s]	τ	emitted [erg]
С	0.07	$2.7\cdot 10^5$	0.0	$7.4\cdot 10^{39}$	300 yrs	$7\cdot 10^{49}$
Ne	0.146	$4.0\cdot 10^{6}$	0.20	$1.2\cdot 10^{43}$	$140 \mathrm{~days}$	$1.4\cdot 10^{50}$
Ο	0.181	$6.0\cdot 10^6$	0.24	$7.4\cdot 10^{\textbf{43}}$	$180 \mathrm{~days}$	$1.2\cdot 10^{51}$
Si	0.319	$4.9\cdot 10^7$	0.84	$3.1\cdot 10^{45}$	$2 \mathrm{~days}$	$5.4\cdot 10^{50}$

Table 2

Properties of a 20 M_{\odot} star according to Ref. [6]. We have calculated the total energy radiated in neutrinos as a product τL_{ν} . Actually, the neutrino emission is expected to be a function of time.

Fig. 2. The standard solar neutrino spectrum (BP2000, [5]) for pp fusion reactions in the Sun (solid lines) and the spectrum of pair-annihilation neutrinos emitted by a 20 M_{\odot} star during silicon burning stage (dashed line). Star is located at a distance of 1 kpc.

Odrzywolek, et al., astro-ph/0311012

Neutrino Monitoring Workshop, U. Maryland, 3-5 January 2008

- Brought together representatives from academe, nuclear monitoring community and intelligence community.
- Discussed future potential of nuclear reactor and bomb monitoring near and far.
- White paper produced making case for large scale, interdisciplinary National Antineutrino Science Center, as well as specific projects.
- Hanohano endorsed as flagship project, not to wait for NASC.

Hanohano a mobile deep ocean detector

Ve

Ē

IASON

Addressing Technology Issues

- Scintillating oil studies in lab
 - P=450 atm, T=0°C
 - Testing PC, PXE, LAB and dodecane
 - No problems so far, LAB favorite... optimization needed
- Implosion studies

8000

- Design with energy absorption
- Computer modeling & at sea
- No stoppers
- Power and comm, no problems
- Optical detector, prototypes OK
- Need second round design

Hanohano Engineering Studies Makai Ocean Engineering

- Studied vessel design up to 100 kilotons, based upon cost, stability, and construction ease.
 - Construct in shipyard
 - Fill/test in port
 - Tow to site, can traverse Panama Canal
 - Deploy ~4-5 km depth
 - Recover, repair or relocate, and redeploy

Ve

Hanohano: Guaranteed Precise measurement for $\frac{1}{2}$ -cycle θ_{12} (= θ_{21})

- Reactor experiment- v_e point source
- $P(v_e \rightarrow v_e) \approx 1 \sin^2(2\theta_{12}) \sin^2(\Delta m_{21}^2 L/4E)$
- 60 GW·kt·y exposure at 50-70 km
 - ~4% systematic error from near detector
 - sin²(θ₁₂) measured with ~2% uncertainty

Bandyopadhyay et al., *Phys. Rev.* D**67** (2003) 113011. Minakata et al., hep-ph/0407326 Bandyopadhyay et al., hep-ph/0410283

Vobs/Nexp

3-v Mixing: Reactor Neutrinos

mixing angles

- mass diffs
- $P_{ee} = 1 \{ \cos^4(\theta_{13}) \sin^2(2\theta_{12}) [1 \cos(\Delta m_{12}^2 L/2E)] \}$
 - $+\cos^{2}(\theta_{12})\sin^{2}(2\theta_{13})[1-\cos(\Delta m^{2}_{13}L/2E)]$
 - wavelength close, 3% $+\sin^{2}(\theta_{12})\sin^{2}(2\theta_{13})[1-\cos(\Delta m^{2}_{23}L/2E)]]/2$
- Survival probability: 3 oscillating terms each cycling in L/E space (~t) with own "periodicity" ($\Delta m^2 \sim \omega$)
 - Amplitude ratios ~13.5 : 2.5 : 1.0
 - Oscillation lengths ~110 km (Δm_{12}^2) and
 - ~4 km ($\Delta m_{13}^2 \sim \Delta m_{23}^2$) at reactor peak ~3.5 MeV
- ¹/₂-cycle measurements can yield
 - Mixing angles, mass-squared differences
- Multi-cycle measurements can yield
 - Mixing angles, precise mass-squared differences
 - Mass hierarchy
 - Less sensitivity to systematic errors

Reactor v_e Spectra at 50 km

~4400 events per year from San Onofre Fitting will give improved θ_{12}

ASON

invites use of Fourier Transforms

1,3 oscillations with $\sin^2(2\theta_{13})=0.10$ and $\Delta m_{31}^2=2.5 \times 10^{-3} \text{ eV}^2$

<u>Fourier Transform on</u> L/E to Δm²

Includes energy smearing

sin²(2θ₁₃)≥0.02 Δm²₃₁=0.0025 eV² to 1% level

Learned, Dye, Pakvasa, Svoboda hep-ex/0612022

Hierarchy Determination

Measure ∆m²₃₁ by Fourier Transform & Determine v Mass Hierarchy

Ve

sin²(2θ₁₃)≥0.05 and 10 kt-y

sin²(2θ₁₃)≥0.02 and 100 kt-y

Learned, Dye, Pakvasa, and Svoboda, hep-ex/0612022

Summary of Expected Results Hanohano- 10 kt-1 yr Exposure

- Neutrino Geophysics- near Hawaii
 - Mantle flux U geoneutrinos to ~10%
 - Heat flux ~15%
 - Measure Th/U ratio to ~20%
 - Rule out geo-reactor if P>0.3 TW
- **Neutrino Oscillation Physics-~55 km from reactor**
 - Measure $\sin^2(\theta_{12})$ to few % w/ standard ½-cycle
 - Measure $\sin^2(2\theta_{13})$ down to ~0.05 w/ multi-cycle
 - Δm_{31}^2 to less than 1% w/ multi-cycle
 - Mass hierarchy if $\theta_{13} \neq 0$ w/multi-cycle & no near detector; insensitive to background, systematic errors; complementary to Minos, Nova
 - Lots to measure even if θ₁₃=0
- Much other astrophysics and nucleon decay too....

Earth's Total Heat Flow

 Conductive heat flow measured from bore-hole temperature gradient and conductivity

> Total heat flow <u>Conventional view</u> 44±1 TW <u>Challenged recently</u> 31±1 TW

strongly model dependent

Convection in the Earth

- The mantle convects.
- Plate tectonics operates via the production of oceanic crust at mid-ocean ridges and it is recycled at deep sea trenches.

Mantle is depleted in some elements (e.g., Th & U) that are enriched in the continents.

models of mantle convection and element distribution

 ${\cal V}_e$

SON

2008

Thanks Patrick Decowski

 Mauve band from Enomoto geo model, shows 20% uncertainty (maybe too too small)

ASON

July 2008.

Simulated Geoneutrino Origination Points

Natural Reactors?

- Suggested for core (Herndon) or near Core-Mantle Boundary (Rusov and deMeijer)
- 5-10 TW could help explain heating, convection, He3 anomaly, and some isotope curiosities.
- Both models disfavored strongly by geochemists (comments from dynamo people here today?)
- Due to high neutrino energies, easily tested.
- KamLAND limit on all unknown reactors is 6.2 TW (90% C.L.) at earth center equivalent range.

Color indicates U/Th neutrino flux, mostly from crust

What Next for Geonus?

- Mantle can only be measured from ocean location.
- Measure gross fluxes from crust and mantle
- Discover or set limits on georeactors.
- Explore lateral homogeneity
- Better earth models

 V_{ρ}

- Use directionality for earth neutrino tomography
- Follow the science....

Hanohano Summary

- Proposal for portable, deep-ocean,
 10 kiloton, liquid scintillation
 electron anti-neutrino detector.
- Transformational geophysics, geochemistry, particle physics and astrophysics: answers to key, big questions in multiple disciplines. Enormous discovery potential.
- First demonstration of portable long range reactor monitoring
- Program under active engineering, Monte Carlo simulations, and studies in laboratory and at sea.
- Collaboration formed, aimed at decade or more multi-disciplinary program between physics and geology. Open to more collaborators.
- Future, much science and many applications for low energy neutrino detection with huge instruments.

Summary: v_e Options for Reactor Monitoring

- Close-in reactor monitors of cooperating reactors, has been demonstrated... maybe worthwhile just for reactor logging.
- Intermediate range options possible, depending upon mission.
- Far future, distributed array of multi-km³ 2 MeV anti-neutrino detectors in deep ocean is certainly possible, question is economics and scaling... first cut indicates it may be on few x \$10B scale.
- Significant optical detector development needed, plus other studies.
- Would allow detection and location of new reactors to few tens of km.
- Huge pure-scientific program and community involvement: high spinoff in science and technology.

