Neutrino Sciences 2005

Neutrinos & Non-proliferation in Europe

Michel Cribier
CEA/Saclay DSM/DAPNIA/SPP
& APC
mcribier@cea.fr
Physics principles allowing monitoring
Fission with two humps

235U

239Pu

Atomic mass of fission fragments
A complex physic to predict emitted β spectrum

a simple example

$$Q_\beta = 6490$$

$$Q_\beta = 4950$$

$$Q_\beta = 3640$$

$$Q_\beta = 1917$$

$$Q_\beta = 567$$

Cooling time
Few basic numbers

<table>
<thead>
<tr>
<th></th>
<th>^{235}U</th>
<th>^{239}Pu</th>
</tr>
</thead>
<tbody>
<tr>
<td>released energy per fission</td>
<td>201.7 MeV</td>
<td>210.0 MeV</td>
</tr>
<tr>
<td>maximum energy of ν</td>
<td>9.0 MeV</td>
<td>7.4 MeV</td>
</tr>
<tr>
<td>ν per fission >1.8 MeV</td>
<td>1.92</td>
<td>1.45</td>
</tr>
<tr>
<td>average inter. cross section</td>
<td>$\approx 3.2 \times 10^{-43}$ cm2</td>
<td>$\approx 2.76 \times 10^{-43}$ cm2</td>
</tr>
</tbody>
</table>

\[
\frac{\# \text{int}^{235}\text{U}}{\# \text{int}^{235}\text{Pu}} = \frac{210.0}{201.7} \times \frac{1.92}{1.45} \times \frac{3.2}{2.76} = 1.60
\]
A toy model
of a nuclear power plant

- Order of magnitudes of the effects
- A very simplified view of the core
 - homogeneous neutron flux
 - $\langle \Phi \sigma \rangle$
- Allow to size the difficulty of the question
The burn-up

\[\beta(n, \gamma) \text{ fission} \]
The 1st cycle

110 tons of U @ 3.5% in 235U

Evolution of the fuel over the 1st cycle

Mass (g) of the isotope vs. Irradiation time (days)

$\langle \Phi \rangle = 7 \times 10^{13} \text{n/cm}^2 \text{s}$

th : 33% ; ep : 0.5% ; ra : 42%
A normal cycle

107 tons of ^{238}U
225 kg of ^{235}U
50 kf of Pu

Evolution of the fuel over one normal cycle

$<\Phi> = 7 \times 10^{13} \text{ n/cm}^2 \text{ s}$
$th: 33\%; ep: 1\%; ra: 42\%$
Thermal power

Evolution of the power over one normal cycle

\[\langle \Phi \rangle = 7 \times 10^{13} \text{ n/cm}^2 \text{ s} \]

th : 33% ; ep : 1% ; ra : 45%
Neutrino Spectrum : 1-5 d

"Double Chooz detector" @ 150 m

Recorded spectrum between 0 and 5 days

3545 evts
Neutrino Spectrum : 100-105 d

only 1 reactor
"Double Chooz detector"
@ 150 m

Recorded spectrum between 100 and 105 days

Visible Energy in MeV

dN/dE

3401 evts
Neutrino Spectrum: 350-355 d

only 1 reactor
"Double Chooz detector"
@ 150 m

Recorded spectrum between 350 and 355 days

Visible Energy in MeV

3029 events
A diversion…
…without stop

Diversion signature
in a 12.7 m3 ν detector @ 50 m

Remove 20 kg of 239Pu
Add 28.4 kg of 235U

ν counting in 10 days:
- normal: 61160 ± 250
- diversion: 61410 ± 250

a \pm σ effect
More sophisticated simulations

- Professional reactors codes
 - MCNP, Appolo, determinist codes
 - Evolution: Mure, Origen
 - Emission of antineutrinos
 - in time, in energy
 - Coupling with detector simulation and backgrounds

- Study of diversion scenarios
 - simplist: invented by physicists
 - realist: interaction with AIEA

- Neutrino monitors for control
 - masse, performances, place
 - simplification needed
 - what can be really controled? Is it needed?
What is MURE*?

*Mure : Blackberry in french

MCNP Utility for Reactor Evolution
C++ code interfacing MCNP and an Evolution code.

Principle

- MCNP: Monte Carlo code designed for calculations of neutron flux inside a reactor.

- MURE runs MCNP to evaluate production of nuclei
- Evolution code to follow transmutation of these nuclei
Evolution

- MCNP = photography of core at given time
- Build a « Base of links » between all potential nuclei in material
- Then, solve Bateman equations:

\[
\frac{dN_i}{dt} = \sum_j \lambda_j^{\to i} N_j - \lambda_i N_i + \sum_j N_j \sigma_j^{\to i} \langle \phi \rangle - N_i \sum_r \sigma_i^{\to r} \langle \phi \rangle
\]

...which is done in time steps (Bsteps):

\[\Delta t_{MCNP} = N_B \delta t_B\]
Approximations

- Optimize computation time
 - by-pass short half lived nuclei (the ones that β-decay…)
- Reaction rate $<\sigma \phi>$ extrapolation between 2 MCNP runs
Could we deduce isotopic composition from neutrino measurements?

Recorded positron spectrum

A different spectrum by fissile isotope
What is the precision required?

10^6 evts : 10 tons @ 10m in 10d
Power determ. in 1d @ 3%
Pu content poorly determ. @ > 10% in 10d with present knowledge of flux

Improve flux determ.

P. Huber & T. Schwetz, hep-ph/0407076,
Precision spectroscopy with reactor antineutrinos
Related experimental effort in France

O. Bringer1, S. Chabod1, S. Cormon2, M. Fallot2, H. Faust3, Y. Foucher2, U. Kayser4, A. Letourneau1, P. Mutti3, Y. Tall2, K. Zbiri2

1CEA Saclay (SPhN) \hspace{1cm} 2Subatech (Nantes) \hspace{1cm} 3ILL Grenoble \hspace{1cm} 4Univ. Braunschweig
Experiments at ILL

- H9 beam channel (98% thermal spectrum) (6 10^{14} n/s/cm²)
- Mini-Inca chamber
- α, γ, β spectroscopy
- D$_2$O tank
- Lohengrin mass separator
- Samples automatically transported
 Irradiations $<=$ Measurements

December 16, 2005
Michel Cribier
Individual β spectrum of short life fission products

- Fission rate $\approx 10^{12}/s$ at target
- Several target: Np \rightarrow Cf
 - thus explore fission humps
- The Lohengrin spectrometer at ILL
 - selection in A/q
- On line selection by isobar
 - access to FP $\approx \mu$s
- Measure Q_β important for detected ν
An ambitious experimental programme

- **A fact** (quoted by C. Bemporad)
 - unknown decays contribute as much as 25% of the antineutrinos at energies > 4MeV!

- **Integral spectra** measured by Schreckenbach et al.
 - precision better than 2% up to 8 MeV

- **Fission products contributions to neutrino spectra**
 - measurements of Tengblad et al.
 - disagreement with experimental integral spectra
 - important errors: 5% at 4MeV, 11% at 5MeV and 20%

- **Focus on n-rich nuclei**
 - with yields very different in 239Pu and 235U fission:
 - 86Ge, $^{90-92}$Se, $^{96-98}$Kr, 100Rb, $^{100-102}$Sr, $^{108-112}$Mo, $^{106-113}$Tc, $^{113-115}$Ru...

- **Irradiation tests last summer. Analysis in progress**
Yields dominated by Kr and Rb.
Integral β spectrum

ILL high flux : 1 day (H9) $\approx 20d$ PWR
Fast measurements of decays products
β spectrum study for :
- 235U, 239Pu...
- different irradiation time : burn-up
- different cooling time

to install
Within

The near detector @ 200 m from cores
What is planned?

- Wonderful overlap with Double Chooz oscillation (θ_{13}) experiment
 - need to improve neutrino spectrum
 - need to improve knowledge of burn-up
 - no new equipment required

- Precise ν spectrum vs fissile element ($^{235}\text{U}, ^{239}\text{Pu}$):
 - high statistic with Double Chooz (near): $5 \times 10^5 \nu$ detected per year
 - correlation with fuel composition
 - correlation with thermal power

- Good exchange with EDF needed
 - history of the fuel rods, position

- At least a valuable database

- Project: install a smaller detector closer from cores
Toward a prototype of monitor

- **Double Chooz approach**
 - good energy measurement
 - good signal/noise
 - too sophisticated
 - expensive

- **Sands approach**
 - weak ν signature
 - not enough rejection of background
 - robust, simple
 - automatic
 - cheap
Interest?

- Closer cooperation with LLNL
- Combine mutual experience of detectors
- Test/measure at ILL: core of \approx pure 235U
 - very pure ν signal vs burn-up
 - calibration of the ν vs thermal power
 - simple simulation of the nuclear core
- A demonstrator to be shown at AIEA
- An already usable tool to measure the thermal power
Conclusions

- **Non prolif. issues : a tough job !**
 - realistic diversion (~50 kg Pu) is a small effect
 - define correct conditions : detector size/positions
 - re-measure \(\nu \) spectrum emitted in fissions
 - correlation between isotopic content and measured spectrum in Double Chooz (near) detector

- **Thermal power : a less difficult job**
 - a new tool to monitor/measure the thermal power
 - not so well known (> 2 % ?) apparently thru temp. and flow measurement
 - effort also needed on \(\nu \) spectrum from fissions

- **An external/independant device to monitor nuclear reactor**
 - disuasive by itself : cannot hide stops or change of power
 - virtually impossible to fake the \(\nu \) signal
An (even) more difficult demand

- An interest in remote detection of \(\approx \) kton atomic test
 - neutrino is an unambiguous signature
- An extremely weak signature
 - 1 kton atomic test @ 100 km...
 \[\Rightarrow 3 \text{ interactions in a } 1.7 \text{ Mton detector } \approx (120 \text{m})^3 \]
- Geoneutrinos detectors paved the way for a global network of survey