X-ray FEL Detector mechanics

- Overview
- Planned 1st run configuration
 - Flux estimates
 - Detector configuration
 - Data rates
- Future development efforts
 - Detectors
 - Electronics/processing

5-FEB-2010

Juaquin Anderson Matt Andrew Michael Cooney Xin Gao James Kennedy Luca Macchiarulo Marc Rosen Larry Ruckman Gary Varner

Bremsstrahlung Beamline Estimates

Dec.-2009

Brem beamline Summary

- Initial run with 2 detector planes
 - -1mm2 array for "bare" layer
 - 3mm2 array with BaF2 radiator
- More than adequate flux (2nd layer)
- Developed x-ray transport simulation
 - Input to a signal Monte Carlo
 - -Fix readout/ASIC design specifications

First Detector Arrays

First Generation FEL x-ray (TEDA) Readout

4

Readout for FEL x-ray beamline cPCI crate (control room) ASIC New Detectors card **CPU** Master X-rays Front-end Giga-bit Module Module Fiber links

Master module

First Prototype throughput

- For configuration shown earlier
 - -1 layer = 4 ASICs (8Ch.)
 - -1 "shot" = 4 chip * 8Ch * 32k = 1Msmp/layer
 - (1 shot = 8us recording @ 4GSa/s)
- 16Mbit/s/shot
- 320Mbit/s @ 20Hz operation
 - -2x Layers/fiber ~ 0.64 Gb/s (20% capacity)
 - May do 1 fiber/layer for convenience (fibers are inexpensive)
- 40MBytes/s raw data (need to feature extract)

Readout System Summary

Great Progress

- Now have a clear plan for late Feb. first run (on schedule)
- ASIC development path is multi-prong, design effort will intensify this semester
- Data transfer architecture has plenty of margin and is scaleable upward
- Detector development prototype from CERN in February; further device fabrication runs

Back-up slides

3 mm^2 Hamamatsu MPPC coverage

Better fill-factor for tiling → ~53% active $G = 2.7 \times 10^5$ TTS ~ 250ps RMS (single p.e.) Proto ASIC psTDC1

"oscilloscope on a chip"

Specifications

- 10-15 GSa/s
- >= 2GHz analog bandwidth
- 256 sample cells
- 4 channels
- separate timing channel
- on-chip conversion
- IBM 130nm CMOS process
- 25.6µs readout
- 40mW/channel
- Direct interface (stud-bond) to microstrip board

ASIC in evaluation

Chip Layout

4 mm

4 mm

STURM2 Prototype (evol. Step) "Max bandwidth/throughput"

Specifications

8	channels/STURM sampling
1	monitor channel
4	TSA sample buffers
8	samples/TSA buffer (32x channel)
288	Wilkinson conversion cells
1-200	GSa/s effective (5ps - 1ns Tstep)
1	word (RAM) sample readout
1+n*0.02	us to read n samples
100	kHz sustained readout (orbit)

Chip Layout

compact PCI Platform

Data processing card (example – DSP version)

Mono-chromatic x-ray Source

Future Detector Options

15