MkV Beam Position Monitor Readout

Bryce Jacobson UH FEL Group 7 October, 2011

BPM Overview

- BPM's have 4 striplines oriented at 90 degrees
- E-beam capacitively couples to striplines
 - f_{RF} = 2.865 GHz
- SMA feedthrough to stripline
- With e-beam centered, each pickoff sees same signal level

BPM Signal Mixing

- Problems: direct measurement of high frequency RF BPM signals
 - Comparing signals is phase senstitive
 - High cable loss for detector in CR
 - High radiation for detector in tunnel
 - Few reliable detectors
 available

 Better: use heterodyne technique, local oscillator in tunnel

- Phase and cable loss no
 longer a problem
- Wide range of commercially available detectors
- Detector and DAQ can be located in CR

Beam Position Error Calculation

- Separate position into vertical and horizontal components
- Use AD640 Log-Amp to measure signal level for each pickoff
 - Absolutely calibrated slope and reference
 - DC 120 MHz
 - 50 dB dynamic range
- Take difference of log-amp output for H and V pairs to generate error signal

 $\delta x \propto V^R / V^L$ $\delta y \propto V^T / V^B$

$$V_{out} = V_{slope} \log (V_{input} / V_{ref})$$

$$V_{out}^{R} - V_{out}^{L} = V_{slope} \log (V_{input}^{R} / V_{input}^{L})$$

BPM Readout Block Diagram

Log-Amp Test Measurements

- Test log-amp in Vector board circuit
- Logarithmic response
- Measure real BPM signal: ~ 1 V
- Verified sample & hold circuit
- Now need to test 2channel comparison

Schematic

Layout

- 2-layer, 0.062" FR-4,1 oz.
 - 0.115" trace width for 50
 Ohm u-strip
- 10 MHz into SMA input
- 60 Ohm terminator required b/c of internal attenuator
- Ground side of SMA connects directly to log-amp, not ground plane as per AD spec

